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Abstract 

The ordinary assignment problem on a bipartite graph with 

weighted arcs is extended to the case where both of the two sets 

of vertices of the graph are given matroidal structures, and a 

practical solution algorithm is presented to this extended problem. 

Introduction 

A number of fundamental problems in electrical network theory were 

recently shown to be adequately formulated in terms of matroids and thus be 

solved [1] ~ [5]. In connection with the problem of the "order of complexity" 

of a network, in particular, there has arisen an extension of the assignment 

problem famous in Operations Research, extension in that both of the two sets 

of vertices of the underlying bipartite graph are given respective matroidal 

structures and that the end vertices of a matching are required to form an 

independent set in each of the vertex sets [5]. In the field of Operations 

Research, the ordinary assignment problem is converted into a kind of 

independent assignment problem when the restriction of "system-of-distinct

representatives" type is imposed upon "persons" as well as upon "jobs". 

(However, since the relevant matroidal structures are of transversal type in 

this kind of problem, it can better be treated through the network-flow 

,12 
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An Optimal "Independent Assignment" 33 

formulation.) * 

In the present paper, we shall define in rigorous terms this extended 

assignment problem ---- which we shall call the "independent assignment 

problem" ---- and shall present a practically efficient algorithm for it. We 

shall propose also a duality formalism for a kind of mathematical programming 

problems involving 0-1 variables under combinatorial constraints as an 

auxiliary tool in proving the optimality of a solution. The approach we shall 

present in this paper will open a new vista for the algorithmic approach to 

matroid theory itself. 

As for graphs and networks, we follow largely the standard notation and 

terminology --- those adopted in [12] in particular. 

1. Preliminaries from Matroid Theory 

According to the standard literature on matroid theory [6], [7], we shall 

say that a finite set V is given the structure of a matroid when a (nonempty) 

family Y of subsets of V is specified in such a way that 

(I) if I E Y and I' ~ I then I' E Y 

and 

(rI) if I, I' E Y and 111 > 11'1 then there is in I - I' an element V 

such that I' U {v} E Y. 

The set V with the matroidal structure sp€,cified by Y will be denoted by 

MW, Y). We call an element of Y an "independent set", and an element of 2V_y 

a "dependent set". A maximal independent set is called a "base" of the 

matroid, and a minimal dependent set a "ci.rcuit". We define the "closure" 

cl(U) of a subset U of V by 

* The authors became aware after submitting the manuscript of this paper that 
E. L. Lawler is going to publish a book on "Combinatorial Optimization" in 
which he formulates the problem of finding a spanning arborescence 
(directed tree) on a directed graph as the problem of finding an optimal 
independent assignment where the two sets of vertices of the underlying 
bipartite graph are two replicas of the set of branches of the given 
directed graph, the branches of the bipartite graph connect the 
corresponding vertices in the two sets, one of the two vertex sets is 
provided with the same matroidal structure as that defined on the set of 
branches of the given directed graph (with trees as independent sets) and 
the. other vertex set is provided with the matroidal structure such that the 
vertices corresponding to those branches in the given graph which end at one 
and the same vertex are dependent on one another. This example by Lawler 
will be a first nontrivial example which evidences the significance of the 

independent assignment problem in Opera1:ions Research. (added in proof) 
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34 Masao Iri and Nobuaki Tomizawa 

{I. I) cl{U) = U U {vi there is a circuit containing V in U U {V}} 

and the "rank" p (U) of U by 

Cl. 2) p (U) = max {I II I I E Y, I S. U}. 

we shall make use of the following fundamental properties of the matroid 

without proof: 

(Ill) For a subset U of V, all the maximal independent subsets of U have 

the same cardinality; 

(IV) If U ~ U' Cs. V) then cl{U) S. cl{U'); 

(V) For an independent set I{E Y) and an element V t I, we have V t cl{I) 

if and only if I U {V} E Y; 

(VI) If I E Y and V E cl{I)-I then 

(l.3) {ul {I U {v})-{u} E Y} = {ulv t cl{I-{u})}u{v} 

is the unique circuit in {V} U I, and we have 

(l.4) cl{I) = cl({I U {v})-{u}) for every u (~ v) in the circuit. 

(VII) If Cl and C
2 

are distinct circuits having an element V in common, 

then there is a circuit C such that C ~{CI U C
2

)-{v}. 

(VIII) For any subset U of V, we have 

(l.5) p (U) = p (cl{U»). 

2. Description of the Problem 

Let us consider a (finite) bipartite graph G{V
1

, V
2

; A) with vertex sets 

VI and V
2 

and arc set A{~ V
l
xV

2
; arcs are assumed to have initial vertices in 

VI and terminal vertices in V
2
), where each arc aCE A) is given a real number 

weal (called the "weight" of a) and where VI (resp. V
2

) is given the structure 

of a matroid specified by Y
I 

(resp. Y
2
). A matching or an assignment on G is 

a subset B (~ A) of arcs such that no two arcs in B have a vertex in common 

either in VI or in V
2

• If we denote the set of the end vertices of B in VI 

(resp. V
2

) by dlB (resp. d
2
B), we may characterize a matching B by the 

equation: 

(2.1) 

Following D. J. A. Welsh [8], we shall call a matching B on G an 

independent matching if dlB E Y
I 

and d
2
B E Y

2
, and an independent matching of 

the largest cardinality a maximum independent matching. The principal problem 

we shall deal with in the present paper is: 

to find a maximum independent matching B of which the sum of the weights 

of the arcs is as small as possible. 
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An Optimal "Independent Assignmenf' 35 

The solutions B of the problem will be called optimal independent assignments 

on the given bipartite graph G(V" V?; A) with regard to the weight function 

w and to the matroids Ml (VI' Yl ) and M
2

(V
2

, Y
2
). 

As in the case of the ordinary assigmnent problem, we may assume, without 

loss of generality, that all the weights of arcs are nonnegative. 

3. Incidence Function associated with an Independent set of a Matroid 

For an independent set I(E V) of a matroid M(V, V), we define an 

incidence function D(., ·II): Ix (c1(I)-I) + {O, I} such that 

(3.1) D(u, viI) = {~ ~; ~ ~ ~i~i=i~i~: 
From the definition of D and the property (VI) of §l it follows that 

(3.2) I} = [the circuit in {v} U I)-{v} 

for a V E cl(I)-I, and that 

(3.3) {vID(u, viI) = I} cl(I)-cl(I-{u})-{u} 

for a u I. I. 

The following lemmas are useful for the subsequent discussions. 

Lemma 1. If I c I' (E Y) and v E c1(ll-I, then we have 

(3.4) D(u, viI) = D(u, viI') for every u E I. 

Proof: If V E cl(I)-I, then v E cl(I')-I' by virtue of (IV) and (V). 

Moreover, it is seen from (VI) that the circuit in I U {v} coincides with that 

in I' U {V}. (3.4) then follows from (3.2). 

Lemma 2. If, for an independent set I(E Y) of a matroid M(V, V), 2q 

distinct elements u
l

' u
q 

(E I) and VI' Vq (E cl(I)-I) satisfy the 

relations: 

(3.5) 1 for j 1, , q 

and 

(3.6) D(u., v.ln 
J 1-

o for every i and every j such that 1 5 i < j 5 q, 

then 

(3.7) I' = (I-{u , 
1 

v } 
q 

is also an independent set and we have 

(3.8) c1(I) = c1(I') . 

Proof: It is obvious that the lemma with q 1 is no other than the 
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property (VI) of the matroid. Let us then suppose that the lemma holds for 

q = p and prove that it holds also for q = p+l. Namely, let us suppose that 

2 (p+l) elements u
l

' .•• , U
p

+
l 

E I and VI' ••• , V
p

+
l 

E cl(I)-I are given which 

satisfy (3.5) and (3.6) for an I with q = P+l. It then follows directly from 

(3.5) (for j = p+1) and (VI) that 

(3.9) I" = (I-{u }) U {v } 
p+1 p+1 

is an independent set and that 

(3.10) cl(I) = cl(I"). 

Since 

(3.11) V. E cl(I-{u }) 
1- p+1 

for i 1, p 

by (3.6), we have from Lemma 1 

(3.12) D(u., v.II) = D(u., v.II-{u }) = D(u., v.II") 
J 1- J 1- p+1 J 1-

for every i and j (= 1, ... , p). Therefore, all the relations (3.5) and (3.6) 

hold with q put equal to p and I replaced by I". Hence, by the induction 

hypothesis, we can conclude that 

(3.13) I' (I"_{U • .. u}) U {v v } 
l' , P l' P 

(I-{u
l

, ••• , Up' Up+
l

}) U {VI' v p ' V
P

+
l

} 

is an independent set and 

(3.14) cl(I') = cl(I") = cl(I), 

which was to be demonstrated. 

Lemma 3. Let I and I' be independent sets of a matroid M(V, Y) such that 

(3.15) 

where 

(3.16) 

I' = (I-{u}) U {v}, 

V E cl (I) -I, 

{ 

U E I, 

V E I', u E cl(I')-I' 

and 

c1(I) = c1(I'). 

Moreover, let u' and V' be elements such that 

(3.17) U' E I n I' = I-{u} = I'-{v} 

and 

(3.18) V' E c1(I)-I-{v} cl (I' ) - I' -{ u} • 

Then, we have 

(3.19) 

(3.20) 

(3.21) 

D(v, u JI') = D(u, viI) = 1, 

D(u', uII') = D(u', viI), 

D(v, v' II') = D(u, v' II) 
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and 

(3.22) D(u', v'/ I') = D(u', v'/ I) 

if either D(u', vi I) = 0 or D(u, v'II) = o. 

Proof: First, we note that the circuit Cl S I U {v} and the circuit 

C
2 
~ I' U {u} should coincide with each other, for, otherwise, by virtue of 

the property (VII) of §l, there would be a third circuit C
3 

in Cl U C
2
-{u} 

c I', which is a contradiction. Therefore, we have (3.19) and (3.20). 

37 

Let us next suppose that the right-hand side of (3.21) were not equal to 

the left-hand side, for example, that 

(3.23) D(v, v'/ I') o and D(u, v'/ I) = 1. 

Then, the circuit Cl ~ I U {v'} would contain u and v' but not V, whereas the 

circuit C
2 
~ I' U {v'} would contain V' but not u nor v. Therefore, there 

would be a third circuit C c C U C -{v'} c I U I'-{v} = I, which is a 
3 = 1 2 = 

contradiction. 

If D(u, V' II) = 0, there is a circuit Cl = I ~ {v'} containing V' but not 

u nor v. If the circuit C
2 

~ I' U {v'} (containing V' but not u) did not 

coincide with Cl' there would be a third circuit C 3 ~ Cl U C
2 
-{v'} ~ I U I' 

-{u} = I', which is a contradiction. Therefore, (3.22) holds if D(u, v'l I) 

o. 
If D(u, v'l I) = 1 and D(u', viI) = 0, then, by (3.20) and (3.21), 

D (V, v'II') = 1 and D(u', ul I') = o. Since the circuit Cl S I U {v} contains 

u and V but not u' and the circuit C
2 

~ I' U {v' } contains V and v' but not u, 

there is a third circuit 

(3.24) 

(3.24) indicates that, if u' is contained in C
3

, so is it in C
2 

(for Cl does 

not contain u'), Le., that if D(u', v'II) = 1 then D(u', v'l I') = 1. 

Interchanging the roles of I and I', we can conclude also that if D (u' V 'I I' ) 

= 1 then D(u', v'/ I) = 1. Thus, (3.22) ha.s been proved. 

Lel1111a 4. Let I, I', u
l

' ••• , u
q 

(EI) and VI' 

same as those in Lemma 2. Then we have 

(3.25) 

and 

D (V ., u.1 I') = 1 
J J 

for j = 1, q 

V (E cl (I)-I) be the 
q 

(3.26) D(v., u.II') 
J -z. 

o for every i and every j such that 1 $ i < j $ q. 

Proof: Let us put 
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38 Ma8aD Iri and Nobuaki Tomizawa 

and 

IO I. 

Then we have 

I' = Iq. 

By virtue of Lemma 2, I 's are independent sets and 
p 

cl(I ) = cl(I) 
P 

We shall prove that 

D(v., u .II ) 

(3.27) J J P 

D(u., 
J 

v.II ) 
J P 

and 

D(V
j

, u.II) 
'Z- P 

(3.28) D(u ., 
J 

u.II) 
'Z- P 

D(U
j

, v.1 I ) 
1.. P 

1 

1 

0 

0 

0 

(p=o, ••• ,q). 

for j 1, •.• , p, 

for j p+l, ... , q 

if 1 ~ i < j ~ p, 

if 1 ~ i ~ P < j ~ q, 

ifp ~ i < j ~ q. 

(3.27) and (3.28) are obvious for p = 0 by the assumption of the lemma. Let 

us suppose that they hold valid for a p « q). Then, their validity for p+l 

follows from Lemma 3, where Ip' I
p

+
l

' u
P

+
l 

and V
p
+

l 
are taken, respectively, 

for I, I', u and V. 

4. Auxiliary Graph associated with an Independent Matching 

Let B be an independent matching on G(V
l

, V
2

; A) with regard to the 

matroids Ml (VI' Y
l

) and M
2

(V
2

, Y
2
)· Then, Il = 0lB (resp. I2 = 02B) is an 

independent set of Ml (resp. M
2
). The auxiliary graph GB(V, A) associated with 

the independent matching B is defined as follows. The vertex set V is the 

same as that of G, i.e. 

(4.1) V = V 
1 

The arc set A is composed of four disjoint parts: 

(4.2) A = A U B* U Al U A
2

• 

A is the arc set of the original bipartite graph G; B* consists of the arcs 

obtained from those of B by reversing the direction (i.e. they are directed 

from V
2 

to VI); Al consists of the arcs which connect the pairs of vertices 
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(u, V) 's (from u to V) such that 

(4,3) 

and A2 consists of the arcs which connect ·the pairs of vertices (V, u)' s 

(from V to u) such that 

(4.4) 

where cl
l 

and c1
2 

are the closure functions, and Dl and D2 are the incidence 

functions for Ml and M
2

, respectively, def:ined in §3. Furthermore, we call 

the vertices of the set 

(4.5) 

the entrances (or sources) of GB' and the vertices of 

(4.6) 

the exits (or sinks) of GB' 

39 

5. A Duality Formalism for a Kind of Mathematical Programs with 0-1 Variables 

under Combinatorial Constraints 

A number of duality formalisms, together with duality-gap arguments, have 

been proposed for the mathematical progr~ning problems with integer variables 

and/or (O,l)-variables (see, e.g., [15]). We shall present in the following 

a formalism which is most convenient for application to the problem of our 

concern. 

Let J, K and L be (finite) index sets, ajk's, bjZ's, Cj's and ek's be 

given (real) constants (j E J, k E K, l E J~), and L be a family of subsets of 

L. The "primal" problem with variables sk's (k E K) and ill'S (l E L) to be 

considered below is: 

to minimize the objective function: 

(5.1) 

subject to the constraints: 

(5.2) sk <: 0 for all k E K, 

(5.3) III = 0 or 1 for all l E L, 

(5.4) I a 17/'k - I b 'Zlll c. for all j E J 

kEK U lEL J J 
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40 Mosao Iri and Nobooki Tomizawa 

and 

(5.5) L(n) = {tint = I} E L. 

It should be noted that nt's are 0-1 variables on which the combinatorial 

constraints (5.5) are imposed. 

As the "dual" problem we introduce the following problem (5.6), (5.7) 

with variables ~.'s (j E J): 
J 

to maximize the objective function: 

(5.6) 

subject to the constraints: 

(5.7) for all k E K. 

From the definition of the pair of primal and dual problems follows readily 

a kind of duality theorem, i.e. we have 

Theorem 1. For an arbitrary feasible solution {~k' nt} (satisfying 

(5.2) ~ (5.5» of the primal problem and an arbitrary feasible solution {~j} 

(satisfying (5.7» of the dual, the corresponding objective functions satisfy 

the inequality: 

(5.8) 1(0 ? g(~). 

In addition, if the equality holds in (5.8), the solutions are optimal both 

for the primal and for the dual problem. (Note that we do not claim the 

validity of the converse of the proposition!) The equality holds in (5.8) 

if and only if the following "complementary slackness conditions" are 

satisfied: 

(5.9) 

and 

(5.10) 

Proof: 

(5.ll) 

o for all k E K 

By virtue of the feasibility of the solutions we have 

f(~) = L ek~k 
kEK 

? L ( L a·
k 
~ .) ~ . 

kEK jEJ J J J 

= L ( L a·k~k)~· 
jEJ kEK J J 
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I a.r;. + I ( I b 'z."1 Z) r; . 
jEJ J J jEJ ZEL J J 

Ia.r;.+ I (Lb·zr;·) 
jEJ J J ZEL(n) jEJ J J 

~ I a.r;. + mine I ( L b·Zr;·)] 
jEJ J J IEL ZEI jEe' J J 

= g(r;), 

where the first inequality is reduced to the equality if and only if (5.9) 

holds and the second inequality is reduced to the equality if and only if 

(5.10) holds. 

The relation 

(5.12) min r(s) ~ max g (r;) 

(5.2)~(5.5) (5.7) 

is an immediate consequence of (5.8) , so that, if the equality holds for a 

primal feasible solution {~k' nZ} and a dual feasible solution {2
j

} , then we 

have 

r(l;) min r(s) 
(5. 2)~(5.5) 

and 
A 

g(r;) = max g(r;), 

(5.7) 
A nz} {2.} Le. {sk' is an optimal solution for the primal problem and is an 

J 

optiaml solution for the dual. 

6. Algorithm for Finding an Optimal Independent Assignment 

41 

The algorithm starts from the trivial independent matching B(O) = ~ on G 

and increases the size of matching one by one to get a maximum matching. 

Every matching B(P) appearing in the course is of the minimum total weight 

among the independent matchings of the same size as B(P) • 

The independent matching B(P) obtained in the p-th stage of the algorithm 

. d B(P+l) d' h f 11' 1 ~s enlarge to accor ~ng to t e 0 ow~ng ru es: 

~ ~ ~(p) (p) 
(i) Construct the auxiliary graph G (V, A ) associated with B 

B(P) 

(see §4). 

(H) Find the shortest path pep) in G 
B(P) 

from an entrance to an exit, 

+ 
Z 
- are taken, where the lengths Z (a) and (a) of the arcs of G 

B(P) 
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in this case, as shown in the following table. (If there are more 

than one such path, choose one which consists of the fewest arcs.) 

+ 
length l (a) in the length l 

-
(a) in the 

positive direction negative direction 

arc a in A w(a) 00 

arc a*in 
B(l')* 

-w(a) 00 

arc a in Al 
(1') 

0 00 

arc a in A2 
(1' ) 

0 00 

(1') 
(iii-a) If no path of finite length is found, then B is an optimal 

assignment. (The "length of a path" is the sum of the lengths of 

the arcs on that path.) 

(iii-b) If the length of p(l') is finite, then transform B(l') into B(l'+l) 

by adding to B(l') those arcs of A which belong to p(l') and 

removing from it those arcs which correspond to the arcs of B(l')* 

belonging to p(l') • 

determined by matrices, the number of computations required for modifying 
. 3 3 

GB (1'+1) is at most proporhonal to max{1 VII ,I V
2

1 } The search 

for the shortest path in GB (1') is carried out with computations of the number 

at most proportional to I VI U V
2

1

3 = l~r!3 by any known method. Thus, the 

total number of computations required for attaining an opti.aml independent 
3 

assignment is at most proportional to I VI U V
2

1 x max{1 VII, I V21}. As is 

seen from this estimation of the amount of necessary computational labor, 

the algorithm presented in the above is efficient enough to be applicable 

to practical large-scale problems. If Ml (VI' Y
l

) and M
2

(V
2

, Y
2

) are matroids 

determined by graphs, then the modification of G

B

(l') into G

B

(l'+l) can be 

2 2 
effected with computations of the number proportional to max{l VII ,I V

2
1 }. 

Therefore, if the variant of the Dijkstra method [9], [10] is adopted in 

searching for the shortest path, the total number of computations may be 

reduced to I VI U V
2

1
2 

x max{1 VII, I V
2

1}. 
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Le. 

Remark 2. In case 
V 

if Y
l 

= 2 1 and Y
2 

GB(r) are empty. Therefore, the auxiliary graph GB(r) is essentially the same 

as the original bipartite graph G augmented with the "reverse" arcs B (r) * 

corresponding to the arcs of matchings, and the entrances as well as the 

exits are "non-saturated" vertices. In this case the algorithm presented 

above coincides with the ordinary "assignment algorithm" well known in 
(r'l 

network-flow theory [11], [12], where P , is an "alternating path" with 

d h ' B(r) regar to matc 1ng . 

7. Proof of the Validity of the Algorithm 

The ultimate goal of this section is to prove that the B{r) obtained 

by the algorithm presented in §6 is the independent matching on G which has 

the minimum total weight among the independent matchings of cardinality r 

and that the B{r) is a maximum independent: matching when the algorithm 

terminates at step (iii-a) (Theorems 2, 3 and 4) . 

We begin with the definition of the I~tential function and its 

compatibility and admissibility. 

Definition 1. Let G{V, A) be a graph to each of whose arcs aCE A) the 

length t+{a) in the positive direction as well as that t-{a) in the negative 

direction is associated, where we assume Z+ (a) + t- (a) ~ o. We call a 

function I;; which makes correspond a real value to every vertex of V a 

potential function, and the value I;;{V) at vertex V the potential at V. In 

particular, a potential function I;; is said to be compatible with the arc 

lengths t±{a) 's if 

(7.l) 
+ + - -

t (a) ~ I;; (a a) - I;;{a a) ~ -t (a) 
+ -

for every arc a E A, where a a and a a are, respectively, the initial and the 

termianl vertex of arc a. 

Definition 2. Let G{V, A) be a graph of the kind mentioned in Definition 

1, in which, furthermore, a subset SI (~ V) of vertices and another S2{S V) 

are designated, respectively, as the set of entrances and that of exits. 

A potential function I;; is said to be admissible if it is compatible with the 
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arc lengths and if there is a value [,S such that 

I 
[,(V) 0 for every V E S2' 

qV) [,S for every V E Sl' 
(7.2) 

and 

[,S ~ [, (V) ~ 0 for every V E V - (Sl u S2) . 

Definition 3. Let G(V, A) be a graph of the kind mentioned in Definition 

1. We define the length of a path P as the sum of the lengths of the arcs 

lying on P, where the length in the positive or the negative direction is 

taken according as the arc lies on P in the positive or the negative 

direction. For a subset U
1 

(£ V) and another U
2

(£ V) of vertices, we define 

a shortest path from U
1 

to U
2 

as a path having the minimum length among those 

paths starting from a vertex of U
1 

and ending at a vertex of U
2

. 

Lemma 5. On a graph of the kind mentioned in Definition 1, the following 

three conditions are equivalent to one another. 

<a> There is a potential function compatible with the arc lengths. 

<b> The length of any closed path (or cycle, circuit, loop, •.. ) is 

nonnegative. 

<c> There is a shortest path (whose length may be finite or infinite) 

from any subset of V to any subset of V. 

Proof: This fact is fundamental in network-flow theory and is well 

known ( see, e. g ., [12]). 

Lemma 6. Let [, be a potential function on a graph of the kind mentioned 

in Definition 2 such that 

(7.3) 

Then, a 

also the 

(7.4) 

[,(V) 1;1 for every V E Sl' 

[,(V) 1;2 for every V E S2' 

shortest path from Sl to S2 with regard to the arc lengths Z*(a) 's is 

shortest 

Z+ (a) 

T(a) 

-± 
with regard to the arc lengths Z (a) 's defined as follows: 

+ + Z (a) [I;(aa) -I;(aa)], 

C (a) - [I; (a - a) - I; (a + a) ] • 

Furthermore, if I; is compatible with I±(a) 's then 1;+1; is compatible with 

+ Z-(a)'s. 

Proof: The length of a path from Sl to S2 with regard to [ita) 's is 

equal to the length with regard to Z±(a)'s minus 1;1-1;2 (since the potentia1s 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



An Optimal "Independent Assignment" 

at the intermediate vertices cancel one another), so that the relative 

magnitude of the lengths of paths from SI to S2 remains unchanged. 

From the compatibility of ~ with Z±(a)'s i.e. from ~he relations: 

(7.5) 
~ - + -
Z (a) ;:?:I.;;(aa) -~(d-a) ;:?:-Z-(a) for every arc a(E A) 

we have the relations: 

(7.6) 

for every arc a(E A), 

which are exactly the conditions for the compatibility of 1.;;+1.;; with Z±(a) 'so 

4.5 

LelllTla 7. On a graph of the kind ment.ioned in Definition 2, if all the 

arc lengths Z±(a) 's are nonnegative, there is an admissible potential function 

1.;;. 

Proof: Since the arc lengths are nonnegative, there is no closed path 

of negative length, and hence, by Lemma 5, the shortest paths exist from any 

vertex subset to any other. Let us definE' the po·tential function I.;; by 

I.;; (V) = the length of a shortest path from vertex V to the exits S2' 

and denote by v an entrance (E SI) such that 

~ ~ 

(7.7) I.;; (V) = min I.;; (V) - I.;;S. 
VES

l 

Then, we can show that the potential function I.;; defined by 

(7.8) 

is admissible. In fact, because of the nonnegativity of arc lengths, all the 

I.;;(V)'s as well as I.;; (V) 's are nonnegative. In particular, since 

I.;; (V) = 0 for every V E S2' 

we have 

I.;; (V) 0 for every V E S2· 

Since 

I.;; (v) ;:?: I.;;S for every V E SI 

by definition (7.7) , we have 

I.;; (V) = I.;;S for every V E SI· 

It also follows from (7.8) that 

for every V E V. 

Furthermore, for an arbitrary arc a, if I.;; (a a) ;:?: I.;;S then we have 

I.;; (a+a) - I.;;(a-a) = I.;;(a+a) - I.;;S ~ 0 

so that 
+ + 

Z (a) ;:?: I.;; (a a) - I.;; (a a) • 
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If ~(a a) < ~S then we have 

+ ~ + -
~(a a) - ~(a a) s ~(a a) - ~(a a). 

Therefore, if we had 

~(a+a) - ~(a-a) > Z+(a) 

for an arc a then we would have 
~ + ~ - + 

(7.9) ~(aa) > 1;;(0 a) +Z (a). 

However, (7.9) would contradict the definition of ~(a+a) as the length of a 
+ . 

shortest path from a a to S2' s~nce the concatenation of the arc a (placed 

in the positive direction) to a path from a-a to S of length ~(a-a) would be a 
+ + ~_ 2 ~+ 

path from a a to S2 of length Z (a) + I;; (a a) smaller than e(a a). Thus, the 

relations 
+ + -

Z (a) 2 I;; (a a) - ~ (a a) 

should hold for all the arcs. By similar arguments we can show that 
- - + 

Z (a) 2 r; (a a) - I;; (a a) 

should hold for all the arcs. 

Lemma 8. On a graph of the kind mentioned in Definition 2, if ~' is 

an admissible potential function with regard to arc lengths lira) 's and if 

1;;" is an admissible potential function determined as in the proof of Lemma 
-+ 

with regard to the arc lengths Z-(a)' s defined as 
-+ 

Z+(a) (~' (a+a) I;;'(a-a» 
(7.10) 

Z (a) 20, 
- - -

1;;' (a+a» Z (a) Z (a) - (~' (a-a) - ~ 0, 

then the potential function I;; = ~'+I;:" is also admissible with regard to 

Z±(a) 's and 

(7.11) I;; (V) = 1;;' (V) + 1;;" (V) ? 1;:' (V) for every V E V. 

Furthermore, if an arc a lies in the positive (resp. negative) direction on 

a shortest path from SI to S2' then we have 

(7.12) Z+(a) = I;:(a+a) - I;;(a-a) 

(resp. era) = I;:(a a) - I;:(a+a». 

Proof: The compatibility of I;: with Z*(a) 's is assured by Lemma 6. We 

can prove the admissibility of I;: from that of 1;:' and 1;:" as follows. 

The equation I;: (V) = 0 for V E S2 is a consequence of 1;:' (V) 0 

7 

and 1;:" (V) = 0 for V E S2. Likewise, for V E SI' I;: (V) = I;:S :::: 1;:' + 
S 

7,;" 
S 

follows 

from 1;;' (V) = I;;S and 1;;" (V) = 1;:" S· The inequality I;;S ~ I;; (V) ~ 0 for every 

also follows from the corresponding inequalities I;;S ~ 1;;' (v) ~ 0 and 

7,;,5 ~ 1;;" (v) ~ o. 

V E V 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



An Optimal "Independent Assignmenf' 

In order to show the latter statement of the lemma, we may sum up the 

inequalities: 

Z+(a) <-I;;(a+a) - I;;(a--a), 

Z- (a) <- I;; (a-a) - I;; (a+a) 

over the arcs lying on a shortest path P from Sl to S2' where the inequality 

of the former (resp_ latter) form is adopted if an arc lies on P in the 

positive (resp_ negative) direction_ Then, the left-hand sum gives the 

length of P, whereas the right-hand sum is equal to I;;S - 0 (since the 

potentials at the intermediate vertices of P cancel one another) which is 

again equal to the length of P by the definition of I;;S- Therefore, all the 

inequalities taken into the sum must be equalities_ 

Theorem 2. The B(r) obtained by the algorithm of §6 is an independent 

matching of cardinality r on G(V
l

, V
2

; A) '~ith regard to matroids Ml (V
l

, Y
l

) 

~nd M
2

(V
2

, Y
2
), and an admissible potential func~ion r;;(r) can be defined on 

GB(r)' 

(r) 
Note:- The existence of a shortest path from the entrances Sl to 

the exits s~r) of GB(r) is guaranteed by Lemma 5 and this theorem. 

Proof by induction: 

<1: Base of Induction> Following th.e notation adopted in § 4 and § 6, 

we have 

(0)* 
B = = V

2 
- cl~,(4)). Furthermore, the 

lengths of the arcs of G (0) are either equal to the weights (assumed to be 
B 

nonnegative) or to infinity. Therefore, 

matching and the 1;;(0) determined by 

B(O) is trivially an independent 

(7.13) 1;;(0) (V)' = 0 forallVEV
1

U V
2 

is an admissible potential function on G (0)' 

B 

<2: Induction hypothesis> We assum,= that B (r) is an independent 

. f d" G(V V A) (r) . dm' 'bl match~ng 0 car ~nal~ty r on l' 2; , that I;; ~s an a ~ss~ e 

potential on GB(r)' and that there is a shortest path per) from Sir) to s~r) 

of finite length. 

<3: Induction step> Starting form the arc lenghts Z±(r) (a) 's and 

47 
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the admissibel potential function 4(r) on GB(r)' we determine a new potential 

function ~(r+l) in the same way as we determined ~ from ~' and lira) 's in 

Lemma 8. The ~(r+l) is admissible on GB(r). Then, let us prove that the 

~(r+l) is admissible also on G and that the B(r+l) is an independent 
B(r+l) , 

B
(r+l) 

<3.1: Independence of the matching > We begin with the 

preliminary investigation into the details concerning the way of 

transformation of Ii
r

) = 0lB(r) and Iir ) 02B(r) into I~r+l) = 0lB(r+l) and 

I~r+l) = 02B (r+l). Let VOCE s~r) = VI - cl
l 
(I~r») be the initial vertex of 

(r) 
P , and u. and V. (i = 1, ... , q) be the initial and the terminal vertices 

'Z- 'Z-

f h 
. A (r). P (r) 

o t e arcs ai ~n 1 ly~ng on . Then, we have 

(7.14) (r+l) ( ) 
~ ui 

~ (r+l) (v.) 
'Z-

for i = 1, ... , q 

by Lemma 8, and 

(7.15) ~ (r+l) (V
o

) 2 z:; (NI) (U
i

) = ~ (r+l) (Vi) (i = 1, •.• , q) 

b h dm · 'b'l' f (r+l) . G h h Y tea ~ss~ ~ ~ty 0 ~ ~n B(r). Furt ermore, we ave 

(7.16) I (r+l) = (I(r) { } - U ••• U ) 
1 1 1" q 

as is obvious from the way of transforming B(r) into B(r+l) by the algorithm. 

Without loss in generality, we may assume that the ui's and Vi's (as well as 

ai's) are numbered in such a way that 

(7.17) (r+l) ( ) z:; u. 
'Z-

z:; (r+l) (V.) 2 z:; (r+l) (u.) 
'Z- J 

z:; (r+l) (V.) 

J 

if 1 :0; i < j :0; q, and that if z:;(r+l) (U
i

) = ~(r+l) (Vi) = ~(r+l) (u
j

) = ~(r+l) (V
j

) 

(i < j) then a
i 

lies nearer Vo 

it is seen that no arc in A~r) 

of the compatibility of z:;(r+l) 

(r) 
than a. along P . Under these assumptions 

J 

connects U. to v. if 1 :0; i < j :0; q by virtue 
'Z- J 

in GB(r) and the definition of per) (recall the 

requirement stated in the parentheses of step (ii) of the algorithm of §6). 

Thus, we have 
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D1 (Ui , v.1 I P'» 1 for i 1, ... , q, 
(7.18) 

1- 1 

D1 (Ui , v.1 I (1') ) 0 for 1 s i < j s q. 
J 1 

Hence, by Lemma 2 (with the order of 1, , q reversed), 

(7.19) 

is an independent set of M1 (VI' Y
1

) and 

(7.20) 

Then, by 

(7.21) 

c1
1 

(Ii) = cl
l 

(I~l'» = VI - S~l') , VO. 

the property (V) of the matroid (§l), 

I (1'+1) = I' U {v } 
I 1 0 

is also an independent set of Ml (VI' Yl). We can apply similar arguments to 

prove the independence of I~l'+l) in M
2

(V
2

, Y
2
), thus proving that B(l'+l) is 

an independent matching of cardinality 1'+1 on G(~l' V
2

; A). 

f 
(1'+1) (1'+1) 

<3.2: Compatibility 0 ~ > In order to prove that ~ is 

compatible on G
B

(l'+l)' it suffices to examine if the conditions of 

(7.1) are satisfied at those arcs which are in G
B

(l'+l) but not 

~ (1'+1) ~ (1') 

compatibility 

49 

in G
B

(l'). The difference between the arc set A of G
B

(l'+l) and the A 

~ . . (1'+1) (1') A (1'+ I) d A (1') d B (1'+1) * 
of G

B
(l') takes place poss~bly ~n Al and Al ' 2 an 2 ' an 

(1') * 
and B . An arc a* in B(l'+l) * - B(l')* is the reverse arc corresponding 

to an arc a in A lying on the path p(l'), so that its lengths are 

(7.22) 

z+ (1'+1) (a*) 

C (1'+1) (a*) 

and we have, by Lemma 8, 

(7.23) 

(7.24) 

-z+ (1') (a) = -w (a) , 

"", 

which is the condition of compatibility at: arc a*. 

The compatibility of ~ (1'+1) at the arcs in Ail'+l) - Air) and in A~l'+l) -

A (1') can be shown as follows. 
2 

We have shown in the proof of Lemma ;! that the transformation of I iI') 

into Ii can be decomposed into the series of simpler ones, i.e. if we put 
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(7.25) 

{ 

Il,p 

and 

I 
1,0 

Masao Irii and Nobuaki Tomizawa 

(I ~1') - {U
l

' 

then Il 's are independent s~ts and we have ,p 

(7.26) 

I = (I - {u }) u {V}, 
l,p l,p-l P P 

I = I' 
l,q 1 

and 

(7.27) cl
l 

(Il,p) = cl
l 
(I~1'» = cl

l 
(Ii). 

v } (p 
P 

1, q) 

Let us then consider the set Al consisting of those arcs which connect a 
,p 

vertex u 

(7.28) 

(E Il,p) to a vertex v (E cl
l 

(Il,p) - Il,p) such that 

Dl (u, vlIl,p) = I, 

and prove inductively from p = 0 to p = q 

hold for ~(1'+l) at all the arcs of Al 
,p 

that the conditions of compatibility 

Since Al,o = A~1'), the conditions 

of compatibility hold for ~ (1'+1) at all the arcs of Al,O The arcs of A -
l,p 

Al,p_l are possibly classified into four types, i.e. 

(a) the arc connecting Vp to up' 

(b) arcs connecting a vertex u (E I 
l,p 

(c) arcs connecting Vp to a vertex V (E 

and 

n Il,p_l) to Up' 

cl
l 
(I~1'» - (Il,p U I 

(d) arcs connecting u (E I n I ) to V (E Cl
l

(I
l
(1'» -

l,p l,p-l 

l,p-l) ) 

(L U I » 
l,p l,p-l· 

(1'+1) 
The compatibility conditions for ~ are satisfied at the arc of type (a) 

by virtue of (7.14). An arc a of type (b) exists only when there is an arc 

, f 'A ( )' h' 'b' I' f (1'+1) a rom u to V J.n 1 1 Lemma 3 , J.n w J.ch case the compatJ. J. J.ty 0 ~ 
P ,p-

at arc a follows from the compatibility at a' since 

(7.29) ~ (1'+1) (u) ::; ~ (1'+1) (V ) = ~ (1'+1) (u ). 

P P 
Similarly, an arc a of type (c) exists only when there is an arc a' from u 

p 
to V in Al,p_l (Lemma 3), in which case the compatibility at arc a follows 

from the compatibility at arc a'. An arc a of type (d) exists only when 

there are in Al,p_l both an arc a' from up to V and an arc a" from u to Vp 
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(Lemma 3). In this case, the conditions of compatibility at arcs a' and a" 

are 

(7.30) 

r;; (1'+1) (u ) s r;; (rH) (V) , 

P 
r;; (rH) (u) s r;; (rH) (v ), 

p 

from which we readily have the compatibility at arc a, Le. 

(7.31) 

h h t "b"l"t of h " 1 f " r{r+l) for Al h b T us t e compa 1 1 1 Y t e potent1a unc1ton ~ as een ,q 
proved. 

The arcs in A(r+l) - A are classified into two types by Lemma 1 as 
1 l,q 

follows: 

51 

(1') (rH) 
(e) arcs connecting a vertex u E Ii to a vertex V E Sl - Sl - {Vo}; 

(f) arcs connecting Vo to a vertex V ,~ sir) - sir
+

l
) - {vol. 

" b "" f (1'+ 1 ) f ) f" "" " " The compat1 111ty 0 r;; at arcs 0 type (e follows rom 1tS adm1ss1b111ty 

in GB (1') , since we have, from the admissibility "in GB{r)' 

(7.32) r;; (r-H) (u) s r;; (rH) (V) • 

Likewise, we have the compatibility at arcs of type (f): 

(7.33) 

f h dm " "b"l" f (1'+1) " G rom tea 1SS1 1 1ty 0 r;; 1n B(1'). 

We can prove the compatibility of r; (1'+1) at the arcs of A~r+l) _ A~1') 

in a similar way. 
(rH) " (rH) 

<3.3: Admissibility of r;; > F1nally, since r;; is admissible in 

G (r)and 
B 

(7.34) 
s{1'+l) 

2 
c S{1') 

" 2 ' 

it is admissible a fortiori in GB (1'+1) . 

Theorem 3. The B(r) has the smallest total weight among all the 

independent matchings of cardinality l' onJ(V
l

, V
2

; A). 

Proof: Let us consider the following mathematical-programming problem 

involving 0-1 valiables, which is slightly more general than the problem of 

finding the independent matching of cardinality l' and of minimum total weight. 
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We deal with two kinds of variables ~(a) 's and n(V) 's, of which the former 

correspond to the arcs a's (E A) of G(V
l

, V
2

; A) and have real values, 

u 
whereas the latter correspond to the vertices V'S (E VI V

2
) of G and have 

values 0 and 1. Moreover, we put 

(7.35) 

where Ml (VI' Y
l

) and M
2

(V
2

, Y
2

) are the matroids attached to the vertex sets 

VI and V
2 

of G. Then, we define the problem of minimizing the function 

(7.36) f(~) I w(a)~(a) 
aEA 

under the constraints: 

(7.37) 

and 

(7.38) 

~ (a) ~ 0 for every a EA, 

I ~(a) - n(u) = 0 

ala=u 

-I ~(a) + n(v) 
a

2
a=v 

n(V) o or 1 

o 

for 

for every u E VI' 

for every V E V
2 

every V E VI 
u 

V
2

, 

L(n) {vln(v} = 1, V E VI 
u 

V
2

} L, - E 

where ala (resp. a
2
a) is the end vertex of arc a in VI (resp. V

2
). 

If ~(a) 's are further constrained to 0 and 1 and if we take {al ~(a) I} 

(~A) for B(r), then the above-defined problem is exactly the problem of 

finding an independent matching of cardinality r and of minimum total weight, 

where L(n) n VI = alB(r) and L(n) n V
2 

= a
2
B(r). However, it will eventually 

be seen that the ~(a}'s determined from the B(r) obtained by the algorithm 

of §6, i.e. 

(7.39) 
~(a) 1 if a E B(r} , 

o otherwise, 

constitute an optimal solution of the more general problem (7.36) ~ (7.38), 

so that the B(r} is shown to have tha desired properties. 

The problem (7.36) ~ (7.38) is of the kind considered in §5. The dual 

problem is, then, to maximize 

(7.40) get) = ~in [r t(u) 
I

l
UI

2
d uEI

l 

min L t (u) 

Il EY
l 

uEIl 

I III =r 

I t(V)] 

VEI
2 

max L t (v) 

I2EY2 vEI2 

I I21 =r 
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under the constraints: 

(7.41) 

where I;; (V) 's are real-valued variables which correspond to the vertices V's 

u 
(€ VI V

2
) of G. 

5.1 

The "complementary slackness" conditions (5.9) and (5.10) take the form: 

(7.42) 

and 

(7.43) 

min r I;;(u) 

Il€Y
l 

ud
l 

IIll=r 

max r I;; (V) 
I

2
€Y

2 
vd

2 

I III =1" 

if l; (a) > 0 

r I;; (u) , 

UEV
l 

11(U)=l 

r I;; (v), 

V€V
2 

11(V)=l 

which will be shown to be satisfied by the l;(a) 's defined in (7.39) and the 

admissible potentials I;; (1") (V) 's in GB (1")' ~i'here we put 

(7.44) n(v) 1 if V € Iir)U I ~r) 

o otherwise. 

First, we observe that the l;(a)'s and 11 (V) 's defined in (7.39) and (7.44) 

obviously satisfy (7.37) and (7.38) since 1:he conditions (7.37) and (7.38) are 

expressed as 

(7.45) 

in terms of (7.39) and (7.44), so that they are feasible in the primal 

problem. Similarly, the conditions (7.41) are part of the conditions of 

compatibility of 1;;(1") in GB(r) and hence are satisfied, so that 1;;(1") (V) 's 

are feasible in the dual problem. 

The conditions (7.42) are satisfied since we have 

-w (a) ~ I;; (1") (d a) - I;; (r) (d a) 
2 1 

or 

(7.46) 

at the arcs a's of B{r) by virtue of the compatibility of I;;{r) at the arcs of 

B(r)*. G 
l.n (1") 

B 

In order to prove (7.43) we make use of Kruskal's theorem on "Minimum 

Spanning Trees"[13j. An obvious extension of his theorem (cf., e.g., [14]) 

says, "In order to find an independent set I of cardi:nality 1" of a matroid 
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M(V, Y) (to the elements of which "weights" are associated) such that the 

sum of the weights over I is the smallest among all the independent sets of 

cardinality r, one may start from J o = ~ (E Y), then augment J. to J. 1 = 
1,. 1,.+ 

J. U {v.} with the element V.(E V) which has the samllest weight among the 
'Z- 7.- 1.-

elements of V - cl(J
i

) (i = 0,1, ..• , r-l), and finally put I = Jr." 

If th e lements of I(r) (r) = {u ... u} l.'n such we arrange e 1 = dlB 1" r a way 

that 

(7.47) 

we can prove, as shown just below, that 

(7.48) 

for p = 1, 2, ... , r. Then, by Kruskal's theorem (as extenned above), vie have 

(7.49) min L I;, (r) (u) 

IlcY
l 

wI
l 

I III =r 

\' (r) 
L (r) I;, (u) , 

uEI
l 

which is equivalent to the first part of (7.43). (The second part is proved 

in a similar manner.) Thus, by Theorem 1, we are led to the desired result. 

To prove (7.48) we resort to the induction on p. Since we have 

(7.50) r,; (r) (V) ~ r,; (r) (u) 

for every V E VI - cl
l 
(Iir

» 

and every U E cl
l 
(Iir

» 

(r) , ~ 
from the admissibility of r,; l.n GB(r) , it suffices to prove (7.48) for 

(r) (r) 
V E cl

l 
(I

l 
). For p = 1 (7.48) is true, because every vertex V E cl

l 
(I

l 
) 

I (r) , 1 d I(r) D (II(r» h h - 1 l.S re ate to a vertex ui E 1 by 1 ui ' V 1 = 1 and ence t e 

compatibility of I;,(r) , together with (7.47), guarantees 

(7.51) r,; (r) (V) ~ r,; (r) (u.) ~ r,; (r) (u ). 
1- 1 

(r) 
Assuming that (7.48) is true for some p, let us take a vertex V E ell (I

l 
) 

- cl
l 

({Ul' "., Up}) and the element u
i 

E Iir
) which has the largest index i 

, , , {v} U Il(r). f among the elements of the Cl.rCUl.t l.n By the definition 0 v, the 

index i must be greater than or equal to p+l and we have 

(7.52) 

Therefore, we have 
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(7.53) I; (1') (V) ~ I; (1') (u.) > (1') ) 
-z.. - I; (Up+l ' 

i.e. (7.48) is true for p+l. 

Theorem 4 [4]. If there is no path of finite length from S~1') to S~1') 

~ (1') 
in G

B
(1')' then the B is a maximum independent matching. 

Proof: 
u 

Let us denote by S the set of those vertices of V
l 

V
2 

to 

(1') 
which there is a path of finite length from the entrances Sl ' and put 

Tl V
l 

- S, 
(7.54) 

T2 V
2 

n S. 

From the definition of S, T l' T2 and G 
B (1') 

it follows that 

TI VI 
_ S(1') (1') 

c cl
l 

eI I ), 
(7.55) 

I 

T2 c V
2 

_ S(1') cl (I(1'» 
2 2 2 

and 

Tl c cl
l 

(T
I 

n I (1') ) 

(7.56) 1 ' 

T2 c c1
2

(T
2 

n I(1'» 
2 ' 

and that 

(7.57) 

and 

(7.58) 'f B(1') , ~ J m ~ J T 
~ a E then e~ther ala ~ ~l or °2a ~ 2' 

Therefore, for an arbitrary independent matching B, we have from (7.57), 

(7.59) 181 $ I Tl n ,\BI + IT2 n a
2

BI 

$ P
l 

(T
l

) + P
2

(T
2

), 

where P
l 

and P
2 

are the rank functions of Ml (VI' Y
l

) and M
2

(V
2

, Y
2
), 

respectively. However, for the B(1') , we have, from (7.56) and property 

(VIII) of the matroid (§l), 

(7.60) 
Pl(T

l
) $ P

l 
(T

l 
n Ii1'» 

P
2

(T
2

) $ P
2

(T
2 

n I~1'» 

on the one hand, and, on the other, 

lIt) n T11 

lIt) n T21 

(7.61) I I(1') n T11 + II(1') n T I $ IB(1') I 
122 

from (7.58). (7.59) (with B(1') substitutE~d for B), (7.60) and (7.61) are 
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combined into 

IB(1')1 S Pl(T
l

) + P
2

(T
2

) S IB(1')1 

or 

(7.62) 

Comparison of (7.62) with (7.59) will yield the relation 

(7.63) 

which asserts the maximality of B(1') . 
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