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Abs t r ac t  Given k terminals and n axis-parallel rectangular obstacles on the 
plane, our algorithm finds a plane region R* such that, for any point p in R*, the 
total length of the k shortest rectilinear paths connecting p and the k terminals 
without passing through any obstacle is minimum. The algorithm is output- 
sensitive, and takes O((K + n)log n) time and O(K + n) space if k is a fixed 
constant, where K is the total number of polygonal vertices of the found region 
R*. 

1 I n t r o d u c t i o n  

For k terminals and n axis-parallel rectangular obstacles on the plane, the opti- 
mal region R* is a plane region such that, for any point p in R*, the total length 
of the k shortest rectilinear paths connecting p and the k terminals without 
passing through any obstacle is minimum. The optimal region R* is not always 
connected, but consists of one or more connected polygons. We denote by K the 
total number of vertices of these polygons. Thus K is the size of a polygonal rep- 
resentation of R*. Although K is O(k2n2), K is often very small. In this paper, 
we give an efficient algorithm to find such an optimal region for given terminals 
and obstacles. The algorithm is output-sensitive, and takes O((K+n) log n) time 
and O(K + n) space if k is a fixed constant. 

The problem of finding a region with the minimum total L1 distance from some 
prescribed sites often appears in many practical problems [4, 13]. For example, 
when a tenant decides which apartment house he rents, he may wish to minimize 
the total distance from the apartment house to some prescribed sites, say a 
school, a railway station, a post office, a hospital etc. If all roads are "axis- 
parallel" like in Manhattan, the total distance should be measured by the L1 
distance. 

A similar problem appears also in the design of multi-layer VLSI layouts [14, 
15]. Two rectilinear wires which connect pairs of "pins" and cross on the same 
layer must change their layers at a "via" to prevent an electric short circuit, and 
the total length of the two wires should be minimized. In this problem, the "via" 
should be put in a region such that the total L1 distance from a point in the 
region to the four pins is minimum. 

Our algorithm can be applied to these problems. In the reference [11], Kusakari 
et al. presented an algorithm for finding a pair of rectilinear paths connecting 
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k = 4 terminals, which neither pass through any rectangular obstacles, nor 
cross each other except in "crossing areas," and the sum of lengths of which is 
minimum. In this paper we use the techniques developed in [11], extending them 
for general k. Guha and Suzuki presented efficient algorithms for some proximity 
problems on a rectilinear plane with rectangular obstacles, but their problems 
and techniques are different from ours [5]. 

The idea behind our algorithm is as follows: we first find all polygonal vertices 
of the optimal region R* by plane sweep using a sparse graph on which all 
vertices lie, and then, connecting them, we find all polygonM edges of R*. 

2 P r e l i m i n a r i e s  

In this section we first define several terms and problems. As a preprocessing, 
our algorithm divides the plane into four subregions for each terminal. We then 
show how to divide the plane, and finally present a known result for the division. 

The x-coordinate of a point p E IR ~ is denoted by x(p), and the y-coordinate 
by y(p). The point p is often denoted by (x(p), y(p)). Tile closed line-segment 
connecting two points Pl, P2 E lR 2 is denoted by [Pl-P2]- A horizontal or vertical 
line segment is called an axis-parallel line segment. In this paper we consider 
only rectilinear paths, that is, those consisting of axis-parallel line segments. All 
rectangles are assumed axis-parallel, that is, all edges of them are axis-parallel. 
The length of a rectilinear path P C IR 2 is the sum of lengths of line segments 
in P. 

We assume that there are n rectangular obstacles on the plane ]R 2 which do 
not overlap each other. The set of obstacles is denoted by (.9 = {O1, O2," - -, O,~ }. 
The boundary of a plane region Q c IR 2 is denoted by B(Q). The routing re- 
gion A is a subregion of IR 2 excluding the proper insides of obstacles, that  is, 
A = lR 2 -  U { 0 / -  B (O/)lOi E O }. Thus the routing region A includes the bound- 
aries of obstacles, and hence paths can pass through a boundary of two touching 
obstacles. The left-upper, left-below, right-upper, right-below vertices of a rect- 
angle Q c IR 2 are denoted by lu(Q), Ib(Q), ru(Q) and rb(Q), respectively. The 
upper and below edges of Q are denoted by ue(Q) and be(Q), respectively. We 
also assume that  there are k terminals t l , t2, . . .  ,tk in A, and that  k is a fixed 
constant. The set of terminals is denoted by T = {tl , t2, ' . .  ,tk}. 

The distance in A between Pl and P2 is defined to be the length of a shortest 
path connecting Pl and P2 in A, and denoted by d(pl,p2). For any point p E A, 
we denote by dT(p) = ~ t , e T  d(p, ti) the total distance of p to the terminals. 
Let d* = minveA tiT(p) be the minimum total distance. The region R* -- {p E 
AldT(p ) = d*} is called the optimal region. For a positive real number c, we 
define the feasible region R(c) as R(e) -= {p E A[dT(p) <_ c}. 

In this paper, we present an efficient algorithm for finding an optimal region 
R* for given two sets O and T. The algorithm is output-sensitive, and finds the 
optimal region R* in time O((K + n) logn) and in space O(K + n), where K is 
the number of vertices of the optimal region R*. The number K is often very 
small. We indeed present an algorithm to find a feasible region R(c). Slightly 
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modifying the algorithm, one can immediately obtain an algorithm to compute 
the minimum total distance d*. An optimal region R* is merely a feasible region 
R(d*). 

A point w on the boundary B(R(c)) of R(c) is called a proper vertex of R(c) if 
w is a polygonal vertex of B(R(c)). On the other hand, w is called a degenerated 
vertex of R(c) if w is not a proper vertex of R(c) but R(c + e) has a proper 
vertex in a neighborhood of w for any small positive number e > 0. A point 
w E B(R(c)) is called a vertex of R(c) if w is a proper or degenerated vertex of 
R(c). The set of all vertices of R(c) is denoted by V(R(c)). Thus K = ]V(R(c))]. 

Let L = [Pl - P~] be a vertical line segment in A. We say that  a point p in 
A is visible from L in the x-direction if y(pl) ~_ y(p) ~_ y(p~), x(pl) ~ x(p), 
and the horizontal line segment from p to L intersects none of the obstacles. We 
similarly define a point visible from L in the (-x).direction and a point visible 
from a horizontal line segment in the (:l:y)-directiou. 

There are several algorithms to find single-source shortest paths in a routing 
region [1, 2, 3, 7, 8, 9]. An algorithm by de Rezende et al. [3] divides the routing 
region A into four subregions [3]. Our algorithm uses the same division of A, 
which we explain below. 

A path P in A is defined to be monotone in the x-direction if the intersection 
of P and any vertical line is either a single point or a single line segment. Such 
a path is called an x-path. Similarly we define (-x)- ,  y-, and (-y).paths. 

We recursively define an xy-path P C_ A starting at a point t E A as follows 
[3]: 
(1) P is the semi-infinite horizontal line y = y(t) for x > x(t), and does not 
intersect any obstacle; or 
(2) P follows the +x-direction to a vertical edge of an obstacle, then follows 
the +y-direction up to the upper end p of the edge, and then follows an xy-path 
starting at p (See Fig. 1). 

We similarly define x(-y)- ,  -xy- ,  and -x(-y)-paths. These four paths, il- 
lustrated in Fig. 1, divide A into four regions Atx, At(-~), Atu, At(_y). For a 
terminal t E T, the x-region Atx is the subregion of A which is bounded by the 
xy- and x ( -y ) -pa th s  starting at t and contains the +x-semi-axis. We similarly 
define the (-x)-region At(-x), y-region Aty, and (-y)-region At(_y), as illus- 
t rated in Fig. 1. We similarly define a division of ~2  into four subregions lR2t=, 
]R2t(_=), ]R2ty and ]R2t(_y). One can easily observe that  the following lemma 
holds [3]. 

L e m m a  2.1 Let t E T and z E {:t:x, ±y}. Then, for any point p in A~z, there 
exists a shortest path connecting t and p in A which is a z-path and is contained 
in Atz. [] 

One can find the four paths for each terminal t E T in time O(nlogn) using 
O(n) space [3]. Since k = O(1), the subdivisions of the routing region A for all 
terminals t E T can be found in time O(nlogn). 

Our algorithm computes the distance d(t,p) between a terminal t E T and 
any point p E Atz by a plane sweep method. For a horizontal line segment L 



327 

f/  

I 
.! 

t 

i (-x)~-y)-pa¢~ A tl(.y ) , i: . . .~ 

w 1 

to  

X 

Fig. 1. Plane graph Gtly. t Fig. 2. Illustration for fL( )" 

in A, a function f~ : {xip = (x ,y)  e L)  " * ~  is defined as follows: f~L(X) = 
d(t,p).  A function f~(y)  is similarly defined for a vertical line segment L. The 
function f~(x )  is piecewise linear in x, and the slope is +1 or - 1  as illustrated 
in Fig. 2. Therefore the function f~ is represented by a sequence of continuous 
line segments with 4-1 slopes. We often denote simply by f~ the sequence of line 
segments representing f~. 

Let t • T, z • {:J=x,±y}, and let Lh be a horizontal line segment in Atz. A 
point on L h at which the slope of line segments representing f~h changes the 
value is called a bend point of ftLh or simply a bend point on Lh. If an end point 
of Lh is on a vertical edge of a rectangular obstacle, then the end point is also 
defined to be a bend point. We similarly define the bend point on vertical line 
segment L~. Thus ° d ( t ,  p) is discontinuous at a bend point on a horizontal line 
segment Lh, and ~-°-~d(t,p) is discontinuous at a bend point on a vertical line 

segment L~. For a horizontal or vertical line segment L, the function f~ can be 
represented by the ends of L, the bend points on L, and the slopes between two 
consecutive ones among them. The following lemma holds on the total  number 
of bend points on all edges of obstacles in Atz [11, 12]. 

L e m m a  2.2 Let t • T and z • {:hx,:ky).  Then there are at most 8n + 1 points 
which are bend points on edges of obstacles in Atz or are vertices of obstacles. 

[] 

We define a function fT  as follows. For a horizontal line segment L in A, a 
fT lx~  dT(p). We similarly function ] T :  {xlp = (x, y) • L} --* ]R is defined as L \ ] : 

define T f~ (y) for a vertical line segment L. A point p on L is called a bend point 
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of fL T if there is a terminal t E T such that p is a bend point of f~. Hence every 
point p E L at which the slope of line segments representing fT h changes the 
value, that is, at which °dw(p) or o~dT(p) is discontinuous, is a bend point of 

3 A l g o r i t h m  f o r  f i n d i n g  a f e a s i b l e  r e g i o n  

In this section we present an algorithm Feasible-Region to find a feasible region 
R(c) in O((K +n) log n) time using O(K + n) space. The outline of the algorithm 
is as follows. 
A lgo r i t hm Feasible-Region 
begin 
1. Construct a graph Gt for each t E T; 
2. Construct a graph GT from the k graphs Gt, t E T, by taking their 

union; 
3. Find the set Y(R(c)) of vertices of R(c) by plane sweep in the x- and 

y-directions using graph GT; 
4. Find the boundary B(R(c)) by connecting some of the pairs of vertices 

in V(R(c)) as polygonal edges 
end.  

In Section 3.1 we present an algorithm to construct k plane graphs Gt. In 
Section 3.2 we construct a nonplanar graph GT. In Section 3.3, using graph GT, 
we find all vertices in V(R(c)). In Section 3.4, connecting some of the pair of 
vertices in V(R(c)), we find the boundary B(R(c)). 

3.1 G r a p h  Gt 

In this section we present an algorithm to construct graph G~ for each terminal 
t E T. For the purpose, we construct four plane graphs Gtz, z E {q-z, +y}. Since 
the construction of these four graphs are similar, we show how to construct 
GCy. Graph G, ly is illustrated in Fig. 1. For convenience's sake, we consider a 
sufficiently large rectangle Qoo C ]R 2. One can assume without loss of generality 
that all terminals, all obstacles and R(c) are in the proper inside of QOO. Add 
first to Gty terminal t and all corners of boundary B(K:t2ty n Qoo) as vertices. 
Add next to Gty, as edges, line segments connecting any two consecutive vertices 
which are on the boundary B(~2ty n QOO) and are not on the upper edge of Qoo. 
We add more vertices and edges to Gty during plane sweep as follows. 

We move a horizontal sweep line L in the +y-direction from y(t) to the upper 
edge of Q~ with stopping on each of the horizontal edges of obstacles in Aty. We 
keep data on L, and update the data whenever L stops. We use a segment tree Tt 
as the data. structure [16]. L n A~y contains one or more horizontal line segments. 
Assume that, among terminal t, bend points and all vertices of obstacles in A~, 
exactly q points wl, w2, . . . ,  wq are visible from line segments of L n At~ in the 
(-y)-direction, and that y(wl) < y(w2) <_ ... <_ y(wq). Then the segment tree 
Tt has exactly q leaves, say 11,12,'" ,lq from left to right. We store point Wh 
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Q 

Fig. 3. Planar graph Gtl. Fig. 4. Nonplanar graph GT. 

at leaf lh for 1 < h < q. Let w~,w~,. . . ,wlq be points on L having the same 
x-coordinate as wi,w2, ..-,wq. We store at leaf lh, 1 <_ h < q, the length of a 

too. We store at an internal node v of the segment shortest pa th  from t to wh, 
tree ~/~ an interval [il, i2], where il is the smallest x-coordinate of points stored 
at leaves which are the descendants of v, and i2 is the largest one. 

When sweep line L is set on the terminal  t, we add a leaf storing t to the 
segment tree :/~. 

When sweep line L stops on the bo t tom edge be(Oi) of an obstacle Oi C Aty, 
we add lb(Oi) and rb(Oi) to Gty as vertices. Draw vertical line segments to 
be(Oi) from points which are stored in Tt and whose x-coordinates are in interval 
[x(lb(Oi)), x(rb(Oi))]. Add to Gty as vertices these intersection points on be(Oi), 
and add to Gty as edges these vertical line segments together with horizontal 
line segments on be(Oi) connecting two consecutive ones among these vertices. 
After adding these vertices and edges to Gty, we delete from Tt the leaves whose 
points have x-coordinates in interval [x(lb(Oi), x(rb(Oi))]. Furthermore we add 
to 7~ two leaves storing Ib(Oi) and rb(Oi). 

On the other hand, when sweep line L stops on the top edge ue(Oi) of an 
obstacle Oi C_ Aty, we find a bend point p~ E ue(Oi) if there is. Since 

x(p*) = l {x(ru(Oi)) + x(lu(Oi)) + d(t, ru(Oi)) - d(t, lu(Oi))}, 

x(p]) can be easily computed from d(t, ru(Oi)) and d(t, lu(Oi)). Add the three 
vertices p*, lu(Oi) and ru(@) to Gty, and add the left and right edges of Oi, 
[lu(Oi)- p*], and [p* - r u ( O i ) ]  to Gty as edges. After adding these vertices and 
edges to Gty, we insert to Tt three leaves storing p*, lu(O~), and ru(Oi). 

When sweep line L stops on the upper edge of Q ~ ,  we execute operations 
similar to ones for the bo t tom edge of an obstacle. We thus complete the con- 
struction of Gty. By Lemma 2.2, the number of the vertices in Gty is O(n). Since 
Gt~ is a plane graph, the number of edges in Gty is also O(n). 
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Taking a union of four graphs G~,  z • {±x, ±y},  we construct a plane graph 
Gt, where each vertex of G,z is a vertex of Gt and each edge of Gty is an edge of 
Gt. The graph Gt is also a plane graph, and hence has O(n) vertices and edges. 
Fig. 3 illustrate Gq for the example in Fig. 1. 

We similarly find the length of the shortest path connecting t and each vertex 
of Gt by the plane sweep. 

The following lemma holds for the graph Gt. 

L e m m a  3.1 (a) Let Q c_ A be a rectangle such that the proper inside of Q does 
not intersect any vertical edge of G~. Then f~Lh is a straight line segment with 
the same slope for each horizontal line segment Lh in Q. ( Hence there is no 
bend point of f~.  in the proper inside of Q. ) 

(b) Let Q c A be a rectangle such that a proper inside of Q does not intersect 
any horizontal edge of G,. Then f~,  is a straight line segment with the same 
slope for each vertical line segment Lv in Q. ( Hence there is no bend point of 
f ~  in the proper inside of Q. ) [] 

3.2 G r a p h  GT 

In this section, using Gt, we construct graph GT. Furthermore we show that  
each vertex in V(R(c)) lies on an edge of GT. 

Let GT be a union of the k graph G,~ as illustrated in Fig. 4 for the example in 
Fig. 1. Thus the vertex set V(GT) of graph GT satisfies V(GT) = U~=l V(Gt,). 
The edge set E(GT) of graph GT includes all edges of Gt, that  do not lie on 
B(A n QOO), that  is, the boundaries of obstacles and QOO and includes all line 
segments connecting two consecutive vertices on B(A ¢1QOO). Each graph G, 
is a plane graph, but GT may not be a plane graph. However GT has O(n) 
vertices and edges, because k = O(1). We assign, to each vertex p of graph GT, 
the total length of the k shortest paths connecting p and all terminals, that  
is, tiT(p) = ~ t . e T  d(p, ti). For a vertex p of GT, the total length dT(p) can be 
calculated from d(p, ti), 1 < i < k, in O(1) time. Thus, for all vertices of GT, the 
assignment can be done in O(n) time. For each edge e of Gt~, f~' is a straight 
line. However f [  is not always a straight line for an edge of GT. If e is an edge of 
graph G,~ and intersects an edge e ~ of graph Gtj at a point p • IR 2 in the proper 
inside of edges, then p is not a vertex of the graph GT. Though f~' is a straight 
line, f~J may not be a straight line. Thus p may be a bend point of f~J, and hence 
p may be a bend point of feT. However, if an edge e of GT is on B(A N QOO), 
then there is no edge which intersects e, and hence fT  is a straight line l, and we 
assign the slope s(e) of I to e. The other edges are assigned nothing. Note that  
the slope s(e) can be easily calculated from tiT(P1) and tiT(p2) in time O(1) for 
an edge e = [Pt - P2] on B(A n QOO). Thus the assignment of the slopes s(e) for 
edges c of GT can be done in time O(n). Hence we can do the assignment for 
vertices and edges of GT in time O(n). The following lemma holds for the graph 
GT. 

L e m m a  3.2 Every vertex p • V(R(c)) lies on an edge of graph GT. D 
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3.3 F i n d i n g  v e r t i c e s  o f  R(c)  

In this section we present an algorithm to find all vertices in V(R(c)).  Using GT, 
we find all vertices in V(R(c)) by plane sweep in the x-direction and y-direction. 

If  dT(p) = c for a vertex p of a rectangular obstacle but  p is not a proper  
vertex of R(c), then p is a degenerated vertex of R(c). Thus one can observe 
that  a vertex p of an obstacle is a vertex of R(c) if and only if dT(p) <_ c. 
Therefore one can easily find all vertices of R(c) that  are vertices of obstacles. 
Furthermore,  using s(e), one can easily f i n d  a vertex of R(e) o n  an edge e on the 
boundary  of an obstacle. Thus it suffices to show how to find vertices of R(c) on 
edges of GT which are not on B(A A Q~) .  

For vertical line segments L1 = [Pl-P~] and L2 = [P2-P~] in A, we say that  L1 
is properly visible from L2 in the ( -x) -d i rec t ion  if there are points ql E (Pl - P ~ )  
and q2 e (q2 - q~) such that  Y(ql) = Y(q2), x(ql) <_ x(q2), and [ql - q2] C_ A. 

Let eh = [P~ --P2] be a horizontal edge of GT which is not on B ( A  n Q~) .  One 
may assume that  x(pt)  < x(p2). Let p~ = (x(pl), y (p l )+e) ,  p~l = (x(pl), x ( y l ) -  
e), p~ = (x(p2),y(p2) + e), and p~/ = (x(p2), Y(P2) - e). For a small positive 
number e > O, (i) the rectangle ' J PlPlP2P2 is in A and does not intersect any 
horizontal edge of GT except eh, (ii) the rectangle " " PlP2P2Pl is in A and does not 
intersect any horizontal edge of GT except eh, and (iii) there exists exactly one 
vertical edge of GT on B(A n Q~)  which is properly visible from a vertical line 
[p~ - p l ]  in the ( - x )  direction; such an edge is denoted by lu[eh], and is called 
the left upper edge of eh. We similarly define the left below edge lb[eh] of eh, and 
define the below left edge bl[ev] and the below right edge brier] for a vertical edge 
ev of GT which is not on B(A  A Q~) .  

We then have the following lemma. 

L e m m a  3.3 (a) Let eh be a horizontal edge of GT which is not on B(A  n Q~) ,  
and let p be a point on eh, and let GT have no vertical edge passing through p. 
Then p G V(R(c))  if and only if dT(p) = c, s(lu[eh]) 7 £ s(lb[eh]), and the slope 
of fib at p is not zero. 

(b) Let ev be a vertical edge of GT which is not on B ( A R Q ~ ) ,  and let p 
be a point on ev, and let GT have no horizontal edge passing through p. Then 
p E V(R(c)) if and only ifdT(p) = c, s(bl[ev]) • s(br[ev]), and the slope o f f  T 
at p is not zero. D 

Using the lemma above, one can show that  all vertices in V(R(c)) can be found 
by plane sweep in t ime O((K + n) log n). Our algorithm finds all vertices of R(c) 
on horizontal edges in GT by plane sweep on the x-direction, and then finds all 
vertices of R(c) on vertical edges in GT by plane sweep on the y-direction. (The 
detail is omit ted in this extended abstract .)  

3.4 Boundary of R(c) 

In the previous sections we have found all vertices of R(c). We find the boundary  
B(R(c))  from the vertices of R(c). For the purpose, we compute  the slopes of all 



332 

edges e = [w - w'] of B(R(c)) incident to each vertex w • V(R(c)). Then, using 
these slopes, we find every pair of vertices in V(R(c)) corresponding to the two 
ends of an edge of B(R(c)). It should be noted that  the other end w' of an edge 
incident to w is not known. However, we can know whether an edge e of R(c) 
is incident to w either from above or from below. (The detail is omitted in this 
extended abstract. The key idea is to use rotation of a coordinate system and 
lexicographic sorting.) 

4 C o n c l u s i o n  

In this paper we presented an efficient algorithm for finding a feasible region 
R(c) for given k terminals, n axis-parallel rectangular obstacles on the plane 
and a positive real number c. The algorithm takes O((K + n) log n) time and 
O(K + n) space if k is a fixed constant, where K is the totM number of vertices 
in V(R(c)). Since finding a single shortest path between two points on the plane 
with n rectangular obstacles requires time ~ ( n l o g n ) ,  our algorithm is quite 
efficient. 

One can construct an algorithm to find an optimal region R* as follows. 
Slightly modifying our algorithm for finding a feasible region, one can construct 
an algorithm to find the value d* = mindT(p). Finally, taking d* as c, we can 
find a feasible region R(d*). Clearly R(d*) is the optimal region R*. It is easy 
to observe that  a connected component of an optimal region R* is either a sin- 
gle point, a horizontal or vertical line segment, or an axis-parallel rectilinear 
polygon. 

If a real number ai is assigned to each terminal ti E T as a weight, then 
the weighted feasible region I~igh~(C) = {p E A l ~ = l  a~d(p, ti) < c} can be 
similarly found. 

If the number k of terminals is not always a fixed constant, then the nonplanar 
graph GT has O(kn) vertices and edges. In this case one can compute in O(k2n) 

k t ime the total distance dT(w) = ~i=1 d(w,t~) for all vertices w of a graph GT. 
Thus, a feasible region and an optimal region can be similarly found in time 
O((K + kn)log(kn) + k2n) using O(K  + kn) space. 

It is rather straightforward to modify our sequential algorithm to an NC paral- 
lel algorithm which finds R(c) or R* in polylog time using a polynomial number 
of processors. Note that  there are NC parallel algorithms for the shortest path 
problem [1, 6, 10] and for the plane sweep [6]. 

The following variations of our problem are remaining as future works: 

(1) obstacles are not always rectangles but are axis-parallel polygons; and 
(2) find an optimal region or a feasible region in other metric. 
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