
An Algorithm for Diagnostic Reasoning Using TFPG Models in
Embedded Real-Time Applications

Larry Howard, Institute for Software Integrated Systems, Vanderbilt University, (615) 343-7447,

howardlp@isis.vanderbilt.edu

ABSTRACT

Embedded diagnostic reasoners require compact modeling representations and
efficient reasoning algorithms given limited available computational resources.
Timed failure propagation graphs (TFPG) are compact representations used to
model failure causes and progressions of conditions that are symptoms of failure
occurrence, together with the temporality and likelihood of these symptom
progressions and the observation of some of the aberrant conditions. Algorithms
for design-time diagnosability analysis using TFPG models have previously been
reported, but these algorithms have different design objectives leading to different
computational strategies and optimization criteria. This paper presents and
discusses an algorithm specifically designed for efficient failure isolation based
on reported observations of abnormal conditions that is suitable for use in
embedded real- time applications.

Keywords: embedded diagnostics, diagnostic reasoning algorithms

1 INTRODUCTION
While the limitations of purely qualitative modeling representations for failure isolation are well
observed, it must be acknowledged that their use continues to be of value when 1) the data
required to support more quantitative schemes are unavailable or 2) the computational
requirements of quantitative schemes are incompatible with their use in resource-constrained
environments. Further, as we make the significant transition from component diagnostics to
integrated diagnostics of systems, there may well be a continued use for qualitative
representations, such as the timed failure propagation graph addressed in the paper, in
representing component interactions under failure conditions. Since we accept that the use of
qualitative representations is motivated by practicality, we present an algorithm for diagnostic
reasoning using timed failure propagation graphs in embedded applications, less as a
contribution to the research literature on model-based diagnostics and more as an example for
engineers interested in applying this approach to diagnosis.

Our motivation for the construction of the algorithm we report came from an examination of
algorithms for design- time diagnosability analysis. [1][2][3] We observed that these algorithms
employed computational strategies that were less concerned with efficiency in failure isolation
and more concerned with exhaustive searches of the model space for the computation of various
metrics. And while these computational strategies could, and were, used for failure isolation,
their efficiency would quickly become an issue as the size of the models increased. We felt that

if we limited the role of an algorithm to simply failure isolation, then a much more efficient
algorithm could be realized.

This paper reports our result in designing such an algorithm. It is organized into three primary
sections. The first addresses the model representation employed. It presents and discusses the
modeling elements, their purposes, and the relationships. The second section presents the
algorithm itself. It provides a high- level description, followed by a detailed description of each
of the algorithm’s constituent phases. The third section provides a brief discussion of the
algorithm and of the environment that supports the creation of the modeling representation.

2 MODELING REPRESENTATION
The timed fa ilure propagation graph (TFPG) is a directed graph where the nodes represent
failure modes, which are fault causes; discrepancies, which are off-nominal conditions that are
the effects of failure modes; and monitors, which are observations of discrepancies. Attributed
edges between failure modes and discrepancies in the graph represent causality, and the
attributes specify the likelihood and temporality of causation. Attributed edges among
discrepancies represent the propagation of effects, and the attributes specify likelihood and
temporality of the propagation. Attributed edges between discrepancies and monitors represent
observation, and the edges specify likelihood and temporality of observing the discrepancy. In
whole, a TFPG represents temporal progressions (paths) of effects that are caused by failure
modes, some of which are observed. A failure diagnosis is an explanation of observed
discrepancies using these progressions.

The likelihood and temporality attributes on the edges described above have a consistent form.
For the specification of causal likelihood, a five level classification scheme is currently
employed, with qualitative steps indicating relative degrees of certainty about the occurrence of
the respective phenomenon. The specification of temporality is defined by two reference times
with respect to the likelihood. From 0 to the first reference time, τmin, the phenomenon does not
occur. From τmin to the second reference time, τmax, the phenomenon occurs with the specified
likelihood. After τmax the phenomenon occurs with certainty.

A given discrepancy can be caused by multiple failure modes, or else it can lie at the intersection
of multiple propagation paths. Multiple edges entering a discrepancy are interpreted using “OR”
semantics. By this we mean that any one of the entering edges could supply the cause of the
discrepancy. Less frequently “AND” semantics are required, meaning that more than one of the
edges entering a discrepancy must supply failure causes for the discrepancy to occur. To support
these semantics, there is an “And” conjunctive node. Edges entering this node must each supply
a failure cause before the outbound edge(s) of the node will propagate an effect.

Nodes and edges in a TFPG representation can be present or absent under particular conditions,
such as flight phases or operating modes. The representation supports the definition of these
conditions through special purpose nodes, and the supporting modeling environment supports
associating failure propagation nodes and edges with these conditions using inclusion and
exclusion classifiers. This process is called conditionalization.

When using a TFPG representation to model failure propagation in complex systems, it is
desirable to use hierarchy to manage system complexity. Hierarchy is supported through typed
containers, each of which is a TFPG model. The use of typed containers permits the definition
of modeling concepts (modes, for example) that are appropriate only within a certain level, or
levels, of the hierarchy. These containers provide ports, by which propagation paths can be
brought in to and out of the container (model) from higher levels in the hierarchy. A model can
contain lower level containers, and propagation paths within the containing model can be
attached to their ports. The traversal of paths represented in a TFPG can thus move up and down
the containment hierarchy. It is expected that the containment hierarchy in a TFPG model will
mirror the physical organization of the system being modeled.

References are a notational convenience much like “pointers” in a conventional programming
language. Through their use, a model element can be defined in one model and then used to
form associations in another model, potentially at a different level of the hierarchy. References
and hierarchy, while important to the modeling task, are not essential to the TFPG representation
nor are they important to the reasoning algorithm. Therefore, nothing further will be said about
them here.

Figure 1 gives an example of a TFPG model. This example shows the two types of ports used to
carry propagation effects into and out of models: flows and signals. The former are used to
represent the propagation of effects by means such as energy exchanges, while the latter are used
to represent all effects carried along signal pathways. This distinction is useful in constructing
understandable models of failure propagation with respect to interactions among components
under failure conditions, but it is not essential to the task of failure isolation, and so it too will
not be discussed further.

Figure 1: A Timed Failure Propagation Graph (TFPG) Model

3 ALGORITHM
At the highest level, the diagnostic algorithm consists of two phases:

1. Graph traversal, segmentation, and reconstruction.
2. Hypothesis generation and scoring.

The first of these phases is graph-theoretic and deductive. It begins by traversing the TFPG from
reported observations in a depth-first search for either failure modes or any node in the graph that
has been reached by an earlier traversal. During traversal, segmentation of the graph is
performed and reached nodes are marked. Segmentation is a performance optimization used to
eliminate re-traversal of the graph by preserving descriptions of significant path segments.
Examples of such segments are monitors to monitors, monitors to failure modes, and monitors to
“AND” conjunctives.

Once any new segments have been identified, reconstruction is performed. The goal of
reconstruction is to eliminate as many failure causes for observations as possible using
temporality, missing observations, and other evidence. This is the deductive aspect of the
algorithm’s first phase. Reconstruction results in ordered sets of path segments where the
starting node of the first segment of each set is an observation and the final node of the last
segment is a failure mode. In effect, this represents the set of all possible explanations for every
observation.

The second phase of the algorithm is set-theoretic and heuristic. This phase begins by
determining a mapping between failure modes and the observations they explain, given the
results of reconstruction. Using this mapping, hypotheses are generated using the Law of
Parsinomy; i.e., when creating explanations, simplier ones are preferable to more complicated
ones, and those agreeing with existing explanations are preferable to those that require existing
explanations to be abandoned. The procedure for applying this heuristic is a follows:

1. Form of a set of all observations to be explained.
2. Determine the reconstruction that explains the largest subset of the observations to be

explained.
3. Generate a failure hypothesis for this subset of observations with the failure cause(s) of

the reconstruction as the explanation.
4. Add to this failure hypothesis any other reconstructions that explain the same subset of

observations as alternative explanations.
5. Eliminate this subset of observations from those to be explained.
6. While any observation remains unexplained and there is a possible explanation, repeat

steps 2-5.

Once the failure hypotheses are generated, each explanation in each failure hypothesis is scored.
The failure likelihood of an explanation is the product of the failure likelihoods of each failure
cause (failure mode). The causal likelihood is the minimum causal likelihood along the
propagation paths from failure modes to observations. These scores are provided as independent
terms for evaluating the explana tions constituting a failure hypothesis.

3.1 Inputs and Outputs

The input to the reasoning algorithm is a set of monitor reports. Each monitor report provides
the following information, with the identifier in parenthesis being the name of the TFPG attribute
of the corresponding monitor:

• Monitor GUID (GUID)
• Time of detection (DRactiveTime)
• Active/Inactive (DRactive)

There are a few different styles of reporting that are supported by the current algorithm. One is
for monitor reports to contain the status of every monitor. Another is for reports to contain the
current set of active monitors. Still another is for reports to contain the set of monitors whose
status has changed since the previous report. Regardless of which style is used, each time a
diagnosis is performed there is a set of currently active monitors. We will refer to this set as
Oactive⊆M, where M is the set of defined monitors.

The output of the reasoning algorithm is a diagnosis consisting of a set of failure hypotheses DR
for a partition Γ of Oactive. Let O∈Γ, then a failure hypothesis fh=(O, EO), where EO is a set of
independent (that is, alternative) explanations of O. ∀e∈EO, e=(fl, cl, Osecondary, FC), where fl is
an aggregate failure likelihood, cl is an aggregate causal likelihood, Osecondary is a set of
secondary observations 1, and FC is a set of failure causes for the explanation.

3.2 Detailed Descriptions

The following subsections give detailed descriptions of each of the steps in the algorithm:
traversal, segmentation, reconstruction, hypothesis generation, and scoring. Since traversal and
segmentation occur coincidently, they are presented together.

As a starting point, the following definitions and properties describe the TFPG representation as
a whole:

1. TFPG=(NTFPG, ETFPG), where NTFPG is the set of nodes and ETFPG is the set of edges
constituting the directed graph.

2. NTFPG=(FM,M,D,A) where FM is the set consisting of nodes whose type is Failure Mode,
M the set of Monitors, D the set of Discrepancies, and A the set of “And” conjunctives.

3. Let Dmonitored⊆D define the Discrepancies which are monitored; that is, ∀d∈Dmonitored,
∃m∈M and ∃e∈ETFPG such that e=(d, m).

3.2.1 Traversal and Segmentation

The result of these steps is a set S of path segments (directed subgraphs) where each s∈S has the
following properties:

1. s=(N, E).
2. N={n1, n2,…nn:ni∈NTFPG}. n1 is the originating node and will be written as n1(s).

n1∈FM∪M∪A. nn is the terminating node and will similarly be written nn(s). If s
intersects another segment, then nn∈NTFPG; otherwise, nn∈FM∪M∪A.

3. E={e1, e2,…en:ei∈ETFPG and ei=(ni,ni+1)}; that is, the ith element of E is the edge
connecting the ith node in N with its successor on the path.

1 Secondary observations are observations made upstream of an “And” conjunctive that belong to an explanation for observations
made downstream of the conjunctive. Since only some of the failure causes of the explanation account for these upstream
observations, they are considered secondary to the explanation.

Let Oreported be a set of monitor reports received at time τ. ∀o∈Oreported
1. Identify the m∈M where GUID(m) is the same as the monitor GUID given in o.
2. Set DRactive(m) and DRactiveTime(m) to the reported state of o.

Let Oactive⊆M be the set of monitors whose reported state is active at time τ. ∀o∈Oactive traverse
TFPG as follows:

1. If o has been previously traversed, then stop this traversal.
2. Identify the set of edges E⊆ETFPG terminating at o.
3. ∀e∈E, Traverse(e).
4. Mark o as having been traversed.

Traverse is a recursive function that is a depth-first search consisting of the following steps:

1. Let n be the origin of e.
2. If n∈FM∪A∪Dmonitored, then

a. Create a new segment from the start of this traversal to n and add to S.
b. If n has not previously been traversed, start a new traversal originating at n, else

stop this traversal.
3. Else if n has been previously traversed

a. If n intersects with an existing segment, then form a segment from the start of this
traversal to n and add to S.

b. Stop this traversal.
4. Identify the set of edges E⊆ETFPG terminating at n.
5. Mark n as having been traversed.
6. ∀e∈E, Traverse(e).

The set S of path segments, the markings indicating prior traversal, and the status of reported
monitors constitute the persistent state of the Diagnostic Reasoner.

3.2.2 Reconstruction

The result of this step is a set R of “reconstructions” where each r∈R has the following
properties:

1. r=(Sr, LastObservedTime, PropagatedTime).
2. Sr ={s1, s2, …, sn: si∈S}, where s1 is the originating segment and will be written as s1(r).

sn is the terminating segment and will be written as sn(r). n1(s1)∈Dmonitored and
nn(sn)∈FM∪A.

3. LastObservedTime is defined as the DRactiveTime(m) of the last segment where
n1(s1)∈Dmonitored and m is the monitor of n1(s1).

4. PropagatedTime is the sum of the τmin attribute on all edges from si to sn where si
corresponds to LastObservedTime.

Given S and Oactive

1. ∀o∈Oactive

a. Identify So⊆S where ∀s∈So, n1(s)=o.
b. ∀s∈So, Reconstruct(s, Rcurrent), where Rcurrent is a reconstruction to which s will

potentially be added.
c. Preserve the set of successful reconstructions as R.

Reconstruct is a recursive function that assembles path segments as follows:
1. Check that each node and edge in s are present for the current mode of conditionals to

which they belong. If not, then discard Rcurrent and return.

2. PropagatedTime(Rcurrent)= PropagatedTime(Rcurrent)+Σ(τmin(e), ∀e∈E(s)).
3. If nn(s)∈Dmonitored, then for the corresponding monitor m

a. If m∈Oactive, then
i. If PropagatedTime(Rcurrent) > LastObservedTime(Rcurrent)–

DRactiveTime(m) then, discard Rcurrent and return.
b. Else if CausalLikelihood(nn(s), m)=Certain, then discard Rcurrent and return.

4. If nn(s)∈A, then
a. Identify SA⊆S where ∀a∈SA, n1(a)= nn(s).
b. ∀a∈SA, Reconstruct(a, ARcurrent).
c. Preserve the set of successful reconstructions as ARa.
d. If ARa=∅, then discard Rcurrent and return.
e. Else, terminate Rcurrent at s and return.

5. Identify ST⊆S where ∀t∈St, n1(t)= nn(s).
6. If ST=∅, then

a. If nn(s)∈FM, then terminate Rcurrent at s and return.
b. Else, discard Rcurrent and return.

7. Else, ∀t∈ST, Reconstruct(t, Rcurrent).

3.2.3 Hypothesis Generation

The output of this step is a set DR of failure hypotheses that are the unscored result of the
diagnostic algorithm.

Given R and Oactive

1. Create a mapping C, where ∀c∈C, c=(t, Ot) such that ∃r∈R where t=nn(sn(r)) and Ot
is the set of observations explained by t.2

2. Find the c∈C where Ot(c)∩Oactive has the largest number of members.
3. Create a failure hypothesis fh and set O(fh)=Ot(c).
4. Create an e∈EO(fh) and

a. If t∈FM, then FC(e)={t(c)}.
b. Else

i. Identify St⊆S where ∀s∈St, n1(s)= nn(t).
ii. ∀s∈St

1. If nn(s)∈Dmonitored, then add nn(s) to Osecondary.

2 t∈FM∪A.

2. Else if nn(s)∈FM, then add nn(s) to FC(e).
3. Else set t to nn(s) and go to i.

5. Identify A⊆C, where ∀a∈A, a≠c ∧Ot(a)= Ot(c) and then add each a∈A to EO(fh)
using the procedure identified in step 4.

6. ∀o∈Ot(c) remove o from Oactive.
7. Remove c from C and ∀a∈A, remove a from C.
8. Add fh to DR.
9. While Oactive≠∅ and then C≠∅, repeat steps 2-8.

3.2.4 Scoring

Given DR and R,

1. For each fh∈DR and each e∈EO(fh)
a. fl(e)=∏(FailureLikelihood(fc), ∀fc∈FC(e)).3
b. ∀fc∈FC(e) and ∀o∈O(fh)

i. Identify rfco∈R such that o=n1(s1(rfco)) and fc=nn(sn(rfco)).
ii. cl(e)=Certain
iii. ∀s∈rfco and ∀d∈E(s)

1. If CausalLikelihood(d)<cl(e), then cl(e)=
CausalLikelihood(d).4

The failure hypotheses having been scored, the algorithm is concluded.

4 DISCUSSION
The algorithm reflects a number of optimizations that reduce computational requirements.
Examples are the introduction of segmentation into the traversal phase and the integration of
deductive reasoning into the reconstruction phase. The first eliminates the re-traversal of any
node of the graph that has previously been traversed. This includes paths that intersect an
existing path segment. The second eliminates as many possible explanations as possible prior to
the hypothesis generation phase, thereby reducing its computational requirements.

The use of the Law of Parsimony in the hypothesis generation phase of the algorithm reflects the
use of the diagnostic result as input to the maintenance task. While a complete set of hypotheses
could be generated as an output of the phase, making the diagnostic result more robust, its was
considered important to focus the diagnostic result for presentation to maintenance personnel to
as small a set as possible. As a consequence, it is possible that the algorithm can fail to report a
possible, but highly unlikely, failure cause in its diagnosis. Future applications will tell whether
it is better to provide a more robust output of the embedded diagnostics that is post-processed at
the time of use by maintainers.

3 When ∃e∈EO containing multiple, independent failure causes, the likelihood of their mutual occurrence is the joint probability of
their individual occurrence. The FailureLikelihood attribute of failure modes is a probabilistic term; i.e., the incidence of failure during
some unit time interval over the total incidence of failures for that time interval.
4 For the symbolic definition of CausalLikelihood, the relation “<” is defined on the corresponding ordinal values of the symbols, for
which Certain has the highest value.

As a final point of discussion, let us turn to the issue of the construction of the TFPG
representation, upon which the effectiveness of the diagnostics ultimately rests. Given the
qualitative nature of fault models such as the TFPG, and the fact that human experts are asked to
construct the model representation based on their understanding of complex system phenomena,
it is important to provide as much assistance to the modeling task as possible.

The modeling environment used to support TFPG modeling is an extensible framework that
allows general purpose and domain-specific extensions.[4][5] Domain-specific modeling
paradigms, such as the one for TFPG, are described to the framework by means of meta-models.
To support TFPG modeling, we have extended this framework with general-purpose tools for
reachability and path analyses. Using these tools, the modeler can determine basic implications
of modeling decisions. More specific feedback, however, requires diagnostic reasoning itself. In
providing this feedback, we faced two alternatives. The first was to create a design-time
reasoner implementation specifically built to interface with the modeling environment. This
would have been an easier implementation path, but it presented a serious pitfall. What if the
diagnostic results from this reasoner differed from those of the run-time reasoner? The
alternative was a single reasoner implementation that could be used in either the emdedded or
modeling environment contexts. (See Figure 2.) Our implementation of the reasoner employs an
application programming interface (API) for access to the models. When in the emdedded
context, this API is satisfied with a compiled run-time representation of the models. When
interoperating with the modeling environment, the API is satisfied with calls to a component
integration interface of the modeling environment. In this way, the modeler can be confident
that feedback on modeling decisions while in the modeling environment will be consistent with
the results of the embedded reasoner.

Figure 2: Embedded Reasoner Integration with Modeling Environment

The Diagnostics Workbench component shown in Figure 2 is another valuable extension to the
modeling environment that supports the analysis of recorded, simulated, and live observation
steams. Using this capability, the modeler can organize complex failure scenarios and use them
to validate or refine the models.

5 SUMMARY
We have presented an algorithm for failure isolation based on timed failure propagation graphs
that is suitable for use in embedded applications. We have also presented and discussed issues of
supporting the creation and validation of the underlying modeling representation. As the
usefulness of qualitative models for diagnosis, such as the TFPG, is likely to continue for as long
as quantitative schemes have computational requirements exceeding the resources available in
many embedded application environments, and until such time as quantitative schemes have
demonstrated their efficacy for integrated diagnosis, we consider the availability of efficient
diagnostic algorithms based on qualitative models to be of benefit.

6 ACKNOWLEDGEMENTS
We gratefully acknowledge the support of this work by The Boeing Company and the Defense
Advanced Research Projects Agency (DARPA).

7 References

[1] Misra A., Sztipanovits J., Underbrink A., Carnes J.: Diagnosability Analysis and Robust
Diagnostics with Multiple Aspect Modeling, Abstracts of the NASA Workshop on Model-
Based Diagnosis and Monitoring; Pasadena, CA, January, 1992.

[2] Misra A., Sztipanovits J., Underbrink A., Carnes J., Purves B.: Diagnosability of Dynamical
Systems , Third International Workshop on Principles of Diagnosis, Rosario, WA, October,
1992.

[3] Misra A., Sztipanovits J., Carnes J.: Robust Diagnostics: Structural Redundancy
Approach, Knowledge Based Artificial Intelligence Systems in Aerospace and Industry, SPIE's
Symposium on Intelligent Systems, Orlando, FL, April, 1994.

[4] Sztipanovits J., Karsai G.: Model-Integrated Computing, IEEE Computer, pp. 110-112,
April, 1997.

[5] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom G.,
Sprinkle J., Volgyesi P.: The Generic Modeling Environment, Workshop on Intelligent Signal
Processing, accepted, Budapest, Hungary, May 17, 2001.

