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ABSTRACT

This paper presents a numerical algorithm for computing full
information maximum likelihood (FIML) and nonlinear three-stage least
squares (3SLS) coefficient estimates for large nonlinear macroeconometric
models. The new algorithm, which is demonstrated by actually computing
FIML and 3SLS coefficient estimates for two versions of the 97 equation
Fair Model, is substantially more effective than other algorithms on

FIML and 35LS estimation problems.
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1. Introduction

This paper presents a numerical algorithm for computing full in-
formation maximum likelihood (FIML) and nonlinear three-stage least
squares (3SLS) coefficient estimates for large nonlinear models. (The
proposed algorithm will be denoted algorithm A.) Although the theory
of FIML estimarion has been available for thirty years [20], FIML esti-
mation has long been regarded as impossible on large nonlinear models.l
The more recently proposed nonlinear 3SLS estimator [19] also poses
difficulties for large models.2 Using the algorithm presented in this
paper, FIML and 3S5LS are now feasible alternatives for estimation of
large nenlinear models,

The principles behind algorithm A’'s efficiency can be summarized
as follows. First, most cf the algorithm's steps explicitly control the
mean of each equation's residuals. Llarge changes in those means are
avoided because the FIML and 35LS estimation problems are extremely sen-
sitive to the residuals' means. Second, the coefficients are grouped

by equations and the groups are treated separately during most of each

1Using previously proposed algorithms, nonlinear FIML estimation has been
possible only on small models. Newton's method [6, 7, 8] has success-
fully been applied to linear models with up to 14 equations [3, 5, 9],

but that method is not feasible for nonlinear models. Two general purpose
maximization algorithms [16, 23] and two algorithms suitable only for
FIML and 3SLS estimation [4, 9] have been proposed for nonlinear esti-
mation problems. The largest model that has been estimated using these
algorithms has 19 equations and 61 unknown coefficients [2, 9, 12], but
that model's nonlinear portion is recursive, making the Jacobian inde-
pendent of time. In comparison, algorithm A has computed FIML and 3SLS
estimates for two models, one with 48 equations and 88 unknown coefficients
and one with 97 equations and 107 unknown coefficients.

2The largest nonlinear model previously estimated using 3SLS is the 19
equation model wentioned in the previous footmote [2].



iteration. This focus on individual equations is effective because co-
efficients within the same equation are generally more strongly related
than are coefficients within different equations. Third, a hierarchical
arrangement of the algorithm's steps allows certain steps to explore
directions that have been traced out by a series of earlier steps.
Fourth, no derivatives of the objective function are required, eliminat-
ing one obstacle to estimatihg nonlinear models.

The outline of this paper is as follows. Section II defines the
FIM. and 3S.S estimators, and Section II1 describes algorithm A. Section
IV reviews the results of using algorithm A to estimate two versions of
the 97 equation Fair Model. Two appendices discuss the algorirhm's
theoretical rate of convergence and a procedure for computing the FIML

covariance matrix.

II. The FIML and 38LS Estimators

Write the general structural model as:

1, vo., T, GA=1, ..., M),

gy = u, , (t

where Yy is a vector of endogenous variables, X, is a vector of pre-
determined variables, B is a vector of unknown coefficients, and U,
is a scalar residual. The first G equations are stochastic, and the

remaining N-G equations are identities.

The FIML coefficient estimates [20] maximize:

T
(2} F&(B) = - % log(ls]) + tEllog(l.}tl) .

S 4is the GxG covariance matrix of the stochastic equations' residuals,
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1
(S)1j = :I:t'luitujt - J, 1s the NxN Jacobian matrix of partial

derivatives of the residuals with respect to the endogenous variables,

nre~

gy = ®uyc/e¥ye -
Recently, Jorgenson and Laffont [19] have proposed a nonlinear
generalization c¢f the linear three-stage least squares estimator. Their

. .. 3
35LS coefficients maximize:

(3) F.(8) = -u'{z'l

3 ® Q'O .

Q is a T =K wmatrix of first stage regressors, and [ 1is a fixed, con-
sistent estimate of the error terms' covariance matrix, derived perhaps
from the 25LS coefficient estimates. The vector u is a TGx1 wvecter

- P - = 1 ]
of the residuals arranged as: u (ull’ ceny Upps seey Usgy ey “GT) .

I17. Algorichm A

A. General Description

Algorithm A, which is a relaxation algorithm, generates a hierarchical
sequence of search directions. Each iteration includes 1 maximizing
search for each coefficient, 2 maximizing searches for each equation,
and up to 10 maximizing searches for the complete coefficient vector.
The searches for each coefficient also adjust the constant terms to avoid

disturbing the mean of any equation's residuals. The searches for each

3Several additional types of coefficient estimates can be found using
the basic 3SLS setup. If I is taken to be any diagonal matrix, the
resulting objective function, FZ(B) , 1is maximized by the nonlinear

two-stage least squares coefficients [1]. 1If, in addition, an identity

matrix is substituted for Q(Q'Q)-IQ' , the resulting objective functionm,
Fl(B) , is maximized by the nonlinear least squares coefficients.



equation cozbine the results of the individual coefficient searches, and
the searches for the complete coefficient vector are generated from the
results of past iterations.

Sections B through H describe the algorithm in detail. Section
B establishes notation and explains the information about the model that
must be supplied by the user. The order of the hierarchical search
directions is discussed in Section C. Sections D, E, and F specify the
three types of search directions. Section G gives the modificatioms
necessary when there are constraints across coefficients. Section R gives
the procedure for maximizing in any one of the search directions. (Several
practical matters, such as the criteria for terminating a sequence of
{terations, are discussed in Section IV, and Appendix Cne outlines the

algorithz's theoretical rate of convergence.)

B. Notation and Input Reguirements

Aigorithm A maximizes an objective functiom, F(2) . The FIML
objective functiom, FA(E) , 1is the logarithm of the likelihood func-
tion (2). The 35LS objective function, F3(B) , 1is the negative of the
least squares distance function (3). The present discussion assumes that
a routine is available to evaluate one of these functions for any given
coefficient vector.

Algorithm A also needs certain information about the model's
structure. This information is supplied (by the user) in the form of
geveral vectors that are of the same dimension as the coefficient vector
(see Table 1). None of this information is used in the objective function
evaluation, a task external to this algorithm.

The user supplied vectors describe each coefficient’'s place in



TABLE 1

Notation for Vectors of the Same Dimension as &8

Vecter
Elezent Definition
. th ,
(1) The value of the 1 coefficient.
t(i) The ith coefficient’'s type.a
n(i) The number of the equation containing
B(i)
c(i) The index of the constant term of the
equation containing £(i) . That is,
E{c(i)) is the constant term of the
equation containing B(i} .
zt(i) The value of the variable multiplied by
£(i) in forming u_,, .0 That is, the
n(i),t
term E(i)-zt(i) annears in equation n(i) .
m(i) The mean of zt(i) over the sarple
period.
v(i) The value of the entry in the search

direction vector corresponding to E£(i) .
(Not supplied by the user.)

a , ‘g . . .
E(i) car be classified as either a constant term, a serial correlation
coefficienz, a coefficient of an explanatory variable, or nome of the
first three types. (See the discussion of Step 1 in Sectiom D.)

b z,{i) 1is often some transformation, such as the logarithm, of one
or more variables. Some coefficients (constant terms anmd serial cor-
relation coefficients, for example) have no zt(i) .
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the model.” For coefficient £(i) , three integer-valued vectors, t ,
n, and ¢, give its coefficient type, the number of the equation it
is in, and the index of that equation's constant term (if there is one).5
The real-valued vector element m(i) gives the mean of zt(i) over the
sazple period, where £(i) is the coefficient for zt(i) + Given these
input vectors, algorithm A generates search directions (represented in

Table 1 by the vector v ) that have an entry for each coefficient.

C. Order of Coefficients and Steps

The coefficients are numbered as follows. All of the coefficients
appearing in an equation are numbered consecutivelv, with the constant
term last anc the serial correlation coefficient, if there 1s one, next
to last. 1If a lagged dependent variable appears in an equation, its
coefficient should be the first one for that equation.

Given the ccefficient numbering, the search directions are generated
as shown in Table 2. Step 1 associates a search direction with each
coefiicient in numerical order, with one exception. After the last coef-
ficient for a given equation (usually this will be the comstant term),
Step 2 creates a search direction for the whole equation. The algorithm
then proceeds to Step 1 on the first coefficient of the next equation.
After the coefficient list has been exhausted and Step 2 has been executed
for the last equation, Step 3 creates search directions for the whole

model. Steps 4 and 5 then repeat the search directions from Steps 2 and 3.

4Vector elements corresponding to different coefficients are identified
by an index within parentheses {e.g., B8(i) is the ith coefficient).
Different vectors will be identified by subscripts {e.g., B_ is the
coefficient vector after n iterations). B

5Some of these vector elements may not be defined for every coefficient.
In that case, the undefined vector element will not be used in the
algorithm.



TABLE 2

Selection of Search Directions*

I. Fer Each Egquation in Turn:

Step la.

Step 1b.

Step lc.

Perturb the lagged dependent variable's coefficient,
if any, and adjust the constant term.

Perturb the other variables' coefficients, and adjust
the constant term.

Perturb the serial correlation coefficient, if any,
without adjusting the constant term.

Step 1¢. Perturb the constant term by itself.

Step . Subtract the coefficient vector at the start of Step
1 for this equation from the coefficient vector before
Step 14.

II. TFor the Wheole Model:

Step 3a. Subtract the coefficient vector at the start of this
iteration (before Step 1 for the first equation) from
the current coefficient vector.

Step 35. Subtract the starting coefficient vector, and three

other previous coefficient vectors, from the current
coefficient vector.

III. TFor Each Equation in Turn:

Step 4.

Repeat the directions selected for Step 2.

IV. For the Whole Model:

Step 5.

Repeat the directions selected for Step 3.

*Sections D through G give detailed rules for constructing these search

directions.

Section H gives the procedure for maximizing in any

particular search direction.



D. Step 1

In Step 1, a search cdirection for each individual coefficient {s
constructed to satisfy the '"means condition.” That condition is met if,
for any £ along the search direction, the mean of each equation’'s
residuals remains unchanged from its current value.6 Since the right-hané
side variables generallv have nonzero means, the mean of an equation's
residuals will almost certainly be changed if just one coefficient in
that equation is changed. Therefore, in order to satisfy the means con-
ditior, the constant term (if the equation has a constant term) is changed
along with each of the other coefficients. The search for the constant
term itself changes onlv that one coefficient and does not satisfy the

means conditicn.

For an equation that is linear in its coefficients, a straight-line
search satisfies the means condition. (Nonlinearities in the right-hand
side variables do not matter because m(i) and zt(i) are defined in
terms of transformed variables.) The search direction vector for each
coefficient, except the constant term, has two nonzero elements:

v(i) = B(i) and v(c(i)) = -m(i)-B(i) .G

6The rationale for explicit attention to the residuals' means comes from
simple linear regression. Tor ordinary least squares on equations including
a constant term, one of the normal equations equates the mean of the de~
pendent variable with the sum of the independent variables' means multiplied
by their regpective coefficients. In other words, the residuals will
have a mean of zero by construction.

There is no such explicit statement about the residuals' means for
full information estimation. 1Indeed, one would expect the mean of any
one equation's residuals to be slightly nonzero in light of the covariance
interactions between different equatioms. However, one would not expect
the mean of the residuals to be far frow zero.

7The searches for the constant terms alone allow the residuals’ means to
adjust to any value. In practice, the searches for the constant terms,
which come last for each equation, make small adjustments in those means.

8For example, consider the following equation:



For an equation with nonlinearities in its coefficients, a more
complicated procedure is necessary to satisfy the means condition.
Suppose that Step 1 for £(i)} changes that coefficient to 8'(1) . Then
6(c(1)) must be changed to a value 8'(c(i)) that satisfies the means
condition. The relation between the changes in the two coefficlents is,
however, nonlinear, and a straight-line search will not satisfy the means
condition. The desired relaricn between the changes in B(i) and
E{c(i)) must be determined from the specific functional form of the
equatiorn.

An equation that includes a serial correlation coefficient, but
ic othervise linear in its coefficients, is amenable to straight-line
search paths. The serial correlation coefficient 1s changed alone:

v(i) = §(i) and v(c(i)) = 0 . The other coefficients are treated as
if the equation were linear: v(i) = 8(i) and wv(c(i}) = -m(1)-8(i) .
While these search directions only approximate the curved search paths
that satisfy the means conditien, the approximation is generally satis-

factory.

u =y, - a- bex t=1 ..., 7.

t »
The mean of the residuals, u , 1s given by:
u = ; - a- bx, where §' and x are the variables’ means.

1f the change in coefficient a 1is —-x times the change in coefficient
b, there will be no change in U .

9For example, consider the following equation:

u -a-bxt-p-@b_-a-bm Y, t=1 ..., T.

t Yt 1 t-1

The mean of the residuals 1s given by:
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E. Steps 2 and &

Imrecdiately after Step 1 has been completed for an equation's

coefficients, Step 2 searches along a direction of increasse in F(B)
. 10

for the whole equatien, The search direction vector is the difference
between the coefijcient vector befere Step 1 for that equation and the
coefficient vector just before the constant term search for that equation.
(This difference vector has zero entries for the cther equations' coef-
ficients.) The directions used in Step 2 are saved and reused in Step 4,

with ne intervening occurrences of Step 1.

F. Steps 3 and 3

Following completion of Steps 1 and 2 for all of the equatioms,
Step 3 is exescuted. Each search direction in Step 3 1s the difference
between the current coefficient vecter and a past coefficient vector.
(All of the elements of these difference vectors will in general be

nonzero.) The past coefficient vectors consist of 80 (the initial

_ _ _ Yoo - ¥ . - X
u= (l-2)+(y~a-bex) + p{ I T 0 _ bt T D} s

. S _
where Yo r ¥g» Yro» and Xp are the variables' first and last ob

servations. The mean W will not change substantially if the change in

coefficient a 1is -x times the change in coefficient b because
e((xp-x4)/T) is usually much smaller than (1-p)-x . Changes in o alone

will have little effect on u because y -~ a - bex and (yT-yo)/T -
- b((xT-xo)/T) are both likely to be small.

105:9p 2 focuses on individual equations for two reasoms. First, the
strongest multicollinearity will generally be among coefficients in the
same equation, rather than across equations. The multicollinearity will
be associated with a ridge in the objective function, which may be revealed
by the coefficient changes in Step 1. Second, Step 2 enjoys the advantage
of using a different steplength for each equation's search direction.

One steplength might not be optimal for all equations together.
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. 1
ceefficient ve:[or,l ) (the coefficient vector at the start of the

n-1

current iteration), and, as theyv become available, £ ., , B and

=« n-3°*

G. Constraints on the Coefiicients

If cne constraint is imposed across coefficients, then one previously
wnconstrained coefficient, say E(j) , is no longer explicitly in the
coefficient vector over which F(8) 1is maximized. The value for E(3)
is calculated implicitly bv solving the constraint equation given the
other coefficients’' values. Since the implicit value of g(j) <changes
whenever the value of any other coefficient involved in the constraint
changes, the ccnstant term adjustments in Step 1 are more complicated.

Consider first the most general case, a nonlinear constraint imposed
on nonlinear equations. Suppose that Step 1 changes 8(i) , which is
involved in the constraint, to &'(i) , implying a change in B{(j) to
6'(j) . Satisfying the means condition requires changing 8(c(i)) to
some value 2'(c(i)) and, if &8(i) and B8(j) areindifferent equations,
changing 8{c(3)) to some value £'(c(j)) . However, the search path

that satisfies the means condition is in general curved and depends upon

llOther algerithms proposed for FIML estimation attempt to navigate the
immensely complicated local neighborhood of Bn without ever consider-

ing this globally obvious direction. In practice, this one search can
greatly enhance the effectiveness of ap iteration.

leore past coefficient vectors, as well as coeificient vectors from other
estimators, could be added to this list, particularly if Step 3 and 5
searches are not expensive relative to Step 1, 2, and 4 searches. For
example, the 3SLS objective function involves a very large number of
arithmetic operations when it is evaluated for a completely new set of
coefficients, as it is in Steps 3 and 5. Cousequently, the cost of a

Step 3 or 5 search relative to the cost of a Step 1 or 2 search is greater
for 3S5LS than for FIML (see the top two lines in Table 4).



the specific functional forms cof the constraint and the equations it
affects.

If the equatiens invelved in the constraint are linear in their
coefficients, the constant term adjustments can be given in terms of the
right-hand side variables' means. The change in B8(c(i)) 1is
-m(i)+(8'(i) - £(i)) and the change in B(c(3j)) is -m(3)-(8'(3) - &(3))
1f £(i) and 3(j) are in the same equation, the change in 8(c(i))
is =a(i)«(6'(2) - £(i)) - m(3)-(&"(3) - B(3)) .

I1{ the constraint is linear and the equations involved in the con-
strazint are linear in their coefficients, then the search path is a
straight line. The above simplification for linear equations can be used.
In adéition, 32(j)/e2(i) 1is constant for a linear constraint so that
5'(3) - 8(j) can be replaced by [3E(3)}/e8(i)]-(e'(i)-B(1)) . If
£(i) and 5(3}) are in different equations, the search direction vector
has three nonzero elements: v(i) = 8(i) , wv(c(i)) = -m(4)-8(1) , and
v(c(j)) = -m(3)-[ee(3)/e8(d)1-E(1) . 1f B(i) and E(j) are in the
same equation, there are twc nonzero elements: v(i) = 8(i) and
v(c(i)) = (-m{i) -m(3)-[38(3)/38(i) ])-8(1) .

No changes in Steps 3 and 5 are necessary for any type of constraint.
If a constraint is across coefficients within just ome equation, no changes
in Steps 2 and 4 are necessary. If a constraint is across two Or more
equations, Steps 2 and 4 should create one search direction for all of

the coefficients changed during Step 1 for a given equation.

H. Maximization in a Given Search Direction

Given a search direction v , the objective function is evaluated
at three points: B8, B+ & , and B-4v , where & 4is a steplength

discussed below. The algorithm calculates the steplength s such that the
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coefficient vector £+ sv maximizes the quadratic polynomisl interpolated
through these three points. (1f the second derivative of that polynomial
is positive, s 1is taken to be 0 .) Of the four coefficient vectors:
g, B+év, E-¢Eév, and £+gsv , the one with the largest objective
function value becomes the new coefiicient vector. The algorithm then
initiates the procedure to pick the next search direction.

The steplength & 1is scaled to the size of the basic determinant
of the search éirection v . For a direction associared with a specific
coefficient (Step 1)}, that coefficient is perturbed by 1% of its value
(.01% for a constant term) and the other nonzero search vecror entries
are scaled propertionately. For the search directions that are differences
between coefficient vectors (Steps 2 through 5), the stepleagth & is
10%. Neither parameter choice is critical.

The tctal number of objective function evaluations per iteration
can now be calculated in terms of the size of the model being estimated.
Since each seazrch in a given direction entails three evaluations, count-
ing the search directions listed above yields the following formula:

T evaluations

- - = 3.(# coefficients + 2-# equations + 10) .
iteration

(4)

Equation (4) also determines the cost of each iteration of algorithm A
because that cost is due almost entirely to the objective function

evaluations.
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IV, Computationz] Experience

Algorithm A bhas beer used to compute FIML and 3SLS coefficient
estimates for twe versicns of the Fair Model, denoted FM76 and I-'H?S.l3
76 has 26 stochastic equations and 22 identities, or 48 total equations.
FM78 has 29 stochastic equations and 68 identities, or 97 total equations.
0f the 16€ coefficients in FM76's stochastic eguations, 88 are estimated

I

using FIML and 3‘:‘LS.14 Fer FM76, 107 of the 182 coefficients in the
stochastic equations are estimated using FIML and 35LS.15 Both FM76 and
FM78 include nonlinearities in their coefficients (due to serial corre-
latien coefficients) and nonlinearities in their variables. In addirion.
FM76 includes a nonlinezr constraint across the coefficients of two
equations [l1i, rp. 11-13]. Although other nonlinear models have been
estimated using aslgorithas mentioned in footnote 1, FM76 and FM78 are
substantially larger than those other models.

Before zpriving algorithm A to these FIML and 3SLS estimation prob-
lems, the costs of calculating FA(S) and F3(B) were reduced in four
ways. First, for search directions that change only coefficients in a

single equation, only that equation’s residuals are recomputed, and only

one row and colum in the residuals' covariance matrix is recomputed.

13FM76 is specified in [13]. Note especially pages 80-83. FM78 is a
revised model documented in [14].

14 quations 1, 2, 3, 4, 8, 9, 10, 12, 13, 15, 16, 21, and 22 (FM76) and
equations 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 24, and 90
(FM78) are estimated using FIML and 3SLS. The FIML objective functions
do include 211 of the stochastic equations and identities, and the 3SLS
objective functions do include all of the stochastic equations. Those
coefficients that are not estimated by FIML and 3SLS are fixed at theilr
25LS values.

15The FIML and 35LS coefficlent estimates for FM78 are given in [135].
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{~ote that Steps 1, 2, and &4 generallv change only coefficients within a
single eguaticn.) Second, the calculations for F3(5) are broken down
into blocks by pairs of equationms, and the intermediate results are saved.
Only a small percentage of the intermediate results need to be recalcu-
lated for coefficient changes within one equation. Third, the determinants
of the Jacobian matrices are calculated using a determinant algorithm
specially designed for matrices with relatively few nonzero elements Il?].l6
Fourth, the determinants of the first and last Jacobians are calculated,
and a linear interpclation is used to approximate the remaining Jaccbians'
. . 17 .
detercinants, which are not calculated. The resulting costs of each
iteration are given in the top half of Table 4.
Table & also shows the changes in F(f) during the four sequences
U U R e
of iteratioms. The FIML objective function's value increased by 64.27
19

during 12 iterations on FM76™" and by 42.21 during 28 iterations on

léThe Jacobians' deterzinants need not be recomputed for coefficient changes
that do not alter their elements. (Consider, for example, Step 1 for the
coefficient of a predetermined variable.) The present calculations do

not take advantage of this possibility, which would have eliminated over
half of the Jacobian determinant evaluations.

17For FM78, Fair and Parke [15] try using six Jacobians and show that

using only two Jacobians has little effect on the FIML coefficient esti-
mates. Since only one Jacobian is needed for a linear model, this empirical
result is perhaps indicative of the degree of nonlinearity of the Fair
Model. As poted inm [15], one could use all of the Jacobians for the last

few iterations to verify the final estimates.

In fact, given the rate of convergence of algorithm A on FIML esti-
mation of FM76 and FM78, it would be feasible, but more expensive, to
estimate those models using all 82 and 98 Jacobians respectively. FIML
estimation of either model would not be feasible, even using only two
Jacobians, with any other known algorithm,

18Since the econometric merits of 25LS, 3SLS, and FIML are not an issue
here, no attempt is made to contrast the economic ifmplications of the
various coefficient vectors. See [15]) for additiomal discussion of the
25L5, 35LS, and FIML coefficient estimates of FM78.
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TABLE 4

FIM_ and 35L% Estimation of FM76 and FM78

Estimator FiML  FIM.  38LS  3S5LS

el M76 FM78  FM76 FMIS
CPU Tire per F{:Z) Evaluation (Seconds)? b

Coefficient Changes within One Equation n.a. .20 .12 .40

Changes in the Entire Coefficient Vector L4l .64 2.18  2.94

F(5) Evzluatiens per Iteration (uinimum)c 354 432 354 432

CPU Time per lteration {minutes) 2.3 1.9 1.4 3.8

Cest per Iteraticn (without discounts) £28 $24 517 $47

Total Change in F(3) 64.27 42.21 116.59° 48.33

Nuzber of Iteratziens Executed 12 28 6 28

Cheznge in F c=n Iteration 1 42.80 19.66 107.37 21.90

2 7.54 8.16 4.07 9.52

3 3,5 3.31 2.98 3.79

A 3.40 1.91 .82 1.89

5 1.96 1.11 .77 1.85

6 1.54  1.56 A8 .86

7 .92 .91 .63

§ .71 .90 1.11

9 A .65 .72

10 48 .50 .63

11 .52 .79 .72

12 41 L6l .55

13 .36 .56

14 .25 .37

15 .17 .39

16 07 .27

17 .16 .36

18 .19 .23

19 .21 .25

20 .13 .23

21 .13 .20

22 .14 .19

23 .10 .21

24 .06 .20

25 .04 .22

26 .05 .25

27 .03 .09

28 .05 .14

BThese figures refer to Yale University's IBM 370/158. All computations
were performed using double precision Fortran.

ane shortcuts invelving coefrficient cnanges within one equaticn were
not used in the FIML estimation of FM76.

This figure incresses slightly as search directions are added to Steps 3 and 3.

dAll series of iterations start from the 2SLS estimates, except the 3SLS
estimation of F¥76, which starts from the FIML estimates.
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FM78. The 3SLS objective function’'s value increased by 116.59 during

6 iteratioms on FM76 and bv 48.33 during 28 {iterations on FM78.

All four sets of figures exhibit an excellent rate of convergence,
given the sizes of the problems. The first iteration of each sequence
achieved about half or more of the total increase from the starting coef-
ficients to the final estimates. Over three-fourths of the total increase
was secured, in all four cases, by the first four iteratioms.

The pattern of changes in the objective function affects the decision
to terminate a series of iteration5.21 The algorithm may eventually,
as indicated in Appendix One, he converging so that F(Bn) - F(Bn_l)
is on average proportional to F(&%) - F(Sn_l) . The pattern of increases
over the sequence of iterations would then give an indication of the re-
duction in TF(3*) - F(En) . The figures in Table 4 for FIML and 3SLS
estimation of FM78 suggest that F(&%*) - F(Bza) is a very small fraction

of TF(&*) - F(Eo) .

lgtsing Powell's algorith:m for 24 iteratioms, Fair [13, p. 83] obtained
an increase of 17.43 in the FIML objective function for FM76. Since that
increase is only slightly over one-quarter of the increase with algorithm
A, it is clear that Powell's algorithm was in fact converging at a hope-
lessly slow rate. Note that zlgorithm A increased F(8) by over twice
as much on the very first iterationm as the whole sequence of iterations
using Powell's algorithm.

onhe Davidon-Fletcher-Powell algorithm [18)] with constant term adjust-
ments similar to Step 1 of algorithm A increased the FIML likelihood func-
tion for a revised version of FM78 by .24 in 4 iteratioms. (That 1is,

DFP was applied to the a coefficient vector described in Appendix Ome.)
The increase in F(g) on the final iteration was so small that the double
precision rounding errors dominated the Hessian updating formula, and the
algorithm was forced to terminate.

21Algorithm A can easily be restarted after any number of iteratioms.

In practice, a number of iterations are executed, the results are examined,
and then a decision is made on executing additional iterations. Although
automatic criteria for stopping could be incorporated, a discretionary
process 1S convenient given the expense of a series of iterations and the
limited experience in estimating large nonlinear models by FIML and 3SLS.
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Successive changes in the coefficients are a second criterion for
diagnosing adequate convergence. Since B* 1is only an esrimate of some

s 0
true coefficient vector £ , the degree of convergence may be adequate

if Br - &* 4ig small relative to R* - BO . The difference g* .- 60

can be measured by the coefficients' estimated standard errors, and
En - 8% can be roughly approximated by Bn - Bn ] - After 28 iterations
on the FIML and 3SLS objective functions for FM78, the coefficients’
estimated standard errors were much larger than the changes between

e
iterations.”~ Additional iterations mav thus have yielded somewhat more

accurate computations of 8* , but would appear to have held lirttle

, . s . . 0
ropise of significantly improving the estimate of & .
P 4 y P g

220n the 28D iteration for FIML, 4B coefficients changed by less than
.01 standard error, 56 coefficients changed by between .01 and .1 standard
error, and 2 coefficients changed by more than .l standard error. For

the ZBth iteration for 35LS, these figures are 66, 33, and 1 respectively.
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AFPPENDIX ONE

A Theoretical Bound on the Rate of Convergence

Step 1 of algerithm A is equivalent to univariate relaxation on

a transformed coefficient vector o . The vector a 1is defined bv:

(3 g = M-y,

wvhere the square matrix M 1is composed of an identity matrix plus some
additional nonzer¢ elements representing the constant tern adjustments,
Unless there are constraints across equations, M 1is block diagonal.
The only nonzero element in the column of M corresponding to a constant
terts or a serial ccrrelation coefficient is the diagonal element.

For example, consider a linear equation including two right-hand

gide variables with means of zero:

(6) ¥ (4) = a(l) -y (1} + 0(2)-y, (2) + ¢(3) +u_,

The complementary equation in terms of the £ coefficients has right-

hand side variables with nonzero means:

(7 Y (4) = 21 (y, (1) +m(1)) + 8(2)+(y, (2) +m(2)) + 8(3) +u .

The associated diagonal block of M is:

g(1) 1 0 0 a(l1)
(8) B(2) 0 1 0} a(2)
B(3) -m(l) -m(2) 1 a(3)
L . L O . -
Note that each change in a(l) or a(2) alone produces a change in the



corresponding 2 coefficient plus a comstant term adjustment.
Define an algcerithm's rate of convergence to be the smallest

constant R such that, for some constant K and for n greater than

-1
o] -{f -8 .} A o(s = & < R K
(%) (£, = 8%)"H T(3%)-(5_=-§%) <R K,

where H(&*) is the Hessian matrix at the wmaximizing coefficient esti-
mates £* . Then, k = -log(2)/log(R) iterations are needed to ensure
that F(E*) - F(in) ., which is approximated by the left-hand side of
(9), will be no more tharn one-half of F(&*) - F(Sn_k) . Convergence
at rate R also iwmplies that F(En) - F(sn_l) is on average a fraction
I-R of F(i*) - F(z_,)

Although algorithm A's complexity precludes an analytic expression
for its rate of convergaence, that rate should be somewhat faster than
the rate of convergence for an algorithm composed of Step 1 aléne. The
latter rate of convergence can be given as follows., Let r(H) be the
spectral radius of L-l-U , where L and U are the lower triangular
and strictly upper triangular decomposition of H . Univariate relaxa-
tion on the ¢ coefficient vector, which is equivalent to Step l.on the
8 coefficient vector, converges at rate r(H(a*)) , where H(o*) is
the Hessian of the a coefficient vector at o* = M.f* [21]. That
Hessian is also equal to M'-H{a*)«M . The rate of convergence of Step
1 on the B coefficient vector is thus equal to r(H(a*)) or, equivalently,

(Mt H(a%) ) 23

23'I'his discussion assumes that algorithm A does in fact converge. Con-
vergence will occur under the standard assumptions for relaxation algorithazs
[24], the most important of which is convexity of F(8) in an appropriate
neighborhood of B8* . The FIML and 3SLS objective functioms, which wmay



ATPENDIX TWO

The Estimated FIML Covariance Matrix

The estimated cevariance maitix for the FIML coefficient estimates
is not involveé in algorithm A, bul its computation has proven to be an
interesting and difficult problem. After the FIML coefficient estimates
were computed, a variety of strategies for numerically differentiating
the likelihood function all failed to yield a positive definite covariance
matrix. This problem, if not solved, would severely restrict opportunities
to analyze the FIML coefiicient estimates. Fortumately, a procedure
related to Step 1 of algoritho A does yield a positive definite covariance
matrix estimate,

The standard formula for the asymptotic FIML covariance matrix is:

-1
321:4(5)_]
|
(11) VQ(E) = =T

af QEJ

The second derivatives can be numerically approximated by:

i
3 F(8) - 3 -
(12) S s |, T BT EEWe; * 8ypliey - FBosliey)
- F(a+6js(j)ej) + F(B)]/(ﬁis(i)éjs(j)) .
where each 61 is 3 scalar perturbation parameter and e iz the ith

coordinate vector, Unfortunately, VA(E) failed to be positive definite
for any choices of the perturbation parameters and for several other

numerical differentiation formulas.25 The elements of VA(B) also were
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very sengitive to the differentiation strategy.

Appencdix One suggests that the estimated coefficients' covariance
matrix could be nearly singular as a result of the nonzero means of the
right-hand side variables. The transformation (5) defining the o c¢oef-
ficients (2 = M.a ) neutralizes the effects of those nonzerc means.

The o coefficients’' covariance matrix estimate is:

— 7_1
7 FA(M'G)
(13) \‘r(:) s - Py . F .
- l 2% 04
— -
The B coefficients' covariance matrix estimate is then:
(14) V.o(3) = M-V, (a)-M'
4 4

Foroulas (13) and (14) are less susceptible to the problem noted

above than is (11). On FM75, the elements of VA(B) computed using (13)

{ s , and the matrix

and (14) were not sensitive to the values of the §
VA(E) was positive definite for the whole range of éi's that were

tested. The estimated FIML covariance matrix also looked quite reasonable

compared to the estimated 3SLS covariance matrix,

25The true information matrix at the final estimates is undoubtedly posi-
tive definite, but is nearly singular. In that case, very small errors
in the numerical approximations to the second derivatives are sufficient
to make the matrix of numerical second derivatives fail to be positive
definite.
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