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Abstract. We present a new algorithm, called Nuage, for drawing gra-
phs with both adjacency and inclusion relationships between nodes, that
is, compound graphs. Compound graphs are more general than classical
graph models or clustered graphs. Nuage can be applied to both directed
and undirected compound graphs. It can be parameterized by classical
graph drawing algorithms. Nuage can be viewed as a method for unify-
ing several classical algorithms within the same drawing by using the
structure of the compound graph. Additionally, we present a refinement
technique that can be used in conjunction with Nuage to reduce the
number of edge crossings.

1 Introduction

Most current systems for visualization of relational information are based on
graphs. The objects or entities are the nodes of the graph, the relationships
are edges between two nodes. The drawing of such graphs has received much
attention and several algorithms dedicated to graphs with given combinatorial
properties are available [1].

However, when we need to represent complicated relational information, with
different kinds of relationships or with large amount of information, the classical
graph model is not sufficient. Consequently, several extensions to the classical
graph model have been proposed. Models using inclusion relationships between
entities are particularly well suited for the representation of large amount of
information because we can reduce the amount of information displayed by re-
presenting a set of nodes by the node that encompasses this set. A very general
model for representing complex relationships is the higraph model [5]. Higraph
model can represent inclusions, intersections and adjacency relationships but
drawings algorithms for this model are difficult to design. Another commonly
used model, called clustered graphs, consists of a classical graph and a recursive
partition of the nodes of the graph. Clustered graphs model is well suited for
graph drawing and several drawing algorithms have been presented [3,2]. An
intermediate model between clustered graphs and higraphs, called compound
graphs, has been introduced by Sugiyama and Misue for representing graphs
with both inclusion and adjacency relationships. Algorithms for drawing com-
pound digraphs have been proposed [8,9,6]. They are all based on an extension
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of hierarchical layered drawings of directed graphs and are ineffective for repre-
senting undirected edges. The approach taken in our algorithm, called Nuage,
is quite different and it does allow the representation of both directed and undi-
rected compound graphs. Our algorithm can be viewed as a method for unifying
several classical algorithms within the same drawing by using the structure of
the compound graph.

2 Definitions

A graph G = (V, E) is defined by a finite set V of nodes and a finite set E of
edges, that is, unordered pairs (a, b) of nodes. If the pairs (a, b) are ordered then
G is called a directed graph. If (a, b) ∈ E, a and b are said to be adjacent and a
and b are called the ends of the edge. We denote N−

G (a) = {b | (b, a) ∈ E} and
N+

G (a) = {b | (a, b) ∈ E}. A path of length s between a node a1 and a node as is
a sequence of nodes a1, a2, . . . , as such that (ai, ai+1) ∈ E, for i = 1, . . . , s − 1.
A subgraph H = G|V ′ of a graph G = (V, E), where V ′ ⊆ V , is the graph
H = (V ′, E′) such that an edge (a, b) ∈ E′ if and only if (a, b) ∈ E.

A rooted tree T = (V, E, r) is a directed graph such that for every node
a ∈ V , except for the node r called the root of the tree, there is a unique path
PathG(r, a) between r and a. For every node a ∈ V , except r, there exists
a unique node PT (a), called the parent of a, such that (PT (a), a) ∈ E. All the
nodes on the path from the root to a node a (Except a itself) are called ancestors
of a. For a node a ∈ V , the nodes in the set N+

T (a) are called the children of a.
If N+

T (a) is empty, a is called a leaf of the tree, otherwise a is called an internal
node. The level LT (a) of a node a is the length of the path between r and a,
and by convention LT (r) = 0.

A compound graph C = (G, T ) is defined as either a directed or an undirected
graph G = (V, EG) and a rooted tree T = (V, ET , r) that share the same set
of nodes, where all edges (a, b) ∈ EG are such that a /∈ PathT (r, b) and b /∈
PathT (r, a).

A nested graph N = (G, T ) is a compound graph such that:

∀(a, b) ∈ E, PT (a) = PT (b). (2.1)

Note that compound graphs, nested graphs and clustered graphs are all dif-
ferent models of graphs. Clustered graphs are compound graphs where edges in
the graph are only between leaves of the tree. Nested graphs are compounds
graphs where edges in the graph are only between children of the same parent.

3 Algorithm for Drawing Compound Graphs

In this section we present a new algorithm, called Nuage, for the drawing of
a compound graph C = (G, T ). We represent nodes by rectangles so that a
node a is included in the rectangle that represents the node PT (a). For example,
the compound graph defined by the tree and the directed graph of Fig. 1 is
represented on the left of the Fig. 2. There is a 1-1 correspondence between the
structure of the tree and the set of inclusions between nodes.
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Fig. 1. Compound graph defined by a digraph and a tree.

3.1 Description of the NUAGE Algorithm

Nuage is based on the construction of a nested graph that shares the nodes
of the compound graph. The position of the nodes of the compound graph is
obtained by applying an algorithm for drawing nested graphs. The construction
of the nested graph is made so that the drawing of the nested graph reflects the
information contained in the compound graph.

We consider a compound graph C = (G, T ), with G = (V, EG) and T =
(V, ET , root). The steps of the Nuage algorithm are:

Step 1. Build a nested graph N = (H, T ), with H = (V, EH): if e = (a, b) ∈ Eg

and PT (a) = PT (b) then e ∈ EH . Otherwise, e is replaced by e′ =
(a′, b′) ∈ EH such that a′ is an ancestor of a and b′ is an ancestor of b
with a′ 6= b′ and PT (a′) = PT (b′).

Step 2. Apply to H an algorithm for drawing nested graphs.

3.2 Step 1: Construction of a Nested Graph Associated with a
Compound Graph

The construction of the nested graph N associated with the compound graph C
is based on the following principle. We start with an empty set of edges for the
graph H of the nested graph. Then, for each edge (a, b) in G, we search for two
distinct nodes a′, an ancestor of a, and b′, an ancestor of b, with PT (a′) = PT (b′).
We then add the edge (a′, b′) to H. The intuition is that if an edge influences
(albeit indirectly) the position of a node v, it will also influence the position of
all the nodes included in v. Thus if we replace an end v of an edge by a node
which contains v, the edge will continue to have an influence on the position of v.

Algorithm (Nested graph associated with a compound graph)

– Input: A compound graph C = (G, T ), with G = (V, EG) and T = (V, ET , root).
– Output: A nested graph N = (H, T ), with H = (V, EH) and |EH | ≤ |EG|.
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N:=(H, T ) with H = (V , ∅);
for all (a, b)∈G do

a′:=a; b′:=b;
while PT (a′)6=PT (b′) do

if LT (a′) = LT (b′) then
a′:=PT (a′); b′:=PT (b′);

else if LT (a′)>LT (b′) then
a′:=PT (a′);

else b′:=PT (b′);
end while;
add edge (a′, b′) to H;

The graph on the right of figure 2 is an example of nested graph obtained after
the application of the first step of the algorithm on the compound graph on
the left of Fig. 2. The complexity of the first step of the algorithm Nuage is
O(|E| log |V |) in the average case and O(|E||V |) in the worst case. Indeed, for
each edge, the number of steps of the while loop is bounded by the height of
the tree T .

3.3 Step 2: Drawing of the Nested Graph

The second step of Nuage is to draw the nested graphs associated with the
compound graph. This gives us the position and the size of each node of the
compound graph. The algorithm that we propose for drawing nested graphs is
based on the application of classical graph drawing algorithms to each subgraph
defined by the nodes with a same parent in the tree. This algorithm is called
Fleur.

We consider a nested graph N = (G, T ), with G = (V, EG) and T =
(V, ET , r). The position of a node v ∈ V is denoted by (x(v), y(v)). The rec-
tangle that represents a node v ∈ V is denoted r(v). Given a drawing of a graph
G′, we can define the smallest rectangle that includes the nodes and edges of G′.
We call bb(v, G′) the operation which assigns to r(v) the smallest rectangle that
includes the graph G′.

We denote by A the class of algorithms that can be applied to undirected
or directed graphs, depending on whether we consider a directed or undirected
compound graph. For each internal node of the tree of a compound graph, we
define a mode function M which takes an internal node of the tree T as an
argument and returns an algorithm in A. For example, in Fig. 2, we chose the
mode of the node 4 to be a force-directed algorithm for drawing undirected
graphs [4], and the mode of nodes 1 and 6 to be an algorithm for drawing trees
[7]. The mode information of a node v indicates which algorithm is to be used for
drawing the subgraph formed by the nodes with v as the parent in the tree T . The
function that applies the algorithm M(v) is called position_M(v). We assume
that the mode algorithms have the property of avoiding overlaps between the
rectangles of nodes. Alternatively, we can always apply simple post-processing,
after some of the mode algorithms, to remove overlaps between the rectangles
of nodes.
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Fig. 2. Left: Drawing of the compound graph of Fig. 1. Right: Nested graph associated
with the compound graph on the left.

The algorithm for drawing nested graphs is simple. We perform a depth first
search traversal of the tree T and, for each internal node v of the tree, we consider
the graph H = G|N+

T (v), formed by the nodes with v as parent in the tree. We
continue the tree traversal to calculate the width and height of the rectangles
associated with the nodes in H. Then we compute the positions of the nodes
in H by applying the algorithm given by M(v). Next we determine the width
and height of r(v) by applying the bb(v, H) operation. The absolute positions
of the nodes in H are then set to be relative to the position of node v. After
the tree traversal, we transform the relative positions of the nodes into absolute
positions. The algorithm is described below.

Algorithm (Drawing of nested graphs)
– Input: A nested graph N = (G, T ), with G = (V, EG) and T = (V, ET , r). The size

of the rectangle of each leaf of T is known. The mode function is defined for each
internal node of T .

– Output: The position, width and height of each node of N is known.

procedure relative_position(v:node)
if N+

T (v)6=∅ then
for all s ∈ N+

T (v) do
relative_position(s); //determine the size of rectangles of the nodes in N+

T (v)
H:=G|

N+
T

(v);

position_M(v)(H); //we determine the positions of nodes in H
bb(v, H); //compute the size of r(v)
for all s ∈ N+

T (v) do //the positions of nodes in N+
T (v) are set relatively to v

x(s):=x(s)-x(v); y(s):=y(s)-y(v);
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procedure absolute_position(v:node, dx:integer, dy:integer)
x(v):=x(v)+dx; y(v):=y(v)+dy;
for all s∈N+

T (v) do
absolute_position(s,x(v),y(v));

procedure Fleur(N)
relative_position(r); absolute_position(r,0,0);

The complexity of the algorithm depends on the complexity of the mode
algorithms. If the overall complexity of the modes algorithms is O(T (G)) for a
graph G, the cost of the Fleur algorithm is given by O(|V |+∑

v∈V T (G|N+
T (v))).

If the mode algorithms are linear in the number of nodes, the Fleur algorithm
remains linear.

At this point, we have completely specified the Nuage algorithm which con-
sists of the two steps described below.

Step 1. Build the nested graph H associated with the compound graph.
Step 2. Apply to H the Fleur algorithm for drawing nested graph.

Note that if we consider one node v of the compound graph C, we can see
that during the computation of the positions of the nodes N+

T (v) included in
v, Nuage simply ignores all the edges between these nodes and the nodes not
included in v because these edges are ignored in the nested graph. This can lead
to edge crossings that could be easily removed by exchanging positions of the
nodes. By intuition, we can see that these particular nodes should be placed near
the boundaries of the node v. For example, if we consider the compound graph
(a) in Fig. 3, we can remove an edge crossing just by swapping the positions of
nodes 5 and 17. In the next section we will consider some refinement to Nuage.

4 Refinement Technique

We consider a refinement step which requires the following property of the mode
algorithms. Given starting positions of the nodes, it is desirable for the mode
algorithms to preserve the nodes’ relative positions. For example, if we consider
an algorithm that gives a vertical representation of a non-planar tree (i.e., a tree
in which there is no fixed order between the children of a node), the order of the
children of a node in the drawing should be according to their original horizontal
coordinates.

Given a compound graph representation, obtained by applying the Nuage
algorithm, the refinement step modifies the initial positions of the nodes. Since
the inclusion modes algorithms should keep the relative positions of nodes, the
refinement step helps to reduce the edge lengths and remove edge crossings.

To implement the refinement step, we build a new graph Gr that shares
the nodes of the compound graph. The initial node positions are obtained by
applying a force-directed algorithm, in which we ignore the repulsion forces. The
construction of the graph Gr is very similar to the construction of the associated
nested graph:
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(a) (b)

(c) (d)

Fig. 3. Refinement step (a) the initial compound graph (b) the refinement graph as-
sociated with the compound graph (c) positions of the nodes after the contraction
algorithm (d) final drawing of the compound graph.
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Algorithm (Refinement graph associated with a compound graph)

– Input: A compound graph C = (G, T ), with T = (V, Et, r) and G = (V, EG).
– Output: The corresponding refinement graph Gr = (V, Er).

Gr = (V , ∅);
for all (a, b)∈EG do

a′:=a; b′:=b;
while PT (a′)6=PT (b′) do

add edge (a′, b′) to Cr;
if LT (a′) = LT (b′) then

a′:=PT (a′); b′:=PT (b′);
else if LT (a′)>LT (b′) then

a′:=PT (a′);
else b′:=PT (b′);

end while;

The complexity of the refinement step is O(|E| log |V |) in the average case.
Indeed, for each edge in the initial compound graph, we add log |V | edges in the
refinement graph and the attraction algorithm is linear in the number of edges.

We presented an algorithm, called Nuage, for drawing both directed and un-
directed compound graphs. Nuage can be parameterized by arbitrary classical
graph drawing algorithms. We implemented Nuage in Java.
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