
An Algorithm for Finding a Region
with the Minimum Total L1 from Prescribed Terminals

Yoshiyuki Kusakari 1 and Taka~ Nishizeki 2
Graduate School of Information Sciences

Tohoku University
Sendal 980-77, Japan

Abs t r ac t Given k terminals and n axis-parallel rectangular obstacles on the
plane, our algorithm finds a plane region R* such that, for any point p in R*, the
total length of the k shortest rectilinear paths connecting p and the k terminals
without passing through any obstacle is minimum. The algorithm is output-
sensitive, and takes O((K + n)log n) time and O(K + n) space if k is a fixed
constant, where K is the total number of polygonal vertices of the found region
R*.

1 I n t r o d u c t i o n

For k terminals and n axis-parallel rectangular obstacles on the plane, the opti-
mal region R* is a plane region such that, for any point p in R*, the total length
of the k shortest rectilinear paths connecting p and the k terminals without
passing through any obstacle is minimum. The optimal region R* is not always
connected, but consists of one or more connected polygons. We denote by K the
total number of vertices of these polygons. Thus K is the size of a polygonal rep-
resentation of R*. Although K is O(k2n2), K is often very small. In this paper,
we give an efficient algorithm to find such an optimal region for given terminals
and obstacles. The algorithm is output-sensitive, and takes O((K+n) log n) time
and O(K + n) space if k is a fixed constant.

The problem of finding a region with the minimum total L1 distance from some
prescribed sites often appears in many practical problems [4, 13]. For example,
when a tenant decides which apartment house he rents, he may wish to minimize
the total distance from the apartment house to some prescribed sites, say a
school, a railway station, a post office, a hospital etc. If all roads are "axis-
parallel" like in Manhattan, the total distance should be measured by the L1
distance.

A similar problem appears also in the design of multi-layer VLSI layouts [14,
15]. Two rectilinear wires which connect pairs of "pins" and cross on the same
layer must change their layers at a "via" to prevent an electric short circuit, and
the total length of the two wires should be minimized. In this problem, the "via"
should be put in a region such that the total L1 distance from a point in the
region to the four pins is minimum.

Our algorithm can be applied to these problems. In the reference [11], Kusakari
et al. presented an algorithm for finding a pair of rectilinear paths connecting

1 kusakari@nishizeki'ecei't°h°ku'ac'jp
2 nishi@ecei.tohoku.ac.jp

325

k = 4 terminals, which neither pass through any rectangular obstacles, nor
cross each other except in "crossing areas," and the sum of lengths of which is
minimum. In this paper we use the techniques developed in [11], extending them
for general k. Guha and Suzuki presented efficient algorithms for some proximity
problems on a rectilinear plane with rectangular obstacles, but their problems
and techniques are different from ours [5].

The idea behind our algorithm is as follows: we first find all polygonal vertices
of the optimal region R* by plane sweep using a sparse graph on which all
vertices lie, and then, connecting them, we find all polygonM edges of R*.

2 P r e l i m i n a r i e s

In this section we first define several terms and problems. As a preprocessing,
our algorithm divides the plane into four subregions for each terminal. We then
show how to divide the plane, and finally present a known result for the division.

The x-coordinate of a point p E IR ~ is denoted by x(p), and the y-coordinate
by y(p). The point p is often denoted by (x(p), y(p)). Tile closed line-segment
connecting two points Pl, P2 E lR 2 is denoted by [Pl-P2]- A horizontal or vertical
line segment is called an axis-parallel line segment. In this paper we consider
only rectilinear paths, that is, those consisting of axis-parallel line segments. All
rectangles are assumed axis-parallel, that is, all edges of them are axis-parallel.
The length of a rectilinear path P C IR 2 is the sum of lengths of line segments
in P.

We assume that there are n rectangular obstacles on the plane]R 2 which do
not overlap each other. The set of obstacles is denoted by (.9 = {O1, O2," - -, O,~ }.
The boundary of a plane region Q c IR 2 is denoted by B(Q). The routing re-
gion A is a subregion of IR 2 excluding the proper insides of obstacles, that is,
A = lR 2 - U { 0 / - B (O/)lOi E O }. Thus the routing region A includes the bound-
aries of obstacles, and hence paths can pass through a boundary of two touching
obstacles. The left-upper, left-below, right-upper, right-below vertices of a rect-
angle Q c IR 2 are denoted by lu(Q), Ib(Q), ru(Q) and rb(Q), respectively. The
upper and below edges of Q are denoted by ue(Q) and be(Q), respectively. We
also assume that there are k terminals t l , t2, . . . ,tk in A, and that k is a fixed
constant. The set of terminals is denoted by T = {tl , t2, ' . . ,tk}.

The distance in A between Pl and P2 is defined to be the length of a shortest
path connecting Pl and P2 in A, and denoted by d(pl,p2). For any point p E A,
we denote by dT(p) = ~ t , e T d(p, ti) the total distance of p to the terminals.
Let d* = minveA tiT(p) be the minimum total distance. The region R* -- {p E
AldT(p) = d*} is called the optimal region. For a positive real number c, we
define the feasible region R(c) as R(e) -= {p E A[dT(p) <_ c}.

In this paper, we present an efficient algorithm for finding an optimal region
R* for given two sets O and T. The algorithm is output-sensitive, and finds the
optimal region R* in time O((K + n) logn) and in space O(K + n), where K is
the number of vertices of the optimal region R*. The number K is often very
small. We indeed present an algorithm to find a feasible region R(c). Slightly

326

modifying the algorithm, one can immediately obtain an algorithm to compute
the minimum total distance d*. An optimal region R* is merely a feasible region
R(d*).

A point w on the boundary B(R(c)) of R(c) is called a proper vertex of R(c) if
w is a polygonal vertex of B(R(c)). On the other hand, w is called a degenerated
vertex of R(c) if w is not a proper vertex of R(c) but R(c + e) has a proper
vertex in a neighborhood of w for any small positive number e > 0. A point
w E B(R(c)) is called a vertex of R(c) if w is a proper or degenerated vertex of
R(c). The set of all vertices of R(c) is denoted by V(R(c)). Thus K =]V(R(c))].

Let L = [Pl - P~] be a vertical line segment in A. We say that a point p in
A is visible from L in the x-direction if y(pl) ~_ y(p) ~_ y(p~), x(pl) ~ x(p),
and the horizontal line segment from p to L intersects none of the obstacles. We
similarly define a point visible from L in the (-x).direction and a point visible
from a horizontal line segment in the (:l:y)-directiou.

There are several algorithms to find single-source shortest paths in a routing
region [1, 2, 3, 7, 8, 9]. An algorithm by de Rezende et al. [3] divides the routing
region A into four subregions [3]. Our algorithm uses the same division of A,
which we explain below.

A path P in A is defined to be monotone in the x-direction if the intersection
of P and any vertical line is either a single point or a single line segment. Such
a path is called an x-path. Similarly we define (-x)- , y-, and (-y).paths.

We recursively define an xy-path P C_ A starting at a point t E A as follows
[3]:
(1) P is the semi-infinite horizontal line y = y(t) for x > x(t), and does not
intersect any obstacle; or
(2) P follows the +x-direction to a vertical edge of an obstacle, then follows
the +y-direction up to the upper end p of the edge, and then follows an xy-path
starting at p (See Fig. 1).

We similarly define x(-y)- , -xy- , and -x(-y)-paths. These four paths, il-
lustrated in Fig. 1, divide A into four regions Atx, At(-~), Atu, At(_y). For a
terminal t E T, the x-region Atx is the subregion of A which is bounded by the
xy- and x (-y) -pa th s starting at t and contains the +x-semi-axis. We similarly
define the (-x)-region At(-x), y-region Aty, and (-y)-region At(_y), as illus-
t rated in Fig. 1. We similarly define a division of ~2 into four subregions lR2t=,
]R2t(_=),]R2ty and]R2t(_y). One can easily observe that the following lemma
holds [3].

L e m m a 2.1 Let t E T and z E {:t:x, ±y}. Then, for any point p in A~z, there
exists a shortest path connecting t and p in A which is a z-path and is contained
in Atz. []

One can find the four paths for each terminal t E T in time O(nlogn) using
O(n) space [3]. Since k = O(1), the subdivisions of the routing region A for all
terminals t E T can be found in time O(nlogn).

Our algorithm computes the distance d(t,p) between a terminal t E T and
any point p E Atz by a plane sweep method. For a horizontal line segment L

327

f/

I
.!

t

i (-x)~-y)-pa¢~ A tl(.y) , i: . . .~

w 1

to

X

Fig. 1. Plane graph Gtly. t Fig. 2. Illustration for fL()"

in A, a function f~ : {xip = (x ,y) e L) " * ~ is defined as follows: f~L(X) =
d(t,p). A function f~(y) is similarly defined for a vertical line segment L. The
function f~(x) is piecewise linear in x, and the slope is +1 or - 1 as illustrated
in Fig. 2. Therefore the function f~ is represented by a sequence of continuous
line segments with 4-1 slopes. We often denote simply by f~ the sequence of line
segments representing f~.

Let t • T, z • {:J=x,±y}, and let Lh be a horizontal line segment in Atz. A
point on L h at which the slope of line segments representing f~h changes the
value is called a bend point of ftLh or simply a bend point on Lh. If an end point
of Lh is on a vertical edge of a rectangular obstacle, then the end point is also
defined to be a bend point. We similarly define the bend point on vertical line
segment L~. Thus ° d (t , p) is discontinuous at a bend point on a horizontal line
segment Lh, and ~-°-~d(t,p) is discontinuous at a bend point on a vertical line

segment L~. For a horizontal or vertical line segment L, the function f~ can be
represented by the ends of L, the bend points on L, and the slopes between two
consecutive ones among them. The following lemma holds on the total number
of bend points on all edges of obstacles in Atz [11, 12].

L e m m a 2.2 Let t • T and z • {:hx,:ky). Then there are at most 8n + 1 points
which are bend points on edges of obstacles in Atz or are vertices of obstacles.

[]

We define a function fT as follows. For a horizontal line segment L in A, a
fT lx~ dT(p). We similarly function] T : {xlp = (x, y) • L} --*]R is defined as L \] :

define T f~ (y) for a vertical line segment L. A point p on L is called a bend point

328

of fL T if there is a terminal t E T such that p is a bend point of f~. Hence every
point p E L at which the slope of line segments representing fT h changes the
value, that is, at which °dw(p) or o~dT(p) is discontinuous, is a bend point of

3 A l g o r i t h m f o r f i n d i n g a f e a s i b l e r e g i o n

In this section we present an algorithm Feasible-Region to find a feasible region
R(c) in O((K +n) log n) time using O(K + n) space. The outline of the algorithm
is as follows.
A lgo r i t hm Feasible-Region
begin
1. Construct a graph Gt for each t E T;
2. Construct a graph GT from the k graphs Gt, t E T, by taking their

union;
3. Find the set Y(R(c)) of vertices of R(c) by plane sweep in the x- and

y-directions using graph GT;
4. Find the boundary B(R(c)) by connecting some of the pairs of vertices

in V(R(c)) as polygonal edges
end.

In Section 3.1 we present an algorithm to construct k plane graphs Gt. In
Section 3.2 we construct a nonplanar graph GT. In Section 3.3, using graph GT,
we find all vertices in V(R(c)). In Section 3.4, connecting some of the pair of
vertices in V(R(c)), we find the boundary B(R(c)).

3.1 G r a p h Gt

In this section we present an algorithm to construct graph G~ for each terminal
t E T. For the purpose, we construct four plane graphs Gtz, z E {q-z, +y}. Since
the construction of these four graphs are similar, we show how to construct
GCy. Graph G, ly is illustrated in Fig. 1. For convenience's sake, we consider a
sufficiently large rectangle Qoo C]R 2. One can assume without loss of generality
that all terminals, all obstacles and R(c) are in the proper inside of QOO. Add
first to Gty terminal t and all corners of boundary B(K:t2ty n Qoo) as vertices.
Add next to Gty, as edges, line segments connecting any two consecutive vertices
which are on the boundary B(~2ty n QOO) and are not on the upper edge of Qoo.
We add more vertices and edges to Gty during plane sweep as follows.

We move a horizontal sweep line L in the +y-direction from y(t) to the upper
edge of Q~ with stopping on each of the horizontal edges of obstacles in Aty. We
keep data on L, and update the data whenever L stops. We use a segment tree Tt
as the data. structure [16]. L n A~y contains one or more horizontal line segments.
Assume that, among terminal t, bend points and all vertices of obstacles in A~,
exactly q points wl, w2, . . . , wq are visible from line segments of L n At~ in the
(-y)-direction, and that y(wl) < y(w2) <_ ... <_ y(wq). Then the segment tree
Tt has exactly q leaves, say 11,12,'" ,lq from left to right. We store point Wh

329

Q

Fig. 3. Planar graph Gtl. Fig. 4. Nonplanar graph GT.

at leaf lh for 1 < h < q. Let w~,w~,. . . ,wlq be points on L having the same
x-coordinate as wi,w2, ..-,wq. We store at leaf lh, 1 <_ h < q, the length of a

too. We store at an internal node v of the segment shortest pa th from t to wh,
tree ~/~ an interval [il, i2], where il is the smallest x-coordinate of points stored
at leaves which are the descendants of v, and i2 is the largest one.

When sweep line L is set on the terminal t, we add a leaf storing t to the
segment tree :/~.

When sweep line L stops on the bo t tom edge be(Oi) of an obstacle Oi C Aty,
we add lb(Oi) and rb(Oi) to Gty as vertices. Draw vertical line segments to
be(Oi) from points which are stored in Tt and whose x-coordinates are in interval
[x(lb(Oi)), x(rb(Oi))]. Add to Gty as vertices these intersection points on be(Oi),
and add to Gty as edges these vertical line segments together with horizontal
line segments on be(Oi) connecting two consecutive ones among these vertices.
After adding these vertices and edges to Gty, we delete from Tt the leaves whose
points have x-coordinates in interval [x(lb(Oi), x(rb(Oi))]. Furthermore we add
to 7~ two leaves storing Ib(Oi) and rb(Oi).

On the other hand, when sweep line L stops on the top edge ue(Oi) of an
obstacle Oi C_ Aty, we find a bend point p~ E ue(Oi) if there is. Since

x(p*) = l {x(ru(Oi)) + x(lu(Oi)) + d(t, ru(Oi)) - d(t, lu(Oi))},

x(p]) can be easily computed from d(t, ru(Oi)) and d(t, lu(Oi)). Add the three
vertices p*, lu(Oi) and ru(@) to Gty, and add the left and right edges of Oi,
[lu(Oi)- p*], and [p* - r u (O i)] to Gty as edges. After adding these vertices and
edges to Gty, we insert to Tt three leaves storing p*, lu(O~), and ru(Oi).

When sweep line L stops on the upper edge of Q ~ , we execute operations
similar to ones for the bo t tom edge of an obstacle. We thus complete the con-
struction of Gty. By Lemma 2.2, the number of the vertices in Gty is O(n). Since
Gt~ is a plane graph, the number of edges in Gty is also O(n).

330

Taking a union of four graphs G~, z • {±x, ±y}, we construct a plane graph
Gt, where each vertex of G,z is a vertex of Gt and each edge of Gty is an edge of
Gt. The graph Gt is also a plane graph, and hence has O(n) vertices and edges.
Fig. 3 illustrate Gq for the example in Fig. 1.

We similarly find the length of the shortest path connecting t and each vertex
of Gt by the plane sweep.

The following lemma holds for the graph Gt.

L e m m a 3.1 (a) Let Q c_ A be a rectangle such that the proper inside of Q does
not intersect any vertical edge of G~. Then f~Lh is a straight line segment with
the same slope for each horizontal line segment Lh in Q. (Hence there is no
bend point of f~. in the proper inside of Q.)

(b) Let Q c A be a rectangle such that a proper inside of Q does not intersect
any horizontal edge of G,. Then f~, is a straight line segment with the same
slope for each vertical line segment Lv in Q. (Hence there is no bend point of
f ~ in the proper inside of Q.) []

3.2 G r a p h GT

In this section, using Gt, we construct graph GT. Furthermore we show that
each vertex in V(R(c)) lies on an edge of GT.

Let GT be a union of the k graph G,~ as illustrated in Fig. 4 for the example in
Fig. 1. Thus the vertex set V(GT) of graph GT satisfies V(GT) = U~=l V(Gt,).
The edge set E(GT) of graph GT includes all edges of Gt, that do not lie on
B(A n QOO), that is, the boundaries of obstacles and QOO and includes all line
segments connecting two consecutive vertices on B(A ¢1QOO). Each graph G,
is a plane graph, but GT may not be a plane graph. However GT has O(n)
vertices and edges, because k = O(1). We assign, to each vertex p of graph GT,
the total length of the k shortest paths connecting p and all terminals, that
is, tiT(p) = ~ t . e T d(p, ti). For a vertex p of GT, the total length dT(p) can be
calculated from d(p, ti), 1 < i < k, in O(1) time. Thus, for all vertices of GT, the
assignment can be done in O(n) time. For each edge e of Gt~, f~' is a straight
line. However f [is not always a straight line for an edge of GT. If e is an edge of
graph G,~ and intersects an edge e ~ of graph Gtj at a point p • IR 2 in the proper
inside of edges, then p is not a vertex of the graph GT. Though f~' is a straight
line, f~J may not be a straight line. Thus p may be a bend point of f~J, and hence
p may be a bend point of feT. However, if an edge e of GT is on B(A N QOO),
then there is no edge which intersects e, and hence fT is a straight line l, and we
assign the slope s(e) of I to e. The other edges are assigned nothing. Note that
the slope s(e) can be easily calculated from tiT(P1) and tiT(p2) in time O(1) for
an edge e = [Pt - P2] on B(A n QOO). Thus the assignment of the slopes s(e) for
edges c of GT can be done in time O(n). Hence we can do the assignment for
vertices and edges of GT in time O(n). The following lemma holds for the graph
GT.

L e m m a 3.2 Every vertex p • V(R(c)) lies on an edge of graph GT. D

331

3.3 F i n d i n g v e r t i c e s o f R(c)

In this section we present an algorithm to find all vertices in V(R(c)). Using GT,
we find all vertices in V(R(c)) by plane sweep in the x-direction and y-direction.

If dT(p) = c for a vertex p of a rectangular obstacle but p is not a proper
vertex of R(c), then p is a degenerated vertex of R(c). Thus one can observe
that a vertex p of an obstacle is a vertex of R(c) if and only if dT(p) <_ c.
Therefore one can easily find all vertices of R(c) that are vertices of obstacles.
Furthermore, using s(e), one can easily f i n d a vertex of R(e) o n an edge e on the
boundary of an obstacle. Thus it suffices to show how to find vertices of R(c) on
edges of GT which are not on B(A A Q~) .

For vertical line segments L1 = [Pl-P~] and L2 = [P2-P~] in A, we say that L1
is properly visible from L2 in the (-x) -d i rec t ion if there are points ql E (Pl - P ~)
and q2 e (q2 - q~) such that Y(ql) = Y(q2), x(ql) <_ x(q2), and [ql - q2] C_ A.

Let eh = [P~ --P2] be a horizontal edge of GT which is not on B (A n Q~) . One
may assume that x(pt) < x(p2). Let p~ = (x(pl), y (p l)+e) , p~l = (x(pl), x (y l) -
e), p~ = (x(p2),y(p2) + e), and p~/ = (x(p2), Y(P2) - e). For a small positive
number e > O, (i) the rectangle ' J PlPlP2P2 is in A and does not intersect any
horizontal edge of GT except eh, (ii) the rectangle " " PlP2P2Pl is in A and does not
intersect any horizontal edge of GT except eh, and (iii) there exists exactly one
vertical edge of GT on B(A n Q~) which is properly visible from a vertical line
[p~ - p l] in the (- x) direction; such an edge is denoted by lu[eh], and is called
the left upper edge of eh. We similarly define the left below edge lb[eh] of eh, and
define the below left edge bl[ev] and the below right edge brier] for a vertical edge
ev of GT which is not on B(A A Q~) .

We then have the following lemma.

L e m m a 3.3 (a) Let eh be a horizontal edge of GT which is not on B(A n Q~) ,
and let p be a point on eh, and let GT have no vertical edge passing through p.
Then p G V(R(c)) if and only if dT(p) = c, s(lu[eh]) 7 £ s(lb[eh]), and the slope
of fib at p is not zero.

(b) Let ev be a vertical edge of GT which is not on B (A R Q ~) , and let p
be a point on ev, and let GT have no horizontal edge passing through p. Then
p E V(R(c)) if and only ifdT(p) = c, s(bl[ev]) • s(br[ev]), and the slope o f f T
at p is not zero. D

Using the lemma above, one can show that all vertices in V(R(c)) can be found
by plane sweep in t ime O((K + n) log n). Our algorithm finds all vertices of R(c)
on horizontal edges in GT by plane sweep on the x-direction, and then finds all
vertices of R(c) on vertical edges in GT by plane sweep on the y-direction. (The
detail is omit ted in this extended abstract .)

3.4 Boundary of R(c)

In the previous sections we have found all vertices of R(c). We find the boundary
B(R(c)) from the vertices of R(c). For the purpose, we compute the slopes of all

332

edges e = [w - w'] of B(R(c)) incident to each vertex w • V(R(c)). Then, using
these slopes, we find every pair of vertices in V(R(c)) corresponding to the two
ends of an edge of B(R(c)). It should be noted that the other end w' of an edge
incident to w is not known. However, we can know whether an edge e of R(c)
is incident to w either from above or from below. (The detail is omitted in this
extended abstract. The key idea is to use rotation of a coordinate system and
lexicographic sorting.)

4 C o n c l u s i o n

In this paper we presented an efficient algorithm for finding a feasible region
R(c) for given k terminals, n axis-parallel rectangular obstacles on the plane
and a positive real number c. The algorithm takes O((K + n) log n) time and
O(K + n) space if k is a fixed constant, where K is the totM number of vertices
in V(R(c)). Since finding a single shortest path between two points on the plane
with n rectangular obstacles requires time ~ (n l o g n) , our algorithm is quite
efficient.

One can construct an algorithm to find an optimal region R* as follows.
Slightly modifying our algorithm for finding a feasible region, one can construct
an algorithm to find the value d* = mindT(p). Finally, taking d* as c, we can
find a feasible region R(d*). Clearly R(d*) is the optimal region R*. It is easy
to observe that a connected component of an optimal region R* is either a sin-
gle point, a horizontal or vertical line segment, or an axis-parallel rectilinear
polygon.

If a real number ai is assigned to each terminal ti E T as a weight, then
the weighted feasible region I~igh~(C) = {p E A l ~ = l a~d(p, ti) < c} can be
similarly found.

If the number k of terminals is not always a fixed constant, then the nonplanar
graph GT has O(kn) vertices and edges. In this case one can compute in O(k2n)

k t ime the total distance dT(w) = ~i=1 d(w,t~) for all vertices w of a graph GT.
Thus, a feasible region and an optimal region can be similarly found in time
O((K + kn)log(kn) + k2n) using O(K + kn) space.

It is rather straightforward to modify our sequential algorithm to an NC paral-
lel algorithm which finds R(c) or R* in polylog time using a polynomial number
of processors. Note that there are NC parallel algorithms for the shortest path
problem [1, 6, 10] and for the plane sweep [6].

The following variations of our problem are remaining as future works:

(1) obstacles are not always rectangles but are axis-parallel polygons; and
(2) find an optimal region or a feasible region in other metric.

Acknowledgement We wish to thank Dr. H. Suzuki of Ibaraki University
for fruitful discussions and helpful comments.

333

R e f e r e n c e s

1. M. J. Atallah and D. Chen: "Parallel rectilinear shortest paths with rectangular
obstacles," Comput. Geom. Theory Appl., 1, pp. 79-113, 1991.

2. K. L. Clarkson, S. Kapoor, and P.M. Vaidya: "Rectilinear shortest paths
through polygonal obstacles in O(n(logn) 2) time," Proc. Third Annum ACM
Symp. on Computational Geometry, Waterloo, Ontario, pp. 251-257, 1987.

3. P.J. de Rezende, D.T. Lee, and Y.F. Wu, "Rectilinear shortest paths with rectan-
gular barriers," Discrete and Computational Geometry, 4, pp. 41-53, 1989.

4. E.G. Gilbert and D.W. Johnson, "Distance functions and their application to robot
path planning in the presence of obstacles," IEEE Trans. of Robotics and Automa-
tion, RA-1, 1, pp. 21-30, 1985.

5. S. Guha and I. Suzuki: "Proximity problems for points on a rectilinear plane with
rectangular obstacles," Algorithmica, 17, pp. 281-307, 1997.

6. J. J£J£, An Introduction to Parallel Algorithms, Addison Wesley, Reading, MA,
1992.

7. R. C. Larson, and V. O. Li: "Finding minimum rectilinear distance paths in the
presence of barriers," Networks, 11, pp. 285-304, 1981.

8. D. T. Lee, C.D. Yang, and T.H. Chen: "Shortest rectilinear paths among
weighted obstacles," Int. J. Comput. Geom. Appl., 1, pp. 109-204, 1991.

9. J. S. B. Mitchell: "L1 shortest paths among polygonal obstacles in the plane,"
Algorithmica, 8, pp. 55-88, 1992.

10. P.N. Klein, "A linear processor polylog-time algorithm for shortest paths in planar
graphs," Proc. of 34th Symp. on Found. of Comput. Sci., pp. 259-270, 1993.

11. Y. Kusakari, H. Suzuki, and T. Nishizeki, "Finding a shortest pair of paths on
the plane with obstacles and crossing areas," Proc. o] ISAAC'95, Lect. Notes in
Computer Science, Springer-Verlag, 1004, pp. 42-51, 1995.

12. Y. Kusakari, H. Suzuki, and T. Nishizeki, "An algorithm for finding a shortest pair
of paths in a plane region," Trans. on Japan Soc. for Ind. and Appl. Math., Vol. 5,
No. 4, pp. 381-398, 1995 (in Japanese).

13. J-C. Latombe, Robot Motion Planning, Kluwer Academic Publ., Boston, 1991.

14. T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley
& Sons, Chichester, England, 1990.

15. T. Ohtsuki(Editor), Layout Design and Verification, North-Holland, Amsterdam,
1986.

16. F.P. Preparata, and M.I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

