
An Algorithm for Fast Edit Distance Computation on GPUs

Reza Farivar, Harshit Kharbanda
Department of Computer Science

University of Illinois at Urbana-Champaign
Email: {farivar2,kharban2}@illinois.edu

Shivaram Venkataraman
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Email: shivaram@eecs.berkeley.edu

Roy H. Campbell
Department of Computer Science

University of Illinois at Urbana-Champaign
Email: rhc@illinois.edu

ABSTRACT
The problem of finding the edit distance between two se-
quences (and its closely related problem of longest common
subsequence) are important problems with applications in
many domains like virus scanners, security kernels, natural
language translation and genome sequence alignment. The
traditional dynamic-programming based algorithm is hard
to parallelize on SIMD processors as the algorithm is mem-
ory intensive and has many divergent control paths. In this
paper we introduce a new algorithm which modifies the dy-
namic programming method to reduce its amount of data
storage and eliminate control flow divergences. Our algo-
rithm divides the problem into independent ‘quadrants’ and
makes efficient use of shared memory and registers available
in GPUs to store data between different phases of the algo-
rithm. Further, we eliminate any control flow divergences
by embedding condition variables in the program logic to
ensure all the threads execute the same instructions even
though they work on different data items. We present an
implementation of this algorithm on an NVIDIA GeForce
GTX 275 GPU and compare against an optimized multi-
threaded implementation on an Intel Core i7-920 quad core
CPU with hyper-threading support. Our results show that
our GPU implementation is up to 8x faster when operating
on a large number of sequences.

1. INTRODUCTION
Given two strings a and b, the edit distance problem is

used to find the fewest operations required to transform a
to b. The operations usually allowed are insertion of a char-
acter, deletion of a character or substitution of one char-
acter for another. This distance is also called the Leven-
shtein distance and finding the edit distance between two se-
quences is closely related to finding the longest common sub-
sequence(LCS). Edit distance calculation has applications in
many domains like spell checkers, virus scanners [6], security
kernels [15], optical character recognition [4] and genome se-
quence alignment [1].

The traditional method used for accurate global sequence
alignment is the Needleman-Wunsch algorithm [12]. This is

an example of a dynamic-programming algorithm in which
the first phase of the algorithm fills a matrix of ‘scores’ based
on the edit distance. The traditional Needleman-Wunsch
algorithm is memory intensive and for sequences of length
m and n, the memory required is O(m.n). In the second
phase, the algorithm traces the score matrix back to find
the optimal alignment. This phase of the algorithm takes
different control flow paths based on the contents of the
input data it is working on. The combination of these two
problems makes it hard to efficiently program them on SIMD
(Single instruction Multiple Data) processors, such as GPUs
(Graphics Processing Units), with limited memory availabil-
ity and lack of tolerance for code divergence.

In this paper, we introduce a new algorithm as a variation
of the dynamic programming method [3, 12] to greatly re-
duce its memory requirements and control flow divergence.
We use the Needleman-Wunsch alignment algorithm as our
baseline, and introduce two major modifications to make
the algorithm run faster on GPUs. First, our algorithm di-
vides the problem into independent quadrants and makes ef-
ficient use of shared memory and registers available in GPUs
to store data in between different phases of the algorithm.
Secondly, we eliminate any control flow divergence by em-
bedding condition variables in the program logic to ensure
all threads execute the same instructions even though they
work on different data items.

We present an implementation of this algorithm on an
NVIDIA GeForce GTX 275 GPU and compare it against an
optimized multi-threaded implementation on an Intel Core
i7-920 quad core CPU with hyper-threading support. Our
results show that our GPU implementation is up to 9.3 times
faster when operating on a large number of sequences. More-
over, our GPU implementation is up to 4 times faster than
state of the art implementations [1] (refer to section 5).

The rest of the paper is organized as follows. Section 2
motivates our work by demonstrating the need for a fast
pairwise alignment tool and the challenges of implementing
it. Section 3 describes the proposed algorithm in detail.
Section 4 evaluates the proposed algorithm and compares it
to baseline implementations on a multi-core CPU. Related
efforts are discussed in section 5, and section 6 concludes the

paper.

2. MOTIVATION
Calculation of edit distances between two sequences and

aligning the two sequences based on their edit distances is
a very compute intensive process. This problem becomes
n-fold when the number of sequences on which these oper-
ations have to be done are huge. Many fields have hence
refrained from using edit-distance as a possible solution to
solve problems. This section contains an explanation of the
use of this algorithm in a larger context in which this al-
gorithm plays a part, and then describes the challenges in
implementing the Needleman-Wunsch algorithm on SIMD
architectures, specifically GPUs.

2.1 Pairwise alignment in a larger context
Pairwise alignment can be used to compute the edit dis-

tance between two sequences and then align these sequences
with an allowed fixed number of insertions, deletions and
mismatches. Edit distance computation between two se-
quences also finds its applications in other domains. [15]
uses an edit-distance algorithm to detect correlated attacks
in distributed systems.[6] Uses the edit distance technique
to identify the type of intrusion. A very common use of edit
distance is to find how close two strings are to each other
and auto-check the spelling of the word accordingly. Simi-
lar approaches could also be used to suggest search strings
in search engines. Edit distance is used in speech [4] and
evaluating optical character recognition[17]. All of these ap-
proaches involve calculation of edit distances between mil-
lions of sequences and then the alignment of these sequences.

An interesting application of edit distance and alignment
of two sequences is in Bio-Computation. The machines
which generate the DNA data have progressed at a much
rapid pace than the techniques to analyze this data[13]. This
is a profound problem in the bio-computation domain. To-
day, biologists have terabytes of data but do not have enough
computational power and techniques to work on this data.
In many ways this problem is similar to the Big-Data prob-
lem that the computer industry has been facing for sometime
now. There is a need for techniques which could be used
to analyze this data rapidly. Accurately aligning the genes
against each other allows the comparison of DNAs and gives
the researchers ability to draw inferences from these align-
ments. Our tool allows fast alignment of a large number of
short reads quickly.

2.2 A short description of the Needleman Wun-
sch global alignment algorithm

The Needleman-Wunsch global alignment algorithm [12]
is a dynamic programming algorithm that is used for global
alignment, meaning that it can be used to find the best
alignment possible between two different strings. This is in
comparison to local alignment algorithms (for example the
Smith-Waterman) algorithm, where the best alignment is
among smaller segments of the two strings. In [12] to find
the alignment of two strings x and y, a two-dimensional m
by n “score matrix” is allocated, where m and n are the
lengths of the two strings x and y. In the first phase of
the algorithm, the (i, j)’th entry of the matrix contains the
optimal score for the alignment of the first i characters in x

and the first j characters in y.

Figure 1: Global alignment using Needleman-
Wunsch algorithm

The contents of each cell ai,j is computed based on the i’th
character in x, the j’th character in y and the contents of the
cells on its left (ai,j−1), top (ai−1,j) and top-left (ai−1,j−1)
that are already computed and stored in the matrix. The
value of the cell ai,j is computed using the following expres-
sion:
ai,j = Max{ai,j−1 + g, ai−1,j + g, ai−1,j−1 + S[x[i], y[j]]}
where g is the gap penalty value and S[x[i], y[j]] represents a
similarity matrix (a look-up table that represent the penalty
of changing one character to another). Figure 1 depicts the
contents of the matrix a.

Once the matrix is computed and stored in memory (O(m.n)
memory requirement andO(m.n) time), the algorithm starts
the backtracing phase from the last location of the matrix
(am,n) backwards. At each step, the algorithm picks the
cell whose values was used in the previous phase of the al-
gorithm, and goes backwards to the first cell a0,0. Each
movement upwards means an insertion in string x, and a
movement leftwards means an insertion in string y (or a
deletion in string x). A diagonal movement would mean ei-
ther a match or a mismatch. The backtracing phase requires
the whole matrix in memory (O(m.n)), and takes O(m+n)
time to execute.

2.3 Challenges of implementing the Needleman-
Wunsch algorithm on GPUs

Implementing the Needleman-Wunsch algorithm on SIMD
machines, and more specifically GPUs in this research, is
challenging for two main reasons, discussed in the next sub-
sections.

2.3.1 High Memory Consumption
The first problem when implementing the Needleman-Wunsch

algorithm on GPUs is the high memory usage of the algo-
rithm, which is of the order of O(m.n). The high memory
usage forces the use of slow global memory to store the score
matrix. Alternatively, in order to keep the score matrix in
the fast memories of the GPU (shared memory or regis-
ters), we would need to keep the number of parallel threads

running in the GPU limited, which would result in reduced
performance.

To further describe these problems, we present a concrete
example. Assume that the input strings are 32 long each, ne-
cessitating 1024 bytes to store the score matrix. An NVIDIA
Tesla GPU of compute capability 1.3 allows for 16KB of
shared memory per each streaming multiprocessor (SM).
This would translate to 16 threads per SM, which is clearly
not enough parallelism to mask even the pipeline latencies of
the GPU processors (at least 24 threads required) or com-
pletely utilize the parallel processors (at least 32 threads
required), let alone memory access latencies. Increasing the
input size to 128 long strings would require 16KB to store
the matrix, which would mean only 1 thread per SM and
deny any parallelism. The situation in the Fermi GPUs is
not much better either. Each SM allows access to up to
48KB of shared memory, therefore in our first example we
can have 48 simultaneous threads running in each SM. How-
ever, the Fermi architecture requires a 4 to 8 times larger
SM utilization compared to Tesla architecture to hide the
same latencies, therefore the memory pressure in Fermi is
even more than the Tesla architecture.

The other possibility is to store the score matrix in the
slower global memory. However, the backtracing phase of
the Needleman-Wunsch algorithm necessitates non-coalesced
memory accesses, since the elements of the score matrix
that are read depend on the contents of the data, mak-
ing the memory access patterns data-dependent. With non-
coalesced memory accesses, the threads running in the GPU
are serialized and the performance will be hard hit.

As we will describe in the next section, we solve these
problems by modifying the algorithm and reducing the mem-
ory requirements of the algorithm considerably.

2.3.2 Diverging SIMD flows
As mentioned in the last discussion, the second phase of

the Needleman-Wunsch algorithm is inherently data-dependent.
In the previous section, we described how this data-dependence
affects the memory access patterns if the score matrix is
stored in global memory. Another manifestation of this
problem is in diverging code flows. Unlike the first phase
of the algorithm, in which the same code flow takes place
regardless of the data contents, the backtracing phase is
completely data-dependent. The back tracing might take
anywhere between max(m,n) (when the backtracing always
takes the diagonal route) to m+ n steps (for example when
backtracing first completely moves upwards in m steps and
then takes n steps left).

This is a serious problem for a SIMD machine such as
a GPU. The whole reason for the massive parallelism po-
tential of SIMD machines is that they sacrifice independent
control logic circuity for more computational units. Diverg-
ing code flows would make use of the parallelism potential
of GPUs impossible. This challenge is one of the main rea-
sons that some of the previous attempts to implement either
the Needleman-Wunsch or the Smith-Waterman algorithm
in GPUs have reported sub-optimal performance figures.

We describe an algorithmic technique in the next section
to solve this problem.

3. DESCRIPTION OF THE ALGORITHM
In this section, we describe an algorithm for global align-

ment, which solves both of the problems presented in the

previous section. Our algorithm is based on the classic
Needleman-Wunsch algorithm [12] , but modifies it in a way
to reduce memory requirement significantly, trading it off
with more computations. Needleman-Wunsch algorithm was
the first application of dynamic programming to biological
sequence comparison. The runtime and memory require-
ment of [12] are both Θ(m · n). This rather high memory
usage makes it unsuitable for the SIMD cores of a GPU,
since the amount of fast shared memory per computing core
is quite limited. A variations of the Needleman-Wunsch al-
gorithm based on the longest common subsequence (LCS)
implementation is presented in [5], where they try to reduce
the memory usage. In [5], the regular dynamic programming
LCS problem is mixed with a divide and conquer strategy,
based on the principle of optimality, to reduce the memory
footprint of the algorithm to O(min(m,n)) while the run-
time stays in the same order of O(m · n). In practice this
algorithm requires about an order of magnitude more com-
putation, however the algorithmic order remains the same.

A variation of [5] has been proposed in a slightly different
way in [3], and our work is based on this algorithm.

3.1 Algorithm Design
The main idea behind our algorithm is that if one divides

the Needleman-Wunsch score matrix of two strings in an ar-
bitrary grid of quadrants, the contents of each quadrant can
be readily recomputed with only access to the score matrix
values on the quadrant’s top and left boundary as well the
corresponding subsets of the original strings, as depicted in
figure 2. In our algorithm, the score matrix is first divided
into a virtual grid of quadrants. Then the algorithm will
perform a regular Needleman-Wunsch first pass to fill the
score table. However, it does not store the contents of any
cell other than cells that coincide with the quadrant bound-
aries. Note that as long as the boundaries are the only goal
of this phase, they can be computed using a simplified form
of [12] that only keeps two consecutive rows of the matrix
for storage space, using Θ(2 · m) memory space. To store
the boundary elements themselves, we need an additional
Θ(2 · (m

k
· n)) memory, where k is the length of the quad-

rants. For example, if the two strings are 32 long each, and
we set the quadrant sizes to be 8 by 8, then 256 bytes are
required to finish the first phase of the algorithm, and an-
other 64 bytes are used to store the values on the quadrant
boundaries. The size of the grid is selected such that each
quadrant can successfully fit in a small memory that is avail-
able in the fast shared memory of GPUs. This means the
score matrix of each quadrant can fit in less than 128 bytes
of memory, which in turn translates to a high number of
parallel threads running at the same time.

The next phase of the algorithm is back-tracing. Remem-
ber that the back-tracing phase of the Needleman-Wunsch
algorithm follows the ‘directions’ from the last cell (bottom-
right) to the first cell (top-left). In our algorithm we start
from the last quadrant ((3, 3) in the previous example). We
first load the score matrix values which are located on the
boundaries of this quadrant (that were computed and stored
in the previous phase). Using the boundary values and the
proper segments of the two input strings, we recompute the
score values for the rest of the cells of this quadrant with the
same forward pass algorithm. With the score values of this
quadrant in hand, we start the trace-back phase within this
quadrant. The entrance point of the trace-back route is set

↖1

↑1

↑1 X

↖3

↑3

↖1 ↑2 ↖3 ←3

↑1 ↑2 ↑3 ↖4

↑1 ↖2 ↑3 ↑4

↑1 ↑2 ↑3 ↑4

↑3 ↑4 ↑3 ↖5

←4

↖5 ←5

↑5 ↖6 ←6

A G A C G T T A

A

C

G

T

A

C

G

T

←1

↑1

↖1 ←1 ←1 ←1 ←1
↖1

←2

↖1

↑1

↑1

↖3

↑3

↖1 ↑2 ↖3 ←3

↑1 X

↑1

↑1

↑3 ↑4 ↑3 ↖5

←4 ↑4 ↑4 ↑5

↖5 ←5 ←5 ↑5

↑5 ↖6 ↖6 ←6

A G A C G T T A

A

C

G

T

A

C

G

T

←1

↑1

↖1 ←1 ←1 ←1 ←1
↖1

←2

↖1

↑1 ↖2 ←2 ↑2

↑1 ↑2 ↑2 ↑2

↖3

↑3

↖1 ↑2 ←3

↑1

↑1

↑1

↑3 ↑4 ↑3 ↖5

←4

↑5

A G A C G T T A

A

C

G

T

A

C

G

T

←1

↑1

↖1 ←1 ←1 ←1 ←1
↖1

↑1 ↑1 ↖2 ←2

←6↖6

←5↖5

↖4

↖3

(B) (C) (D)

↖1

A G A C G T T A

A

C

G

T

A

C

G

T

←1

↑1

↖1 ←1 ←1 ←1 ←1
↖1

↑1 ↑1 ↖2 ←2 ←2 ←2 ←2
} 1
} 2
} 3

.

(A)

Figure 2: Accurate alignment computation in the GPU. A) The first pass of the algorithm keeps only two
active rows of the alignment matrix while scanning it from top to bottom. During this scanning pass, it
computes the boundary values of the smaller trivial quadrants for later access by the second pass of the
algorithm, shown as shadowed cells in (B). B) The second pass of the algorithm relies on the boundary values
calculated in the previous pass. Having these values ready for each quadrant, we can start from the last
quadrant and compute the inner values using a simple Needleman-Wunsch dynamic programming variant.
We then start tracking back from the last element of the matrix and follow the directions to find the exit
cell, denoted by letter ‘X’. (C) Keeping a record of the trace-back so far, it is continued in a new quadrant
using the exit value of the previous quadrant. (D) The algorithm finally exits the larger alignment matrix
through a quadrant either on the left edge or top edge of the alignment matrix.

to the last element of this quadrant, which is also the last
element of the larger alignment matrix. From here, we com-
mence the trace-back and follow the trace until it reaches
either the left or the top boundary of the quadrant. Note
that the exit point from one quadrant is the entry point to
the next quadrant. This new quadrant is either on the left,
top or top left of the previous quadrant, as the alignment
trace-back route is monotonically decreasing from bottom
right of the alignment matrix to its top left. Using this exit
point, the algorithm loads the boundary values for the next
quadrant that contains the traceback route, and the same
sequence of steps is repeated for the newly loaded quadrant.
The algorithm repeats these steps until it reaches the first
cell of the score matrix, at which point the global alignment
is computed. This pass of the algorithm is depicted in parts
(B), (C) and (D) of figure 2 (shown for a simplified case).
The memory requirement of the trace-back phase of our al-
gorithm is Θ(k · k).

The differences in our algorithm and [3] is as follows.
The first difference is that in our algorithm we store the
values of the score matrix that are located on every quad-
rant boundary, where [3] chooses to recalculate them from
scratch by performing the first phase of the Needleman-
Wunsch algorithm for each quadrant. This results in more
re-computation than is really necessary when implementing
the algorithm in GPUs, as it does not utilize the available
fast shared memory.

In comparison, our algorithm performs the first pass of
Needleman-Wunsch only once, and stores all the top and
left boundaries of all the quadrants in memory. The reason
for this design choice is that even though GPUs have lim-
ited amounts of fast shared memory, it would be detrimental
to overall performance if they are not properly utilized. In
other words, for our target architecture, [3] spends too much
processing cycles computing the score matrix over and over,
while the boundary values can be successfully stored in mem-
ory.

Our implementation is hand-tuned for best performance
on GPUs. Starting with an analysis on the available re-
sources of the GPU to maximize its utilization, we find the
size of a ‘trivial’ quadrant, which in our current implemen-
tation is set to 8 by 8. As such, we divide the large ma-
trix required for global alignment into 16 quadrants (in case
of 32-long strings), numbered from (0, 0) to (3, 3) based on
their location in the alignment matrix. The trivial quadrant
problem is solved with a simple Needleman-Wunsch algo-
rithm in Θ(m

4
· n

4
) run time and Θ(m

4
· n

4
) memory.

3.2 Memory storage for the boundary values
As mentioned in the previous sub-section, our algorithm

stores the score matrix values which are located on quadrant
boundaries. Therefore it is important to ensure that the
storing scheme be fast enough so that it is not a bottleneck
for the rest of the algorithm.

The algorithm uses two different storing schemes, based
on the size of the strings. In the general case and for longer
strings, our algorithm stores the boundary values in the
global memory. Since the traceback path is different for each
input pair of strings, different quadrants should be loaded,
which results in non-coalesced accesses. To alleviate this
situation, we devise a technique according to which the al-
gorithm reads all the quadrant boundary rows and columns,
one row or column at a time, and stores them temporarily in
the shared memory. During this phase, the algorithm stores
the required part of the loaded rows and columns in another
part of the shared memory. This results in more instruc-
tions and memory accesses than is required, but it ensures
no code flow divergence and completely coalesced memory
accesses. In practice, doing this much more work still re-
sults in better performance than just reading the required
boundary values for a specific quadrant in each thread, that
results in non-coalesced accesses. The size of the strings and
hence the score matrix impacts this decision, and at some
point the overhead becomes so high that the non-coalesced

accesses will perform better, however in our experiments we
did not reach this saturation point.

If the strings are small enough (For example 32∼ 36 long),
we store the whole boundary values in another fast memory
storage: registers. There is four times more fast memory
available as registers in each SM than shared memory, and
our algorithm itself does not utilize all the available regis-
ters. For example in a 1.3 compute capability GPU, if there
are 192 threads per SM, each can access 84 registers, while
our program uses almost 35 registers, and leaves the rest
of the registers unused. The problem with using registers
is that they cannot be used as an array, only specific vari-
ables. Trying to read the specific portion of the boundary
rows and columns therefore requires a programmatic struc-
ture similar to a switch case, which will result in diverging
code flows. The technique we use to solve this problem is
similar to the previous case, in which the algorithm reads all
the rows and columns one by one from register-stored vari-
ables into shared memory, and stores the required parts in
another area of shared memory and ignores the rest. Using
this technique, we managed to speed up our algorithm even
more (refer to section 4 for experimental evaluation).

3.3 Solving the Diverging flows problem
As mentioned earlier, diverging flows present a signifi-

cant challenge to SIMD architectures. The first phase of
the Needleman-Wunsch algorithm is mostly non-divergent,
since each thread fills the score matrix with the exact same
flow. However, the second phase is inherently data-specific.
In some cases, the trace-back phase in a quadrant takes a
strictly diagonal path and reaches the exit point in exactly k

steps. In other case, the path might first go k steps upwards
and then k steps leftwards, for a total of 2k − 1 steps.

To solve this problem, the algorithm was modified. The
algorithm is written such that the trace-back in each quarter
takes exactly 2k−1 traceback steps. However, the algorithm
also computes condition variables that evaluate to the zero
value once the traceback reaches either the left or top bound-
ary of the quadrant. These condition variables are then
embedded in the expressions that find the next cell in the
traceback path. In effect, once the traceback reaches either
of the left or top boundaries, it gets “stuck” there until the
2k − 1 traceback steps are finished. Using this mechanism,
the same set of instructions are executed in each thread,
eliminating any flow divergence among different threads.

The same problem should also be tackled for loading dif-
ferent quadrants, and is addressed in a similar way. Each
thread loads the boundaries for exactly 2·m

k
quadrants and

performs traceback in each of them. However, once a quad-
rant on the first row or column of the quadrants grid is
loaded, a similar mechanism is utilized to make the com-
putation “stuck”, while every thread keeps executing similar
instructions.

This solution ensures that any combination of input ar-
guments take the “worst case path”. However, we utilize a
GPU specific mechanism to help the situation. The SIMD
execution model of NVIDIA GPUs runs different threads in
“warps” of 32 threads in each SM. Therefore, once all 32
threads of the same warp get “stuck”, we can break the loop
and move on to the next phase, instead of waiting for all
of them to reach 2k − 1 steps. Fortunately, NVIDIA GPUs
of compute capability 1.3 or higher provide and intrinsic
function “ all(condition)”, which evaluates to TRUE once

all the individual conditions of the warp’s threads become
TRUE. This mechanism helps our algorithm run faster.

An easier diverging flow problem to solve is the issue of
if/else conditions, which might end up in diverging code. To
solve this issue each of the if/else conditions in the code is
replaced by an expression that executes all the instruction
on either side of the condition, and incorporates them in
the same expression. For example, assume that we want to
make the following if/else condition non-divergent:

if (cond) then a = f(x) else a = g(x)
We can replace it with the following expression:

a = cond · f(x)+!cond · g(x)
This transformation is feasible since in the C language con-
ditions can be used as numerical values, and are evaluated
to zero when condition is FALSE.

Using the above techniques, our algorithm runs completely
divergence free, and not a single instruction is serialized dur-
ing execution.

4. EXPERIMENTAL RESULTS

4.1 Experiment Setup
The experimental evaluations were carried out against

several multi-core baseline testbeds. The main baseline sys-
tem has an Intel(R) Core i7 920 quad-core CPU with a clock
frequency of 2.67GHz, a 8MB L3 cache and hyperthreading
support (it is represented with 8 virtual cores to the operat-
ing system). The GPU used was the NVIDIA(R) GeForce
GTX 275 with 895MB of global memory. For strong scal-
ing experiments we used two different 8-core setups. The
first one is a dual-processor Mac Pro computer with two
Intel(R) Xeon E5462 quad-core CPUs, each running at a
clock frequency of 2.8GHZ, 12MB of L3 cache without hy-
perthreading and 8GB RAM. This allows the baseline to run
on 8 separate real cores. The second one is a Linux based
server with two Intel(R) Xeon X5355 CPUs, each running
at a clock frequency of 2.66 GHz, 8MB of L2 cache and
no hyperthreading support with 16GB RAM. The CUDA
driver version was 4.10 and the CUDA API version was 4.0.
The operating system used for the experiments was Ubuntu
10.10 running the Linux kernel 2.6.35-30 in the first baseline
testbed (which hosted the GPU card too), Mac OS 10.6.8
on the second testbed. Our baseline program uses OpenMP
to utilize multi-core CPUs, and in all of our experiments the
baseline is compiled with -O3 optimization level.

4.2 Speedup
The first experiment we conducted was between a paral-

lel implementation of the Needleman Wunsch algorithm on
multi core CPUs and a GPU implementation of our pro-
posed algorithm with all the computations stored in the
shared memory and the registers. For the parallel base-
line implementation, we parallelized our implementation of
the Needleman Wunsch algorithm using OpenMP. The ex-
periment was carried against 4 Intel(R) Core(TM) i7 CPUs
with the above configuration. It is worth mentioning that
the operating system perceives 4 Intel(R) Core(TM) CPUs
with hyperthreading support as 8 cores so two threads could
be pinned to one core. A range of input data sizes was uti-
lized in this experiment to show the impact of the number of
sequences to be aligned on the speedup. The data line in Fig-

4.5

5.5

6.5

7.5

8.5

9.5

10.5
S
p
e
e
d
u
p

Number of pairs to compare

GPU registers GPU 32bit coalasced GPU 64bit coalasced

Figure 3: Speedup of our proposed algorithm imple-
mented on a GPU compared to an optimized multi-
threaded implementation on a quad-core CPU.
Three versions of the GPU implementation are de-
picted above. At the largest input data set of over
12 million pairs, our shared memory algorithm runs
9.3 times faster.

ure 3 labeled as “GPU Registers” shows the speedup of this
GPU algorithm compared to the baseline multi-threaded im-
plementation running on the first testbed system (8 hyper
threaded cores). The results show a speedup of up to 9.3
times compared to the optimized (compiled with -O3 op-
tion) multi-threaded implementation on a quad-core CPU
for 12582720 input pairs. The multi threaded CPU im-
plementation takes about 65 seconds to finish aligning the
12582720 input pairs, while our GPU implementation goes
through them in only 6.95 seconds.

As can be seen from figure 3, the speedup of our GPU
algorithm increases as the input size (number of pairs to
be compared) increases. This can be attributed due to the
fact that for smaller number of sequences, all the sequences
fit in the cache of the CPU, whereas when the size of the
sequences increases beyond a certain threshold, the CPU
starts incurring cache misses and hence the performance de-
creases. The increase in the number of sequences does not
affect the time taken by the GPU to process the genes which
has a linear relationship with the number of sequences. This
is because the GPU implementation keeps all the sequences
to be aligned in the global memory and accesses them in a
coalesced manner. The rest of the calculation (the Needle-
man Wunsch matrix calculation and the backtracing) are
all done in the shared memory and the per-thread memory
(registers). This calculation is independent of the number of
sequences and hence does not affect the GPU performance
like it does the CPU performance.

There are some variations in the amount of speedup as
shown in figure 3. To investigate this further, we have pre-
sented the normalized run-times of the multi threaded CPU
algorithm and our GPU algorithm in Figure 4. As we can
see, the GPU algorithm scales almost linearly with the in-
crease in the input data set, while the CPU runtime has
fluctuations which result in speedup variation in figure 3.

0

20

40

60

80

100

120

140

160

180

N
o
rm
a
li
z
e
d
 r
u
n
-t
im
e

Number of pairs to compare

Normalized OpenMP CPU time Normalized GPU time

Figure 4: Normalized run-time of the multi
threaded CPU and our proposed GPU algorithm.
The GPU algorithm scales linearly with the input
data size, while the CPU algorithm has variations
from a linear run-time, which might be due to the
impact of caches filled up and spilled into higher
levels of memory hierarchy. The run-times are nor-
malized since otherwise the CPU runtimes would be
an order of magnitude larger than the GPU times.

We suspect the two sudden drops in the speedup to be due
to L2 and L3 caches filling up respectively.

The next experiment was carried out to see the affect of
implementing the Needleman Wunsch algorithm partly in
the global memory. To achieve this the algorithm described
in the previous section was altered as follows:

1. Each thread computes its complete score matrix and
stores the desired rows and columns in global memory.
For our experiments (sequence length 32) the row and
column number 0,8,16 and 24 formed the boundaries of
different sub-quadrants of size 8 and hence these were
the rows and columns which were saved in the global
memory. Note that depending on the lengths of the
two sequences and the size of the quadrant, the rows
and columns which have to be stored in the global
memory will differ. Our program can be easily ad-
justed to achieve this.

2. While the processing of the quadrant in the backtrac-
ing phase, all the rows and the columns were bought
into the shared memory.

3. The required row and column were chosen and the oth-
ers were overwritten. This step is similar to the one
carried out in our algorithm explained earlier.

The only difference in the algorithm presented above and
the algorithm we described earlier is that the global memory
is used as the bulk storage for rows and columns in this
case. In the earlier description the registers available per
Streaming Multi-processor were used for the same purpose.

We tried the global memory accesses in the above men-
tioned algorithm in 2 ways:

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number of threads active for OpenMP

Core i7 920, hyperthreading Dual Xeon® E5462

Dual Xeon® X5355 2 per. Mov. Avg.(Core i7 920, hyperthreading)

Linear(Dual Xeon® E5462) Linear(Dual Xeon® X5355)

Figure 5: Strong scaling of the baseline Needleman-
Wunsch implementation in three different multi-
core platforms. A) hyperthreading seems to not
have much impact on the speedup, B) the dual-
socket testbeds scale much better. Note that if we
were to include the GPU speedup in this graph, it
would show a 22X speedup, since the speedups in
this graph are compared to a single-core Needleman-
Wunsch implementation.

1. Coalesced accesses to the global memory, 4 bytes (32
bits) at a time.

2. Coalesced accesses to the global memory, 8 bytes (64
bits) at a time.

Figure 3 shows the graph for Number of sequences vs.
The time taken for the different algorithms mentioned as two
other trend lines. As it can be seen from the figure, our origi-
nal algorithm scales well in terms of the number of genes and
maintains its speedup. The other 2 algorithms show slightly
smaller speedups for small number of sequences. This is
because the overhead of accessing the data from the global
memory is larger for small number of sequences. Having said
that, the difference is not dramatic, resulting in about 5%
increase in speedup. This result reconfirms that the combi-
nation of the techniques we employed to make the algorithm
compatible with SIMD architectures has enabled the system
to successfully hide the memory access latencies, as we have
provided the SMs with enough warps to be able to do so.

4.3 Strong Scaling
The last two experiments are performed on the baseline

testbeds. In the first experiment, we ran our proposed al-
gorithm on the CPU baseline testbed instead of a GPU,
and compared its execution time to the regular Needleman-
Wunsch on the multi-core. The results show that our al-
gorithm is about 2.7 times slower than the regular NW
when it is executed on CPUs. This result clearly shows that
an algorithm, which is the best candidate for SIMD archi-
tectures, might not be optimal for serial execution, and vice
versa.

Figure 5 shows the results of our final experiment to de-
termine the scaling behaviour of the baseline NW algorithm.

We set this experiment to test the strong scaling feature of
the baseline Needleman-Wunsch algorithm on three different
multi-core test-beds. The speedups are computed by divid-
ing the execution time of an OpenMP based multi-threaded
implementation with the specified number of cores over the
execution time of the NW algorithm with no OpenMP sup-
port. It should be noted that we experienced a 19% per-
formance drop as a result of introducing OpenMP to our
baseline code, meaning the OpenMP code with the number
of threads set to 1 runs 19% slower.

As is shown in the figure 5, the speedup in the core i7 920
quad-core CPU is maxed out at 2.6 times which is achieved
when the number of threads reaches 7. The impact of the
hyperthreading support is a 3.3% increase compared to uti-
lizing 4 threads (2.51 X), which is less than what one would
expect from hyperthreading. (typically a 10 ∼ 15 percent
performance improvement is reported in the literature). In
comparison, the two dual socket machines perform much
better with an almost linear scaling (shown with a linear re-
gression line in figure 5 for the two Xeon testbeds that match
the data set well), reaching in average 6.5 times speedup
when all 8 cores are utilized. Please keep in mind that the
GPU implementation is 22 times faster than the single
core NW implementation (results of figure 3 are speedups
compared to when all 8 hyperthreading cores of the Core i7
920 machine are engaged using OpenMP). Therefore, even if
the linear scaling of the multi-core algorithm remains above
8 cores (which we could not verify as we didn’t have access
to such a machine), we would need 24 to 32 CPU cores to
achieve the same speedup. Moreover even our 8 core, dual-
socket testbeds are prohibitively more expensive compared
to the cost of adding the GeForce 275GTX GPU that we
used to perform our experiments (which admittedly is not a
top-of-the line GPU as of the date of writing this paper).

5. RELATED WORK
Our implementation of the Needleman-Wunsch algorithm

can solve the problem of mapping large amount of short
reads back to a reference genome quickly, which is one of the
fundamental problems faced by the bio-informatics commu-
nity today. There are a number of tools created for map-
ping reads against a reference genome. These tools map
the read to a reference genome within a given edit dis-
tance. Some of these are MAQ [9], BWA [8], BOWtie [7],
PASS, SHRiMP [14] and SOAP2 [10]. MAQ was one of the
first tools for this task, its approach is to hash the reads
in memory while traversing the genome. This results in a
reduced memory footprint. It lacks support for the out-
put of more than one matching position per read. BWA,
Bowtie, and SOAP2 index the complete reference genome
using a Burrows-Wheeler-Transformation (BWT) (Burrows
and Wheeler, 1994) and process all the reads sequentially,
resulting in a considerable speed-up of the mapping process.
PASS and SHRiMP also perform an indexing of the refer-
ence sequence, but use a spaced seed approach (Califano
and Rigoutsos, 2002) instead of BWT. All mentioned ap-
proaches except SHRiMP are heuristic and do not guarantee
the mapping of all possible reads. Especially reads that show
insertions or deletions compared to the reference sequence
are often missed. The work done in [1] is closely related
to our work. The authors do not mention any optimization
strategies which they applied to the GPU implementation
of the pair-wise alignment. Hence it is difficult to compare

the speedup obtained for their implementation with ours. It
is worth mentioning that the authors report that 23,040,503
probe/pattern pairs of length 36bp each took a total of 42
seconds with their implementation. The same number of
pattern/probe pairs can be aligned using our implementa-
tion on the GPUs in 14 seconds.

There also have been many previous attempts to acceler-
ate the Smith Waterman algorithm on the GPUs and other
specialized hardware. As the Smith-Waterman algorithm is
used for local alignments of genes these efforts and the opti-
mizations used in these implementations cannot be applied
to our implementation of the Needleman Wunsch algorithm
which is used for global alignments. Most of these imple-
mentations target the search for similar proteins in DNA
databases and hence the problem which they solve is fun-
damentally different from ours. We focus on aligning large
amounts of short reads(probes) with their potential matches
in the human DNA (patterns). The potential matches for
the short reads are given using another algorithm, which
acts as the first phase for this implementation. The filter
algorithm is not the focus of this paper. Moreover, our GPU
implementation can also be used to find the edit distances
between millions of words in a few seconds. Hence the ap-
plicability is beyond the general bio-informatics application
and our algorithm can be regarded as stand alone and in-
dependent. The differences in the optimizations that can
be applied on the Smith Waterman algorithm when imple-
mented on the GPUs can be gauged by CUDASW++ [11],
which is one of the fastest implementations of the Smith
Waterman algorithm on the GPUs.

In CUDASW++ the authors apply a number of optimiza-
tions for inter and intra task parallel implementations of
the Smith-Waterman algorithm. The problem the authors
are solving involves matching a gene sequence with gene se-
quences in a database which are within a given edit distance.
This problem is different from ours and hence the optimiza-
tions used by the authors are different from the ones we can
use. The Smith Waterman algorithm is used to find local
alignments and hence the authors could split the sequences
being matched into smaller subsequences and apply the SW
algorithm on these subsequences. This improves the mem-
ory accesses and with coalesced accesses of global memory,
this technique makes their implementation fast. This ap-
proach unfortunately cannot be used when finding global
alignments. The authors only need to find an alignment
score and hence no traceback phase is required. Due to this,
they don’t have to tackle with the problem of thread diver-
gences, which is a huge problem in the traceback phase of
the Needleman-Wunsch algorithm.

[2] Gives a performance comparison of the Needleman
Wunsch algorithm on FPGAs, GPUs and multi cores. Their
work is an analysis of three diverse applications-Gaussian
Elimination, DES, and Needleman-Wunsch and is not fo-
cused on speedup, but rather on the diverse characteristics
of their performance that allow speedup. In their parallel
implementation of the Needleman Wunsch algorithm, they
process the score matrix in parallel diagonal stripes from
the top-left to the bottom right to find the maximum score
path. The authors made no specific effort to tune their im-
plementations to reduce cycle-counts and achieve speedup.
No effort is also made to increase the GPU utilization and
tune the application for the GPUs. The goal of their work is
fundamentally different in the sense that we focus on acceler-

ating the Needleman Wunsch algorithm using the GPUs and
hence tune our implementation to a great extent to utilize
the GPU well. [16] implements the NW algorithm on the
GPUs using shared memory and global memory accesses.
Their parallelization strategy is to calculate the score values
on the minor diagonal in parallel with global memory ac-
cesses. In their shared memory implementation the authors
divide the NW matrix into small blocks and apply their di-
agonal parallelization strategy on each of the small blocks.
Due to the dependency between blocks, the authors had to
explicitly synchronize the CUDA threads. Their work con-
centrates on aligning a pair of sequences and the GPU works
on only one sequence at a time, comparatively in our work,
the GPU handles all the pairs of probe and patterns at the
same time. The authors achieve a speedup of 4.2X compared
to their CPU implementations of the Needleman-Wunsch al-
gorithm.

6. CONCLUSIONS
In this paper, we proposed a new algorithm to compute

the edit distance between two sequences using a GPU and
presented details of its design and implementation. By care-
fully managing the memory usage and control-flow diver-
gence, our algorithm provides a 9.3x speedup over an ef-
ficient multi-threaded, CPU-based implementation. With
growing importance of applications like genome sequence
alignment, we believe that using optimized algorithms on
GPUs can help in large scale data analysis. An efficient edit
distance algorithm that can be used by many applications
is the first step in this direction and we hope to study how
end-to-end systems can be designed using this as a building
block.

References
[1] J. Blom, T. Jakobi, D. Doppmeier, S. Jaenicke, J. Kali-

nowski, J. Stoye, and A. Goesmann. Exact and com-
plete short read alignment to microbial genomes us-
ing gpu programming. Bioinformatics, 2011. doi:
10.1093/bioinformatics/btr151.

[2] S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach.
Accelerating compute-intensive applications with gpus
and fpgas. In Application Specific Processors, 2008.
SASP 2008. Symposium on, pages 101 –107, june 2008.
doi: 10.1109/SASP.2008.4570793.

[3] R. A. Chowdhury and V. Ramachandran. Cache-
oblivious dynamic programming. In SODA ’06: Pro-
ceedings of the seventeenth annual ACM-SIAM sympo-
sium on Discrete algorithm, pages 591–600, New York,
NY, USA, 2006. ACM. ISBN 0-89871-605-5. doi:
http://doi.acm.org/10.1145/1109557.1109622.

[4] J. Droppo and A. Acero. Context dependent phonetic
string edit distance for automatic speech recognition.
In Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, pages 4358 –
4361, march 2010. doi: 10.1109/ICASSP.2010.5495652.

[5] D. S. Hirschberg. A linear space algorithm for com-
puting maximal common subsequences. Commun.
ACM, 18(6):341–343, 1975. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/360825.360861.

[6] J.-M. Koo and S.-B. Cho. Effective intrusion type iden-
tification with edit distance for hmm-based anomaly
detection system. In S. Pal, S. Bandyopadhyay, and
S. Biswas, editors, Pattern Recognition and Machine
Intelligence, volume 3776 of Lecture Notes in Computer
Science, pages 222–228. Springer Berlin / Heidelberg,
2005. ISBN 978-3-540-30506-4.

[7] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg.
Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome biology, 10
(3):R25, 2009.

[8] H. Li and R. Durbin. Fast and accurate long-read align-
ment with burrows–wheeler transform. Bioinformatics,
26(5):589–595, 2010.

[9] H. Li, J. Ruan, and R. Durbin. Mapping short DNA
sequencing reads and calling variants using mapping
quality scores. Genome research, 18(11):1851, 2008.

[10] R. Li, C. Yu, Y. Li, T. Lam, S. Yiu, K. Kristiansen, and
J. Wang. Soap2: an improved ultrafast tool for short
read alignment. Bioinformatics, 25(15):1966, 2009.

[11] Y. Liu, D. Maskell, and B. Schmidt. Cudasw++:
optimizing smith-waterman sequence database
searches for cuda-enabled graphics processing
units. BMC Research Notes, 2(1):73, 2009. ISSN
1756-0500. doi: 10.1186/1756-0500-2-73. URL
http://www.biomedcentral.com/1756-0500/2/73.

[12] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443–453, March 1970.

[13] A. Pollack. Dna sequencing caught in deluge of data.
The New York Times, 2011.

[14] S. Rumble, P. Lacroute, A. Dalca, M. Fiume, A. Sidow,
and M. Brudno. Shrimp: accurate mapping of short
color-space reads. PLoS computational biology, 5(5):
e1000386, 2009.

[15] S. Simsek. An edit-distance algorithm to detect cor-
related attacks in distributed systems. International
Journal of Computer and Information Engineering, 2,
2008.

[16] T. Siriwardena and D. Ranasinghe. Accelerating global
sequence alignment using cuda compatible multi-core
gpu. In Information and Automation for Sustain-
ability (ICIAFs), 2010 5th International Conference
on, pages 201 –206, dec. 2010. doi: 10.1109/ICI-
AFS.2010.5715660.

[17] I. Yalniz and R. Manmatha. A fast alignment scheme
for automatic ocr evaluation of books. In Docu-
ment Analysis and Recognition (ICDAR), 2011 Inter-
national Conference on, pages 754 –758, sept. 2011. doi:
10.1109/ICDAR.2011.157.

