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Abstract

Objective—We present a novel signal processing algorithm for automated, noninvasive detection 

of Cortical Spreading Depolarizations (CSDs) using electroen-cephalography (EEG) signals and 

validate the algorithm on simulated EEG signals. CSDs are waves of neurochemical changes that 

suppress neuronal activity as they propagate across the brain’s cortical surface. CSDs are believed 

to mediate secondary brain damage after brain trauma and cerebrovascular diseases like stroke. We 

address two key challenges in detecting CSDs from EEG signals: (i) attenuation and loss of high 

spatial resolution information; and (ii) cortical folds, which complicate tracking CSD waves.

Methods—Our algorithm detects and tracks “wavefronts” of a CSD wave, and stitch together 

data across space and time to make a detection. To test our algorithm, we provide different models 

of CSD waves, including different widths of CSD suppressions and different patterns, and use 

them to simulate scalp EEG signals using head models of 4 subjects.

Results and conclusion—Our results suggest that low-density EEG grids (40 electrodes) can 

detect CSD widths of 1.1 cm on average, while higher density EEG grids (340 electrodes) can 

detect CSD patterns as thin as 0.43 cm (less than minimum widths reported in prior works), among 

which single-gyrus CSDs are the hardest to detect because of their small suppression area.
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Significance—The proposed algorithm is a first step toward noninvasive, automated detection of 

CSDs, which can help in reducing secondary brain damages.
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(TBI); Detection; Algorithm

I. INTRODUCTION

IN this work, we provide an algorithm for noninvasive and automated detection of Cortical 

Spreading Depolarizations (CSDs) which is tested on simulated electroencephalography 

(EEG) signals. CSDs are waves of neurochemical changes that propagate slowly (1 to 8 mm/

min) across the cortical surface and result in a suppression of normal neuronal electrical 

activity [3]–[5] (see Fig. 1). CSDs occur because of loss of electrochemical gradient across 

neuronal membranes [6]. Increasing evidence shows that CSDs may contribute to secondary 

brain injury after trauma, stroke, and hemorrhage by causing microvascular constriction and 

brain tissue hypoperfusion [6]–[8]. Approximately 2.5 million TBIs occur in the United 

States per year1, and among all of the deaths due to injuries, 30% are due to TBIs2 [9]. 

Higher frequency of occurrence of CSDs is correlated with higher tissue damage [7], and 

surgical measures that reduce CSD incident lead to improved clinical outcomes [10]. 

Therefore, there is a need for early detection and inhibition of CSDs. At present, aside from 

visual examination of electrophysiological data [11], there is no established technique for 

automated noninvasive detection of CSDs. We view our work as the first step in that 

direction.

Two main challenges in detecting CSD from noninvasive EEG recording are: (i) transient 

disappearance of parts of a CSD wave from EEG recordings when it enters sulci; and (ii) 

spatially blurred observation of the underlying cortical activity recorded by scalp EEGs. This 

spatial blurring is due to the decay of high resolution information passing through bone and 

soft tissue, which complicates detection of narrow CSDs. In idealized spherical models, a 

CSD wave forms an annular ring of depressed brain activity that propagates across the 

cortical surface. However, due to the presence of folds (gyri and sulci) in the human cortex, 

a CSD wave would appear in EEG recordings as broken parts that we call “wavefronts,” 

which can evolve to break down or combine with other wavefronts as the wave propagates. 

To address the first difficulty, we need to reduce the problem to a simpler problem of 

detecting these wavefronts instead of a full CSD wave. To address the second difficulty, we 

use higher-density EEG grids, and project the signal on the brain surface using a tool called 

“surface-Laplacian” [12]. Instead of deciding on the presence of CSD from the channels 

independently, we track wavefronts that move consistently across time with speed consistent 

with the range of CSD propagation speed. To obtain these wavefronts, we use displacement 

1The following three sources add up to this number: National Hospital Discharge Survey (NHDS), 2010 (https://www.cdc.gov/nchs/
nhds/nhds_tables.htm); National Hospital Ambulatory Medical Care Survey (NHAMCS), 2010 (https://www.cdc.gov/nchs/ahcd/
web_tables.htm); and, National Vital Statistics System (NVSS), 2010 (https://www.cdc.gov/nchs/nvss/index.htm). All data sources are 
maintained by the CDC National Center for Health Statistics.
2National Vital Statistics System (NVSS), 2006–2010. The data source is maintained by the CDC National Center for Health 
Statistics.
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vectors which are known as “optical flows” and used in computer vision for object tracking 

[13], [14].

We test our algorithm on EEG data generated by simulating CSD propagation on the cortex 

using two models: (i) an ion diffusion-based “mesoscale” model of CSDs that builds on 

Tuckwell’s model of CSD propagation [15], with some modifications as described in 

Section II-A. Tuckwell’s model abstracts the physiological mechanisms of CSD propagation 

and helps us test our detection algorithm in an accepted model of CSDs. It makes a 

connection between the current understanding of CSD waves and our proposed algorithm. 

However, this model has a fixed width of suppression (~2 cm), and generates idealized ring 

shapes of CSD propagation (on planarized surfaces), while in practice, the width and the 

shape of CSD suppression can vary (by “width of CSD suppression” we mean the spatial 

width of the CSD wave parallel to the direction of propagation; see Fig. 3a). Therefore, we 

also use (ii) a more abstract model that suppresses regular brain activity (modeled as a 

random Gaussian process) to generate “complex” CSD patterns (e.g., a non-ideal ring shape, 

semi-planar wavefronts, and single-gyrus propagation). These patterns are simply imposed 

onto the random brain activity, and the generation is thus somewhat “artificial.” This 

artificial generation of CSD models allows us to tune suppression widths and shape of CSD 

waves, yielding a broader set of signals to test our algorithm on them. To generate EEG 

signals, the simulated CSD wave is projected to the scalp using subject-specific forward 

models (with 33,255 sources on the cerebral cortex (gray matter) and 40 and 340 sensors for 

low-density (LD) and high-density (HD) EEGs, respectively). We use MRI images from 4 

subjects aged 18 to 74 years from the OASIS dataset3 to generate the forward models. Our 

results suggest that while low-density EEG grids can detect a significant fraction of CSDs, 

higher-density grids are required for detecting narrow CSD waves.

A. Related works

In [11], Dreier et al. summarize the works of the Co-Operative Studies on Brain Injury 

Depolarizations (COSBID) group which utilize direct-current (DC) shift of ECoG signals to 

detect post-trauma CSDs. They show that in parts of the cortex without spontaneous neural 

activity (electrophysiologic penumbra), there is a specific type of spreading depolarization 

waves, called isoelectric spreading depolarization (ISD). ISDs can be recorded and visually 

observed using near-DC-ECoG signals, which contains the low frequency and near DC 

components of the recorded ECoG signals (below 0.5 Hz). This detection technique, 

however, could be hard to apply to noninvasive EEG signals where the preprocessing often 

filters out near-DC signals. We note that DC-coupled EEG recordings can be made from the 

scalp, and this can enable detection of CSDs using DC shifts in EEG [16], [17]. However, 

DC-coupled EEG is not commonly used today, thus we focus on high-frequency suppression 

in this work.

While ECoG signals are invasive, in [17], Hartings et al. show that CSDs can be detected 

noninvasively using EEG in patients with severe TBI. This work built on an earlier work of 

Drenckhahn et al. [16], who present similar results on patients with malignant hemispheric 

3http://www.oasis-brains.org
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stroke and subarachnoid hemorrhage. Hartings et al. first identify CSDs in 

electrocorticography (ECoG) recordings through visual inspection, and also visually inspect 

time-aligned scalp EEG recordings to find amplitude depressions associated with the 

depolarization. They show that 81% of the identified events has manifestations in the “time 

compressed” (i.e., downsampled) EEG recordings. The authors first downsample the EEG 

signals in time to visually observe electrical silences in EEG signals and then check if these 

silences spread spatially. However, in this work, the skull of the patients is fractured, 

potentially reducing the spatial blurring in the EEG signals. Further, the widths of CSD 

depressions are quite large in severe TBI, making these CSDs easier to detect noninvasively. 

Finally, the visual inspection technique used is not automated. All three limitations are 

overcome in our work.

A contrasting, and perhaps cautionary, recent work is that of Hofmeijer et al. [18], where the 

authors monitored 18 stroke and 18 TBI patients. Using 21 electrode EEG systems, no CSDs 

were observed through visual inspection. The authors speculate that, among other reasons, 

this could be because of volume conduction and low resolution of the EEG system used. 

Because higher-density EEG systems continue to yield a higher spatial resolution [19], [20], 

a deeper understanding of what CSDs can be detected noninvasively through low and high-

density EEG needs to be obtained experimentally. Our work provides a simulation-based 

understanding of this issue, and while an experimental validation is required, the simulations 

do suggest that low-density EEGs can miss narrow-width CSDs, consistent with the 

speculation in [18].

Towards developing automated algorithms, one related work is that of Gharibans et al. [21], 

who propose an automated algorithm to detect a slowly propagating gastric waves using 

noninvasive electrogastrogram (EGG). This detection algorithm, like ours, is based on 

consistency in speed and direction of propagation. However, our algorithm is more suited to 

the CSD detection problem because: (i) unlike in CSD propagation, there are no folds on the 

stomach surface to cause “disappearance” of the recorded wavefronts, and (ii) their 

algorithm utilizes spatial averaging over all electrodes, which limits the algorithm to detect 

time of spread, but not the spatial location. Similarly, in [22], Bastany et al. monitor 

spreading depolarization DC potential changes in rats using three different analyses, namely, 

spectrogram, bi-spectrogram, and pattern distribution. However, rat cortex also does not 

have any folds, and further, rats have thinner skulls than humans, causing less spatial 

blurring in EEG recordings.

B. Paper organization

The rest of the paper is organized as follows. In Section II, we introduce our “mesoscale” 

model of CSD propagation that builds on a similar model of Tuckwell et al. [15], [23]. To 

complement Tuckwell’s model, we also introduce our models of complex CSD patterns that 

have varying CSD widths and patterns. In Section III we provide our automated CSD 

detection algorithm. In Section III-C, we quantify the performance of detection using low 

and high-density EEG on CSDs of varying widths of suppression, and for different head 

models. Finally, we conclude in Section IV, where we discuss limitations of the proposed 

algorithm and some possible directions for future work.
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II. CSD MODELING

In the following, we describe how we simulate the CSD wave on the cortex using a 2D 

“mesoscale” model, and perform forward modeling to project the signal onto the scalp to 

obtain simulated EEG data. To achieve realistic simulations of CSD waves, we use real brain 

models that have gyri and sulci. Fig. 2 summarizes the main steps of CSD modeling.

A. 2D models of CSDs: a mesoscale model, and imposed complex CSD patterns

We borrow the 2D model of Tuckwell [23], which is based on extracellular space (ECS) and 

intracellular space (ICS) ion concentration changes. Tuckwell’s model is based on “reaction-

diffusion” of ions and neurotransmitters. “Reaction” refers to the ion exchange between ICS 

and ECS, which is at the cell level and is the microscopic part of the model, and “diffusion” 

refers to the ionic propagation in the ECS and between neurons, which is the macroscopic 

part of the model. The resulting “mesoscale” model takes six components into account: 4 

ions K+, Ca++, Na+, Cl− and two neurotransmitters, one inhibitory which we call “TI,” such 

as GABA; and one excitatory (“TE”), such as glutamate. Among these six components, ICS 

concentrations of K+, Na+, and Cl− are associated with the post-synaptic membrane, and ICS 

concentration of Ca++ and fluxes of TI and TE are associated with the pre-synaptic neuron. 

This mesoscale model consists of six coupled 2D parabolic partial differential equations 

(PDEs), which update the ECS concentrations of the 6 components on the 2D space and 

time as follows:

∂ui
ext

∂t
= Dui

∇
2
ui

ext + ℱi(u), i = 1, 2, ..., 6, (1)

where u(x, y, t) is the vector of ECS and ICS concentrations, Dui is the diffusion coefficient 

of the corresponding ECS component, and ℱi(u) is the flux term of each component. To 

solve the PDEs in (1), we perform discretization using Euler’s method. Further details of 

this model are available in Appendices of [1].

Some notable aspects of Tuckwell’s model are: (i) it does not account for cell swelling, 

which can increase the refractory period. However, the speed of CSD wave propagation is 

unaffected by cell swelling [24] even if the width could be affected. Thus, we also use other 

CSD models where the width and the speed of depression are tunable parameters; (ii) the 

dynamics of calcium in the pre-synaptic region are related to the amount of transmitter 

release at the synaptic cleft (see the Appendices of [1]), thus this model includes the 

dynamics of calcium [25]; (iii) the model instigates CSD using a local increase in the 

extracellular potassium concentration. In brain injuries, substantial intracellular potassium is 

released into the ECS of the injured part due to neural damage or death, which is believed to 

instigate CSDs. In fact, the amount of released K+ is proportional to the severity of the 

injury [26], [27]. Beyond injury, there may be other factors as well that are involved in CSD 

instigation in neurological disorders.

Another assumption in [23] is the homogeneity of the medium in which the ions diffuse, 

which makes the shape of the generated CSD wave an idealized annular ring. Several factors 

can result in spatial heterogeneity of ion diffusions such as (i) the shape and the geometry of 
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ECS that causes additional delay in ion propagation compared to a free medium, and (ii) 

presence of dead cells and fixed negative charges in the ECS, particularly in injured brains 

[28]. To make our simulations more realistic, we introduce heterogeneity in our model of the 

cortical medium, which is explained in detail in the Appendices of [1].

In addition to the heterogeneous ring shape of propagation, CSD can have more complex 

patterns of propagation, namely, propagation on a single gyrus [29], [30], and spreading with 

multiple semi-planar wavefronts that split from an original wave [30]–[32]. Complex 

patterns of CSDs may appear when spreading depolarizations occur in energy compromised 

areas, e.g., lesions in brain [33]. To test the performance of our detection algorithm, we 

simulate these complex patterns of CSD on a 2D plane, similar to the 2D plane in the 

mesoscale model, and then project them on the cortex. Fig. 3a shows a CSD on left 

hemisphere with propagating semi-planar wavefronts with a width of suppression of 2.5 cm. 

Fig. 3b represents the propagation of a narrow CSD wavefront (5 mm) on a single gyrus, 

which is highlighted in blue.

B. Projection of cortical signals onto the scalp

To test the detection of CSDs using noninvasive scalp EEG, we first simulate a CSD wave 

on a real brain model and then obtain the resulting scalp EEG. To transition from our 2D 

model to real brain model, we perform mappings in four steps: (i) the 2D model is mapped 

onto a segment of an unrolled cylinder; (ii) the unrolled cylinder is projected onto a unit 

sphere, by radially contracting all points in a direction perpendicular to the axis of the 

cylinder (see Fig. 4)4; (iii) as an intermediate step, a unit sphere is used to represent the 

entire cortical surface through “inflation” of cortex (see Fig. 5). This intermediate inflated 

cortex is a smooth surface. Such inflation is readily performed using tools such as 

Freesurfer5 which is an open source software; (iv) the sphere (along with the CSD mapped 

onto it) is finally deflated to reassume the intricate gyrencephalic structure of the cortex. Fig. 

5a shows a CSD generated on the left hemisphere. Since the 2D CSD from the mesoscale 

model is mapped onto an inflated spherical 3D model of the cortex, the CSD wave gets 

projected onto both sulci and gyri, not only on gyri. Hence, the spreading depolarization 

wave travels inside sulcal regions (see Fig. 6), and the time it takes for CSD to get out of a 

sulcus depends on the depth of the sulcus.

To obtain the EEG recordings, we use a forward model based on the subject’s head model 

(obtained from MRI scans) to project the electrical activity of brain sources on to the scalp. 

In this paper, an open source MRI database (OASIS) is used to obtain real head models. We 

choose MRI image set of 4 healthy subjects in this dataset with different ages (OASIS1: 74, 

OASIS2: 55, OASIS4: 28 and OASIS5: 18 years old) and use FreeSurfer to process these 

MRI images and extract different layers of head, i.e., scalp, skull, cerebrospinal fluid (CSF) 

and brain (cerebral cortex). Next, using a Matlab toolbox FieldTrip [35], which is designed 

for EEG data analysis, we generate a forward matrix with the first dimension equal to the 

number of EEG sensors on scalp and the second dimension equal to the number of electrical 

sources in brain (dipoles normal to the surface of cortex [12], [36]). In our simulations, we 

4For all of the spherical plots in this paper, we use the SSHT package [34] available at: http://www.jasonmcewen.org
5https://surfer.nmr.mgh.harvard.edu
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use 33,255 cortical sources and Nch(= 40 for low-density, or 340 for high-density) EEG 

electrodes on scalp. The EEG electrode locations are generated by projecting the spherical 

harmonic locations on the scalp and removing parts such as face and neck (Fig. 7).

After constructing this forward model, the next step is generating electrical signals of CSD 

propagation on the cortex and project them on the scalp. To do so, we use two aspects of 

CSDs: i) During a CSD wave propagation, the activity of sources where the wave is passing 

is suppressed; and ii) Electrical activities of sources that lie within brain grooves (sulci) are 

hard to be recorded from the scalp, because of their depth, and also because some of these 

dipoles are parallel to the cortical surface. This breaks the CSD wave into disjoint parts that 

we call “wavefronts.” For the illustration purpose and to show how does the CSD wavefronts 

look like on the cortex we use the depth of sulci, extracted from MRI images, to create these 

breaks (See Fig. 5b). For the simulated EEG signals, the generated forward model 

automatically takes into account the “electrical disappearance” in sulci.

We simulate background electrical activity on the cerebral cortex during CSD propagation 

using normal random process and then suppress it at the locations of the CSD wave. We 

suppress the electrical activity using a smooth falling edge, and then gradually have it 

recover using a similar rising edge, with a variable delay6, after the CSD propagation. The 

delay is to model the fact that spreading depression usually outlasts spreading depolarization 

[11]. In this way, we utilize the spatiotemporal locations of CSD wavefronts in the 

“mesoscale” model to generate these suppressions in the electrical activity, and 

consequently, the main characteristics of CSD waves, including the speed of propagation 

and width of suppression, are reflected in the electrical signals. The simulated electrical 

signal used in our experiments lasts for an hour, and in the first 30 minutes, there is a CSD 

propagation that starts on the left hemisphere with the speed of 3 mm/min. Signal “SCrtx” in 

Fig. 8b is the simulated cortical signal. As the final step in this section, we obtain the EEG 

signals on the scalp (signal “SEEG”) by applying the subject-specific forward model to the 

simulated cortical signals. Fig. 9 shows the resulting SEEG signal. Visual comparison of our 

simulated signals with the actual ECoG and EEG recordings of CSD propagation (e.g., [17]) 

suggests that our simulated electrical signals are a reasonable approximation of CSD waves.

III. DETECTION ALGORITHM

Detection of CSDs from EEG recordings is challenging because of the following reasons: (i) 

as explained in the previous section, EEG is less sensitive to activity inside a sulcus, 

breaking the recorded wave into multiple wavefronts; (ii) the decay of high spatial 

frequencies as the signal passes through skull and soft tissue. This makes the detection of 

CSDs with narrow width and/or small overall area of suppression hard, e.g., detection of 

CSDs with semi-planar wavefronts, which may affect only a single gyrus, is difficult using 

EEG; (iii) uncertainty in the point of initiation of CSD makes the detection challenging; and 

(iv) different speeds of propagation in different brain regions due to the spatial heterogeneity 

of the diffusivity of ions involved in the CSD propagation (see the “heterogeneous model” in 

the Appendices of [1]).

6We report results based on suppression widths, so this aspect is not discussed in our results section.
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To overcome these challenges, the key idea is to identify and track CSD wavefronts and 

stitch together data across time and space to detect the CSD wave. In doing so, we first pre-

process the simulated EEG signals to obtain a sequence of interpolated 2D spatial maps, 

from which we extract spatiotemporal coordinates of suppressed activity. Because a CSD 

wave manifests as traveling wave of suppressed brain activity on the cortex, we track 

suppressions that spread across time and space and score the wavefronts based on their 

orientations and speeds to classify the propagating waves and detect CSDs. In the following 

sections, we explain each of these steps in detail.

A. EEG pre-processing

The goal of this step is to extract the neural suppression pattern out of the simulated EEG 

signals, as these signals may have a low spatial resolution. Also, we partially compensate 

(using Laplacian spatial filtering) for the attenuation of high spatial frequencies caused by 

layers in between the electrical sources of the cortex and the EEG electrodes on the scalp 

surface, such as cerebrospinal fluid (CSF), skull and scalp. Pre-processing the EEG signals 

helps improve the signal to noise ratio (SNR) of CSD suppressions and obtain a sequence of 

2D spatial maps, on which we later apply image processing techniques for CSD detection. 

All of the following pre-processing steps are summarized in Fig. 9.

Laplacian spatial filtering—Laplacian filter is an approximation of the 2D spatial 

second derivative that is a good approximation for high-density EEG. Operationally, it 

extracts localized activity with high spatial frequencies [37], [38]. Since narrow CSD waves 

have high spatial frequencies, Laplacian filter is a good choice to extract the suppressions 

from the EEG signals and overcome the attenuation of high spatial frequencies in these 

signals. In contrast, for wide CSDs Laplacian filtering may not help. To not make any 

assumptions on the width of CSD in the detection process, we apply our detection algorithm 

on signals both before “SEEG”) and after “SLSF”) applying the Laplacian filter, and make a 

decision based on both. As the electrode distance increases, the Laplacian filter becomes less 

sensitive to the highly localized activity, e.g., narrow CSDs [37]. Therefore, we only apply 

the filter to high-density EEG electrodes (Nch = 340). To apply the Laplacian filter on the 

SEEG signal at each electrode location, we consider its neighboring electrodes in radial 

distance of 3 cm and update the voltages of electrodes as follows [37]:

V i
L

(t) = V i(t) −
i j dij 3cm

1

dij
V j(t)

i j dij 3cm

1

dij

, i = 1, …, Ncℎ (2)

where Vi(t) and V i
L

(t) are the voltages of signal SEEG and its Laplacian (SLSF) respectively at 

electrode i and at time t, and dij is the radial distance between electrodes i and j. Fig. 9 shows 

how the use of Laplacian helps in extracting a narrow CSD suppression from the signal 

SEEG.

Envelope extraction and cross correlation—In this step, we calculate the average 

power of EEG signals using a sliding time window for all Nch channels. We arbitrarily 

assign a width of 14 seconds (20 samples) to this time window, which is small compared to 
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the temporal width of CSD suppression. This low pass filtering temporally smoothens the 

EEG power. Signal “SPW” in Fig. 10a shows this average power.

Next, we perform envelope extraction. We use peak envelope extraction method, proposed in 

[39] and implemented in [40], which detects and extracts local maxima7. In Fig. 10b, signal 

“Senv” is the extracted envelope with zero DC offset. It is necessary to remove the DC offset 

of signal Senv for the next step, which is the amplification of the CSD suppression. We do 

this amplification using the cross correlation of signal Senv with a pattern of a negative step 

function (signal “SPtrn” in Fig. 10c). We exploit the fact that CSD suppression causes a 

reduction in the power of EEG signals. This power reduction forces the signal Senv, which 

has zero DC offset, to go to the negative values. We choose a 1-minute wide negative pulse 

for SPtrn in a way to be able to extract all types of CSDs which may have from 1 to 64 

minutes long suppressions at any location [5], [17], [41]. The output signal after the 

envelope extraction and amplification of the silencing is shown in Fig. 10d as signal 

“SX corr.”

Cylindrical projection—Our detection algorithm utilizes optical flow, a video-processing 

technique designed for 2D images. In order to obtain 2D spatial maps of pre-processed EEG 

data (SX corr), we project the scalp EEG electrode locations onto a 2D plane using cylindrical 

projection and assign the signal SXcorr to each corresponding electrode (image ISparse in Fig. 

11).

To address the uncertainty in the location of the focal point of CSD waves, we take two 

different cylindrical projections which are oriented normal to each other. Fig. 11 illustrates 

an example of this dual cylindrical projection. By using these dual projections, we ensure 

that the CSD wave is represented without distortion at the edges of the 2D plane. In Fig. 

11b, the starting point is near the upper right corner, and the shape of the CSD wave is quite 

distorted, which makes the tracking of wavefronts unreliable. In Fig. 11a, this problem is 

resolved, and the wave appears near the center of the 2D plane. Therefore, we use both 

cylindrical projections in our detection algorithm, but keep track of CSD propagation based 

on the one that captures the CSD wavefronts (if any is present).

Interpolation and thresholding—The 2D spatial map of the scalp simulated signals that 

we obtain using the previous steps (ISparse in Fig. 11a and b) is spatially sparse due to the 

limited number of EEG electrodes, even more so with low-density EEG. Therefore, we 

apply a 2D Gaussian kernel with σ = 6.8 mm to spatially interpolate and create smooth 

images out of these sparse 2D maps. Image ISmooth in Fig. 11c and d shows these 

interpolated 2D spatial maps.

Having these 2D spatial maps, we apply a two-step thresholding process to obtain binary 

images: a global and a local threshold. We first apply a global threshold to reject pixels with 

minimal values in ISmooth. Concretely, we assign zero to pixels with values lower than 40% 

of the global maximum (the average of highest pixel values among all images). As a second 

7This envelope extraction algorithm first detects the tallest peak in the whole signal and ignores the other peaks in the distance of 20 
samples (14 seconds) from that. Then it repeats for the remaining peaks and iterates until it considers all of the remaining peaks in the 
signal. It connects the extracted peaks using spline interpolation to obtain the envelope of the signal.
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thresholding step, for each smoothened image, we set the pixels for regions whose 

magnitudes lies within upper 60% of pixel value range in that image (local threshold). This 

threshold is kept not too high to reject valid CSD wavefronts, even allowing for a relatively 

high “false-alarm” rate where positive detections will be rejected later through stitching data 

across time and space. Fig. 12 shows the resulting binary image (IBW). The regions of higher 

magnitude correspond to regions of suppressed electrical activity, and they appear as 

connected components in IBW. Some of these connected components are parts of the CSD 

propagating wave, and others correspond to non-CSD evanescent waves, which we expect to 

reject in the ensuing processing.

B. Tracking of wavefronts and stitching data across space and time for an overall 

detection decision

In order to identify whether the wavefronts belong to a CSD propagation, we track the 

motion of wavefronts across frames using optical flows of pixels, followed by computing a 

score function based on the direction of propagation and speed and through a stitching 

process across time and space. Thresholding on the overall score function is used to detect 

the CSD waves. Fig. 12 shows different steps of the detection algorithm and the connection 

between them.

Downsampling and calculating optical flow—Optical flow is a technique used in 

computer vision to calculate the movement of objects between frames based on the 

spatiotemporal brightness variations and is used in many tasks such as motion estimation, 

object tracking and segmentation [13], [14]. We leverage optical flow to obtain the speed 

and orientation of the wavefronts’ motions. We use the Horn-Schunck algorithm for 

computing optical flows, which is proposed in [13] and implemented in [42]. However, since 

the speed of CSD propagation is very slow, we temporally downsample the binary images by 

means of sub-sampling every ten frames (every 7 seconds), to make it easy for the optical 

flow algorithm to capture the CSD wavefronts’ movement across frames.

Image IOpt in Fig. 14c shows the motion vectors as a collection of arrows where the length 

of each arrow corresponds to the magnitude of velocity and its orientation gives the direction 

of propagation of the corresponding pixel in IBW.

Quantization of orientations—As shown in Fig. 14c, in each binary image there are 

some connected components. In this step, we assign a bounding box to each connected 

component, and we call it “BBox” (red boxes in IOpt). To reduce the computational cost and 

focus on the larger connected components, we reject the bounding boxes with an area less 

than 20 mm2. Based on the size of the Gaussian kernel that we use for spatial interpolation 

(σ = 6.8 mm, see Section III-A), this is a reasonable threshold for the size of bounding 

boxes.

Next, we compute a histogram of the orientation of optical flows for each of these bounding 

boxes. Fig. 13b shows an example of this histogram. The histogram contains 12 bins of 30° 

each. Based on this histogram, the prominent directions of propagations can be extracted, 

e.g., if there are two significant directions of propagation in a bounding box, it indicates that 

the wavefront might split into two parts during the next few frames. To extract these 
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prominent orientations, we apply a thresholding operation on each of these histograms at 

50% of the largest population among the bins. For the remaining optical flows, we quantize 

the orientations based on the central point of their corresponding bins in the histogram, e.g., 

if the orientation lies in the interval of 60° to 90°, its new value becomes 75°. Fig. 13c shows 

these quantized optical flows.

Orientations bounding boxes (OBBox)—In this step, we define a new set of bounding 

boxes based on the quantized orientations. For each value of orientation, we find the optical 

flows that are connected through pixels and have similar orientations, and we assign a 

bounding box to each of them (green boxes in Fig. 13c). We name these new bounding 

boxes “OBBox.” We apply a threshold based on the size of these OBBoxes, similar to the 

threshold for BBoxes as we explained in the previous section, to reject very small OBBoxes 

and focus on the significant parts of the wavefronts which move together in the same 

direction.

Scoring OBBoxes based on the consistency of propagation—In this step, we 

score these OBBoxes based on the consistency in the direction and speed of propagation. 

Since each OBBox contains optical flows with similar orientation, we consider this 

orientation as the direction of propagation of OBBox, and we assign the average magnitude 

of the optical flows inside each OBBox as its speed of propagation. Our scoring algorithm 

consists of two main parts: (i) define the spatiotemporal neighbors for each OBBox; and (ii) 

assign a weighted score to each OBBox based on direction and speed of propagation.

First, for each OBBox we define its neighbors as the OBBoxes which lie within a radius of 2 

cm (center-to-center distance) and temporal range of about 2 minutes (20 frames before and 

20 frames after the current frame). Since a CSD wave propagates slowly (8 mm/min at the 

maximum [17]), inside this window of 2 minutes, we can expect the CSD wavefronts to have 

a displacement of less than 2 cm. This explains the reason for choosing the values above as 

the spatiotemporal range of neighbors.

As the second step in the scoring algorithm, we check if the speed of each OBBox is 

consistent with that of a CSD wave (1-8 mm/min). If so, we search its spatiotemporal 

neighbors, as defined in the first step, to find matching bounding boxes, i.e., an OBBox with 

the same direction of propagation and an average speed of 1-8 mm/min. We define the score 

of each OBBox (“SCR”) as the sum of the area of its matching neighbors. Thus, we now 

have a weighted score function for OBBoxes. Note that although the cylindrical projections 

(Section III-A) reduces the speed of propagation for the projected wavefronts in some parts 

of the 2D plane (depending on the orientation of the cylindrical projection), the upper bound 

of 8 mm/min on the speed of CSD still holds and there is no faster CSD propagating 

wavefront on the 2D spatial maps after projection.

In addition to the spatiotemporal scoring (SCR), we check the temporal consistency of this 

score function, i.e., whether these matching OBBoxes are well distributed over the temporal 

range of 20 frames, or just concentrated in a few frames. This helps us differentiate and 

reject the short-time non-CSD evanescent waves from the consistent and slowly propagating 

CSD wavefronts. We assign a binary score to each of the 40 neighboring frames; if a frame 

Chamanzar et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contains one or more matching OBBoxes, we assign 1 to this score; otherwise, we assign a 

0. We call this the “temporal score.” If less than 60% of these frames have non-zero 

temporal scores, we reset (make zero) the spatiotemporal score of corresponding OBBox. 

This scoring algorithm allows us to extract the OBBoxes that are candidate pieces of a CSD 

wave. However, there is still room to improve the results regarding rejecting false alarms, 

using exploiting the temporal characteristic of CSD propagation, i.e., the duration of 

propagation. This is done in the next step.

Stitching process and the final decision on detection—In this step, we make the 

final decision based on the spatiotemporal scores of OBBoxes. First, to reject the boxes with 

minimal scores, we apply a spatial threshold, i.e., the 10% of the maximum available score 

at each frame. Also, we reject the frames (and all of the OBBoxes within them) with a total 

score of less than 10% of average scores among all frames. Here, the frame score is simply 

the sum of the scores of all OBBoxes within it. Fig. 14b shows this frame score 

(Σi = 1
n

SCR(i), where n is the number of total frames) after thresholding.

We stitch the frames as follows: we slide a time window of 10 minutes over the frames and 

calculate the number of frames with non-zero scores “BSCR”=1, see Fig. 14b) which lie 

inside this time interval. If this value is greater than half of the total number of frames inside 

this time interval (5 min), we select the middle frame. Fig. 14b shows these selected frames 

as a group of connected time indices using a binary function “Tout” (1=selected frame). We 

check the temporal length of these connected frames to be more than 5 minutes. After this 

step, we keep the OBBoxes of the selected frames and reject others. The final outputs of this 

detection algorithm are: (i) the spatial location of the remaining OBBoxes, which indicates 

the location of CSD wavefronts in each frame (Iout in Fig. 14d); and (ii) the temporal 

locations of these selected frames as the time indices of CSD propagation in the simulated 

dataset (Tout in Fig. 14b). The output of our detection algorithm using HD-EEG simulated 

signals (Nch = 340) on a wave generated using Tuckwell’s model (Section II-A) is shown in 

Fig. 14.

C. Detection results: comparing low and high-density EEG

We apply the detection algorithm on four different real head models, which we extract from 

the OASIS dataset of MRI scans. CSD suppression widths for TBI can range from 0.8 to 6.4 

cm [5], [17], [41], and the range could be broadened by including migraines (very short 

suppressions). Thus, we test the performance of our algorithm for a wider range of widths of 

suppression, namely 0.3 to 6.4 cm. Here we explore how high-density EEG could improve 

the performance of CSD detection concerning the minimum detectable width of suppression.

We apply the detection algorithm on simulated signals from both low-density (LD) and high-

density (HD) EEG grids (see Fig. 7). For the LD-EEG, we use 40 electrodes (Nch = 40), and 

for the HD-EEG, we use the same 340 electrodes (Nch = 340) as used in the previous 

sections. For both scenarios, we start with a CSD wave with a large width of suppression and 

reduce it to find the minimum detectable width of CSD. However, the mesoscale model of 

CSD, which is proposed in Section II, has a fixed width of CSD and is not appropriate for 

this experiment. To address this issue we “artificially” (i.e., without using Tuckwell’s model) 
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generate CSDs on the real brain using the simulation of a propagating non-ideal ring-shaped 

wave emanating from a focal point.

Following the steps of CSD modeling in Fig.2, we first generate CSD waves on a 2D plane. 

In this 2D image, there are seven sectors of 51.4° each to which we assign different speeds 

of propagation in the range of CSD propagation’s speed (1-8 mm/min). In this simulation, 

we use the head models of 4 subjects and based on section II-B, we generate two forward 

models for each subject, one for the case of LD-EEG simulations (40 sensors and 33,255 

sources) and the other for the HD-EEGs (with 340 sensors and 33,255 sources). Following 

steps in Section III, we find the minimum widths of CSD waves that are still detectable by 

our algorithm. When using HD vs. LD-EEG, there are two differences to note: (i) we only 

apply the Laplacian filter to HD-EEG electrodes because the Laplacian is only effective at 

high densities [37]. HD-EEG captures cortical signals at a higher spatial resolution relative 

to LD-EEG [19], [20], and Laplacian filter can extract a high-spatial-frequency view of 

cortical activity; and (ii) because the spatial resolution of LD-EEG is low, we use larger 

Gaussian kernel (σ=13.8 mm) for spatial interpolation to obtain smooth 2D maps (ISmooth).

The results of these simulations are provided in Table I. The average minimum detectable 

CSD-width using LD-EEG is 1.1 ± 0.22 cm, which covers the majority, but not all known 

widths of CSDs. However, the average minimum detectable CSD-width using HD-EEG 

electrodes is 0.43 ± 0.13 cm, which covers almost all types of CSD waves. Fig. 20 in [1] 

shows the output of CSD detection (Tout) for narrow (1 cm) and wide (6.4 cm) CSD 

silencing for four different head models, using HD-EEG simulations. In our simulations, 

CSD propagation happens in the first 30 minutes and starts on the left hemisphere. Based on 

the results in Fig. 20 in [1], our algorithm is able to detect the CSD propagation.

Fig. 15a and b, respectively show the detection results for two complex patterns of CSD 

waves, namely, propagation with semi-planar wavefronts, and on single gyrus. Based on 

these results, our detection algorithm successfully detects the entire 30 minutes propagation 

of semi-planar wavefronts of a CSD wave with 2.5 cm width of suppression. However, for a 

narrow CSD wavefront (5 mm wide) propagating on a single gyrus, our detection algorithm 

misses the first few minutes of propagation due to the small total area of suppression which 

is below the chosen threshold for the area of bounding boxes (see Section III-B).

For a fair comparison, we simulate an hour of EEG signals where there is no propagating 

electrical suppression, which is rejected by our algorithm (see Fig. 22 in [1]).

IV. DISCUSSIONS AND CONCLUSIONS

Our detection algorithm can detect different types of CSD waves, including narrow and 

complex patterns of CSD, using HD-EEG as long as the following conditions hold: (i) the 

CSD wave must have a width of suppression of at least 5 mm; (ii) the wavefronts overall 

must have a total area of suppression of at least 20 mm2. To the best of our knowledge, this 

threshold is less than the minimum reported area of suppression in the literature which is 80 

mm2 for a single CSD wave in stroke patients [29]; and (iii) the wave must propagate for at 
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least 5 minutes. Note that some short and temporally isolated CSDs [29] may not be 

detected using this algorithm.

This detection algorithm is not real-time. The speed of diagnosis and treatment in brain 

injuries is an important factor and can affect patients’ quality of life after the injury. Future 

work will extend this algorithm to enable real-time detection.

EEG grids of 340 electrodes might indeed seem unrealistic in today’s clinical settings, 

especially in situations where EEG electrode placement is limited by skull fractures, 

wounds, sutures, etc. This poses two engineering challenges. First, on the instrumentation 

side, when the clinical situation allows, how can one place hundreds of electrodes on the 

scalp within few minutes? Second, on the signal-processing side, can the algorithms for 

CSD detection be advanced to detect using limited (nonuniform) EEG arrays, and what 

would these arrays look like? Even for these lower electrode-count systems, our techniques 

might still be useful. Specifically, the preprocessing steps of our detection algorithm (see 

Fig. 10) can enhance the single-channel visual inspection of our simulated EEG signals for 

CSD detection. Going beyond TBI, migraine CSDs have smaller CSD widths [7], which 

makes their detection hard. Migraine CSDs have to be detected noninvasively, and thus HD-

EEG is likely required.

Another shortcoming of our model is that it does not include low EEG baseline amplitudes, 

e.g., near lesions and in ischemic tissues. While obtaining realistic models of this aspect 

difficult, we believe it is important because it will also directly affect our preprocessing step 

where the cross correlation and thresholding computation might miss some CSDs because 

the baseline EEG itself is smaller. Simply normalizing each EEG channel (or signals in 

source space, obtained, e.g., after source localization or Laplacian filtering) can result in 

blowing up of noise, thus the algorithm will need to be adapted carefully. Owing to these 

significant complications in this problem, addressing this issue is left as future work. Finally, 

the algorithm needs to be tested through in-vivo recordings.
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Fig. 1: 
A simulation of propagation of a CSD wave on the cerebral cortex across the left hemisphere 

over time t0 < t1 < t2 < t3. The red region in the figure is the region of suppression of normal 

brain activity.
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Fig. 2: 
CSD Modeling: 4 main steps of simulating EEG signals obtained from CSD waves.
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Fig. 3: 
Complex patterns of CSD: a) Propagation of a CSD wave in the form of semi-planar 

wavefronts, shown in red, originating and splitting from an original wave with 2.5 cm width 

of suppression, b) Propagation of a narrow CSD wavefront (5mm suppression width), shown 

in red, on a single gyrus on the left hemisphere, highlighted in blue. These are complex 

patterns of CSD propagation suggested in [29]–[31]. In this work, we define the “width of 

CSD suppression” as the width of CSD wave parallel to the direction of propagation (see the 

last image in (a)).

Chamanzar et al. Page 19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: 
Mapping of the CSD wave onto the surface of a unit sphere (t = 15 min).
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Fig. 5: 
a) Mapping of the CSD wave from the inflated brain model onto the cerebral cortex of 

subject “OASIS2” (t = 15 min). b) “Electrical disappearance” of CSD waves inside sulci in 

the recorded cortical signals breaks the suppression pattern into multiple disconnected parts 

that we call “wavefronts.”
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Fig. 6: 
Coronal cross section of subject ”OASIS2” showing how the CSD wave travels inside sulcal 

regions after mapping the 2D mesoscale model onto the inflated spherical model of the 

cortex.
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Fig. 7: 
EEG electrode locations on a real head model (subject “OASIS2”) at spherical harmonic 

locations, face and neck electrodes are removed: a) Nch = 40 and b) Nch = 340 electrodes.
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Fig. 8: 
Generating electrical signals of CSD waves on the cortex: a) Extracellular potassium 

concentration during CSD propagation at one of the sensor locations (Sion), b) Background 

electrical activity (SCrtx), that we generate using a normal random process (σ = 1) and then 

suppress at locations of the potassium ion concentration peak in (a) by means of a smooth 

suppression pattern.
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Fig. 9: 
CSD pre-processing: main steps of extracting spatial maps of CSD suppressions out of 

simulated signals on scalp (SEEG).
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Fig. 10: 
Preprocessing of EEG signal: a) SPW: smoothened EEG power using an averaging time 

window of 14 seconds, b) Senv: zero-biased peak envelope extracted signal from SPW with 

minimum peak distance of 14 seconds, c) SPtrn: “negative pulse” pattern with temporal 

width of 1 minute, d). SXcorr: cross correlated Senv with the SPtrn signal. The amplified peak 

in (d) indicates the presence of suppressed brain activity at t = 15 min.
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Fig. 11: 
Cylindrical projection of preprocessed scalp EEG signals (SCorr) onto a 2D plane (ISparse in 

(a) and (b)) and their spatial interpolation (ISmooth in (c) and (d)) using a Gaussian spatial 

kernel with σ = 6.8 mm. In ISparse each dot indicates an EEG electrode location and its color 

indicates the corresponding amplitude of SXcorr (t = 10 min): a) a cylindrical projection 

which is oriented in a direction that captures the CSD wave in the middle of the plane and 

(c) is its spatially interpolated image; b) a cylindrical projection which is oriented normal to 

the previous one and, in this example, it captures the CSD wave near the boundary of the 

plane and causes distortion in the wavefronts and (d) is its corresponding interpolated 

ISmooth.
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Fig. 12: 
The steps of our CSD detection algorithm.
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Fig. 13: 
Quantization of optical flows based on a histogram of orientations: a) a BBox and its 

corresponding optical flows (IOpt); b) the calculated histogram of orientations for optical 

flows in IOpt. Green circles indicate the selected bins after applying a threshold at 50% of the 

maximum population; c) Quantized optical flows based on the selected bins in (b). Bounding 

boxes of the quantized orientations (OBBox) are shown in green.
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Fig. 14: 
a) Locations of different parts of brain for the binary images IOpt and IOut in this example. In 

this figure, the left hemisphere is located in the middle where the CSD starts to propagate; b) 

temporal output of the detection algorithm (Tout) for the simulated CSD using the mesoscale 

model (2 cm wide); c) IOpt which shows optical vectors of CSD “wavefronts” in addition to 

the BBoxes of connected components (red boxes); d) IOut in which the detected CSD 

wavefronts are marked using multiple green bounding boxes (OBBox). Based on the 

consistency in the direction and speed of the wavefronts, these OBBoxes are scored and 

selected.
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Fig. 15: 
Performance of the proposed algorithm in the detection of complex patterns of CSD 

propagation using HD-EEG (Nch = 340) for OASIS2 head model. a) The detection result of 

CSD propagation with multiple semi-planar wavefronts with 2.5 cm width of suppression 

(see Fig. 3a). b) The detection result of a narrow CSD wave propagating on a single gyrus, 

with 5 mm width of suppression (see Fig. 3b). The CSD spread happens in the first 30 

minutes for (a) and 45 minutes in (b). The estimated time of propagation is given by the 

binary signal Tout, whose non-zero level indicates the presence of CSD propagating wave. 

Note that in (b), our detection algorithm misses the first few minutes of propagation due to 

the small area of single CSD wavefront.
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TABLE 1:

Minimum detectable widths of CSD using low-density (LD) and high-density (HD) EEG electrodes.

Subject EEG Interpolation (σ mm) Minimum detectable width of CSD (cm)

OASIS1
HD
LD

6.8
13.8

0.4
1.0

OASIS2
HD
LD

6.8
13.8

0.3
1.1

OASIS4
HD
LD

6.8
13.8

0.4
1.4

OASIS5
HD
LD

6.8
13.8

0.6
0.9

Avg.
HD
LD

-
-

0.43±0.13
1.1±0.22
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