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ABSTRACT 

An algorithm and data structure are presented for searching 

a file containing N records, each described by k real valued keys, 

for the m closest matches or nearest neighbors to a given query 

record. The computation required to organize the file is propor- 

tional to kNlogN. The expected number of records examined in 

each search is independent of the file size. The expected compu- 

tation to perform each search is proportional-to 1ogN. Empirical 

evidence suggests that except for very small files, this algorithm 

is considerably faster than other methods. 
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The Best Match or Nearest Neighbor Problem 

The best match or nearest neighbor problem applies to data files 

that store records with several real valued keys or attributes. The pro- 

blem is to find those records in the file most similar to a query record 

according to some dissimilarity or distance measure. Formally, given a 

file of N recor,ds (each of which is described by k real valued attributes) 

and a dissimilarity measure D, find the m closest records to a query 

record (possibly not in the file) with specified attribute values. 

A data file, for example, might contain information on all cities 

with post offices. Associated with each city is its longitude and lati- 

tude. If a letter is addressed to a town without a post office, the 

closest town that has a post office might be chosen as the destination. 

The solution to this problem is of use in many applications. Infor- 

mation retrieval might involve searching a catalog for those items most 

similar to a given query item; each item in the file would be cataloged 

by numerical attributes that describe its characteristics. Classification 

decisions can be made by selecting prototype features from each category 

and finding which of these prototypes is closest to the record to be 

classified. Multivariate density estimation can be performed by calcu- 

lating the volume about a given point ccntaining the closest m neighbors. 

Structures Used for Associative Searching 

One straightforward technique for solving the best match or nearest 

neighbor problem is the cell method. The k-dimensional key space is di- 

vided into small,identically sized cells. A spiral search of the cells 

from any query record will find the best matches of that record. Although _ 

this procedure minimizes the number of records examined, it is extremely 

costly in space and time, especially when the dimensionality of the space 

is large. 
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Burkhard and Keller [l] and later Fukunaga and Narendra [2] des- 

cribe heuristic strategies based on clustering techniques. These strate- 

gies use the triangle inequality to eliminate some of the records from 

consideration while searching the file. Although no calculations of ex- 

pected performance are presented, simulation experiments indfcate that 

these techniques permit a substantial fraction of the records to be 

eliminated from consideration. 

Friedman, Basket-t, and Shustek [3] describe another strategy for 

solving the nearest neighbor problem. It involves forming a projection 

of the records onto one or more keys, keeping a linear list on those 

keys, and searching only those records that match closely enough on one 

of the keys. The 

measures and does 

They were able to 

method is applicable to a wide variety of dissimilarity 

not require that they satisfy the triangle inequality. 

show that the expected computation required to search 

1 1 
the file with this method is proportional to kmk l$-*E . 

Rivest [4] shows the optimality of an algorithm due to Elias which 

deals with binary keys. That is, each key takes on only two values; the 

distance function applied is the Hamming distance. 

Shamos [5] employs the Voroni diagram (a general structure for 

searching the plane) to the best match problem for the special case of 

two keys per record (two dimensions) and Euclidean distance measure. He 

presents two algorithms. One can search for best matches in worst case 

O[(logN)2] time, after a file organization that requires storage propor- 

tional to N and computation proportional to NlogN. The other algorithm 

can perform the search in worst case O[logN] time, after a file organi- 

zation that requires both storage and computation proportional to N? 

Unfortunately, these methods have not yet been generalized to higher 
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dimensionalities or more general dissimilarity measures. 

Finkel and Bentley [6] describe a tree structure, called the quad 

tree, for the storage of composite keys. It is a generalization of the 

binary tree for storing data on single keys. Bentley l-71 develops a 

different generalization of the same one-dimensional structure; it is 

termed the k-d tree. In his article, Bentley suggests that k-d trees 

could be applied to the best match problem. 

This paper introduces an optimized k-d tree algorithm for the pro- 

blem of finding best matches. This data structure is very effective in 

partitioning the records in the file so that the average number of record 

examinations (1) involved in searching the file for best matches is quite 

small. This method can be applied with a wide variety of dissimilarity 

measures and does not require that they obey the triangle inequality. 

The storage required for file organization is proportional to N, while 

computation is proportional to kNlogN. For large files, the expected 

number of record examinations required for the search is shown to be in- 

dependent of the file size, N. The time spent in descending the tree 

during the search is proportional to logN, so that the expected time re- 

quired to search for best matches with this method is proportional to 

1ogN. 

Definition of the k-d Tree 

The k-d tree is a generalization of the simple binary tree used for 

sorting and searching. The k-d tree is a binary tree in which each node 

represents a subfile of the records in the file and a partitioning of 

that subfile. The root of the tree represents the entire file. Each 

nonterminal node has two sons or successor nodes. These successor nodes 
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represent the two subfiles defined by the partitioning. The terminal 

nodes represent mutually exclusive small subsets of the data records, 

which collectively form a partition of the record space. These terminal 

subsets of records are called buckets. 

In the case of one-dimensional searching, a record is represented 

by a single key and a partition is defined by some value of that key. 

All records in a subfile with key values less than or equal to the par- 

tition value belong to the left son, while those with a larger value be- 

long to the right son. The keg variable thus becomes a discriminator for 

assigning records to the two subfiles. 

In k dimensions, a record is represented by k keys. Any one of 

these can serve as the discriminator for partitioning the subfile repre- 

sented by a particular node in the tree; that is, the discriminating key 

number can range from 1 to k. The original k-d tree proposed by Bentley 

[7] chooses the discriminator for each node on the basis of its level in 

the tree; the discriminator for each level is obtained by cycling through 

the keys in order. That is, 

D=Lmodk+l 

where D is the discriminating key number for level L and the root node 

is defined to be at level zero. The partition values are chosen to be 

random key values in each particular subfile. 

This paper deals with choosing both the discriminator and partition 

value for each subfile, as well as the bucket size, to minimize the ex- 

pected cost of searching for nearest neighbors. This process yields 

what is termed an optimized k-d tree. 
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The Search Algorithm 

The k-d tree data structure provides an efficient mechanism for 

examining only those records closest to the query record, thereby greatly 

reducing the computation required to find the best matches. 

The search algorithm is most easily described as a recursive pro- 

cedure. The argument to the procedure is the node under investigation. 

The first invocation passes the root of the tree as this argument. Avail- 

able as a global array is the domain of that node; that is, the geometric 

boundaries delimiting the subfile represented by the node. The domain of 

the root node is defined to be plus and minus infinity on all keys. These 

geometric boundaries are determined by the partitions defined at the nodes 

above it in the tree. At each node, the partition not only divides the 

current subfile, but it also defines a lower or upper limit on the value 

of the discriminator key for each record in the two new subfiles. The 

accrual of these limits in the ancestors of any node defines a cell in 

the multidimensional record-key space containing its subfile. The volume 

of this cell is smaller for subfiles defined by nodes deeper in the tree. 

If the node under investigation is terminal, then all the records in the 

bucket are examined. A list of the m closest records so far encountered 

and their dissimilarity to the query record is always maintained as a 

priority queue during the search. Whenever a record is examined and 

found to be closer than the most distant member of this list, the list 

is updated. If the node under investigation is not terminal, the recur- 

sive procedure is called for the node representing the subfile on the 

same side of the partition as the query record. When control returns, a 

test is made to determine if it is necessary to consider the records on 

the side of the partition opposite the query record. It is necessary to 
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consider that subfile only if the geometric boundaries delimiting those 

records overlap the ball centered at the query record with radius equal 

to the dissimilarity to the mth closest record so far encountered. This 

is referred to as the "bounds-overlap-ball" test. If the bounds-overlap- 

ball test fails, then none of the records on the opposite side of the 

partition can be among the m closest records to the query record. If the 

bounds do overlap the ball, then the records of that subtree must be con- 

sidered and the procedure is called recursively for the node representing 

that subfile. A "ball-within-bounds" test is made before returning to 

determine if it is necessary to continue the search. This test deter- 

mines whether the ball is entirely within the geometric domain of the 

node. If so, the current list of m best matches is correct for the en- 

tire file and no more records need be examined. The bounds-overlap-ball 

and ball-within-bounds tests are described in Appendix 1. Appendix 2 

contains a detailed description of the complete search algorithm using 

an algorithmic notation. 

The Optimized k-d Tree 

The goal of the optimization is to minimize the expected number of 

records examined with the search algorithm. The parameters to be adjusted 

are the discriminating key nwnber and partition value at each non-terminal 

node, and the number of records contained in each terminal bucket. 

The solution to the optimization will, in general, depend upon the 

distribution of query records in the record key space. Usually, one has 

no knowledge of this distribution in advance of the queries. Thus, we 

seek a procedure that is independent of the distribution of queries and 

only uses information contained in the file records. Such a procedure 

will be seen to be good for all possible query distributions but will not 

be optimal for any particular one. 
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A second restriction is that the solution values for discriminating 

key number and partition value at any particular node depend only on the 

subfile represented by that node. This restriction is necessary so that 

the k-d tree can be defined recursively, avoiding a general binary tree 

optimization. Such an optimization is known to be NP-complete [8] and 

thus, very likely of non-polynomial time complexity. 

Under these two restrictions, we can provide a prescription for 

choosing the discriminating key and partition value at each nonterminal 

node. The information provided to the search algorithm by the partition- 

ing is the location of the partition and the identities of those records 

that lie on either side. It is well known that information provided to 

a binary choice is maximal when the two alternatives were equally likely. 

Thus, each record should have had equal probability of being on either 

side of the partition. This criterion dictates that we locate the parti- 

tion at the median of the marginal distribution of key values, irrespec- 

tive of which key is chosen for the discriminator. 

The search algorithm can exclude searching the subfile on the opposite 

side of the partition to the query record if the partition does not inter- 

sect the current m-nearest neighbor ball. That is, if the distance to 

the partition is greater than the radius of the ball. By definition, the 

radius is the same along all key coordinates. Thus, the probability of 

the partition intersecting the ball is least (averaged over all possible 

query locations) for that key which exhibited the greatest spread or 

range in values before the partitioning. 

The prescription for optimizing the k-d tree, then, is to choose at 

every nonterminal node the key with the largest spread in values as the 

discriminator, and to choose the median of the discriminator key values 
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as the partition. The optimum number of records for each terminal bucket 

is developed in the next section on analysis of performance. Appendix 3 

presents an algorithm that builds an optimized k-d tree according to this 

prescription. 

Analysis of the Performance 

The storage required for file organization is proportionalto the 

file size, N. The discriminating key number and partition value must be 

stored for each nonterminal node of the k-d tree. (2) The number of non- 

N 
terminal nodes is I; 

11 
- lwhere b is the number of records in each term- 

inal bucket. 

The computation required to build the k-d tree is easily derived. 

At each level of the tree, the entire set of key values must be scanned. 

This requires computation proportional to kN. The depth of the tree is 

logN, so the total computation to build the tree is proportional to 

kNlogN. [Here we are solving the recurrence relation TN = 2T N/2 + m' 

which is well-known to have the solution TN = O(kNlogN).] 

The expected time performance of the search is not so easily derived. 

It is most easily discussed in a geometric framework. Let ?i = 

C',(l), xi(2), " ' Xi(k)] represent the set of key values for the ith record 

in the file. If the value of each key is plotted along a coordinate axis, 

then the set of key values for a record represents a point in a coordinate 

space of k dimensions. The entire file is a collection of such points in 

k-dimensional coordinate space. The query record can similarly be repre- 

sented as a point, x" 
q' 

in this space. The best match problem is then to 

find the m closest points to the query point in this space by the given 

dissimilarity measure. 
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The performance of the algorithm may depend upon the total number 

of records in the file, N, the dimensionality (number of keys), k, the 

number of nearest neighbors sought, m, the number of records in the 

terminal buckets, b, the dissimilarity measure D(?,?), employed, and the 

distribution p(x", of the file records in the record key space. 

Let S-(3-) be the smallest ball in the coordinate space centered 

is, 
l” Y 

at ?q that exactly contains the m closest points to x” 
q' 

That 

So q {x” 1 D(x’,?q) 5 D(it,~?~) 3 0) 

where 4 is the mth nearest neighbor to ? . The volume 
q 

and the probability content of this region, um(zq), is defined 

as 

J 
~(8 dx", with 0 I um(Xq) Il. (3) 

sm(2q) 

It can be shown [g] that the probability distribution of um,(Tq) 

follows a beta distribution, B(m,N); that is, 

dim) = (m-l):(N-m), . . ruml m-1 [ l-;lm]N-m (4) 

independently of the probability density function of the points, p (3, 

or the dissimilarity measure, D@,% - The expected value of this dis- 

tribution is 

E[u,l = 
m 

urn p[u,l du = - 
m N+l 
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These results state that any compact volume enclosing exactly m points 

has probability content m/(N+l) on the average. 

To proceed further, we assume that the file size, N, is large 

enough so that Sm(zq) is small and thus the probability distribution 

p(x", is approximately constant within the region Sm(?q). In this case, 

we can approximate eqn 3 by . 

and from eqn 5 

E[vm(X3,)] 3 m ' . 
N+l p (xi,, 

(7) 

Here 5 (zq) is the probability density averaged over the small region 

sm($) * Note that it can never be zero. 

Consider now the effect of the optimized k-d tree partitioning al- 

gorithm described in the previous section. Choosing the median insures 

that each bucket will contain very nearly b records, where b is the maxi- 

mum bucket size. Choosing the key with the largest spread in values at 

each node insures that the geometric shape of these buckets will be 

reasonably compact. In fact, the expected shape of these buckets is 

hypercubical with edge length equal to the kth root of the volume of the 

space occupied by the bucket. The edges are parallel to the coordinate 

axes. The effect of the optimized k-d tree partitioning, then, is to 

divide the coordinate space into approximately hypercubical subregions, 

each containing very nearly the same number of records. From eqn 7, we 

have that the expected volume of such a bucket is 

E[vb(‘b)I - j& +j 
b 

(8) 
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G 5 bc = b{[ ; G(k)] 
; 

+ ljk . 02) 

Two important results follow from this expression. First, 

minimizing it with respect to b yields the result b=l; to minimize 

the (upper bound on the) number of records examined, the terminal 

buckets should each contain one record. With this provision, kqn 12 

becomes 
1 

5 2 {[ mG(k)] 
E 

+ ljk. 03) 

The second important result is that the expected number of records ex- 

amined is independent of the file size, N, and the probability dis- 

tribution of the key values, p (3, in the record key space. 

Although derived here in a somewhat obtuse fashion, these results 

can be easily understood intuitively. If the goal is to minimize the 

accumulated coverage of all the buckets overlapped by any region, then 

the partitioning should be as fine as possible. This is accomplished 

by making each bucket as small as possible. 

The independence of the number of overlapped buckets to file size 

and distribution of key values is a direct consequence of the prescription 

for optimizing k-d trees. This prescription partitions the k-dimensional 

record space so that each terminal bucket has the same properties as the 

region, Sm(?q), containing the m best matches. Namely, each contains 

a fixed number of records (b and m, respectively) and their geometrical 

shapes are reasonably compact. As a result, the dependence of the buc- 

ket volumes on total file size and distribution of key values is identi- 

cal to that for the region Sm(?q) containing the m best matches. As the 

file size or the local key density increases, the bucket volumes and the 

volume containing the m best matches shrink at exactly the same rate, 

leaving the number of overlapped buckets, J, constant. 
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The constancy of the number of records examined as file size in- 

creases implies that the time required to search for best matches is 

logarithmic in file size. The k-d tree is a balanced binary tree. Thus, 

the time required to descend from the root to the terminal buckets is 

logarithmic in the number of nodes,which is directly proportional to the 

file size, N. The amount of backtracking in the tree is proportional to 

4, which we have demonstrated to be independent of N. Thus, the expected 

search time for the m best matches to a prespecified query record is pro- 

portional to 1ogN. 

I .  Dissimilarity Measures 

The derivations of the preceding section make no explicit assumptions 

concerning the particular dissimilarity measure, D(x",%, employed. There 

are, however, some implicit assumptions that are now discussed., 

A dissimilarity measure is defined as 

k 

D(x",,3 = F 
11 

fib(i), YWI 3 04) 

i=l 

where the k -i- 1 arbitrary functions F and {fi]tZl, are required to satisfy 

the basic properties of symmetry 

f,b,Y) = f,(Y,X) 15i5k (15s) 
I 

and monotonicity 

J. 

F(x) 2 F(Y) if x>y 

‘z 2 y-l x 

fi(x,z) 2 fi(x,y) if \ or ! 

xryr z j 

The k functions, {fi(x,y)]t,L, are called the 

(15b) - 

Isick . 05c) 

coordinate distance functions; 

they define the one-dimensional distance along each coordinate. Since the 
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spread in coordinate values is defined to be the average distance from 

the center, the ith coordinate distance function should be used to 

estimate the spread in the ith key values during the construction of the 

optimized k-d tree. (Th ese coordinate distance functions also appear in 

the bounds-overlap-ball and ball-within-bounds tests described in Appen- 

dix 1.) To this extent, the construction of the k-d tree depends upon 

the particular dissimilarity measure employed. It is not necessary that 

exactly these functions be used in building the k-d tree. The purpose 

of the spread estimation is to order the key numbers. Any set of func- 

tions that yields the same ordering as the coordinate distance functions 

will serve just as well. For example, if the coordinate distance func- 

tions are all identical, that is, fi(x,y) = f(x,y) for II i 5 k, then 

the linear function ?(x,y) = Ix-y/ can be used to estimate the spread in 

key values. 

The properties of the dissimilarity measure enter into this algorithm 

directly through the bounds-overlap-ball and ball-within-bounds tests (see 

Appendix 1). These tests require only two properties of a dissimilarity 

measure. First, the dissimilarity between two points, 63, must be 

nondecreasing with increasing linear distance, IX(i)-W)l, along any co- 

ordinate. Second, a partial dissimilarity based on any subset of the co- 

ordinates must be less than or equal to the actual dissimilarity based 

on the full coordinate set. The form required for a dissimilarity measure .- 

by eqn 14, together with the restrictions of eqn 15, are sufficient to 

guarantee both of these properties. 

A dissimilarity measure is said to be a metric distance if, in 

addition to symmetry and monotonicity (eqns 14-15c), it obeys the tri- 

angle inequality 

D(x",?) + D(?,,z? 2 D(?,a. 06) 
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The most common metric distances are the vectorspace p-norms 

rk 

0,(x”,?) = ‘1 
i 

IX(i) - Y(i)j' i; 
i=l r 

m) 

Of these, the most commonly used are: 

p = 1: taxicab or city block distance 

p = 2: Euclidean distance 

p= co: maximum coordinate distance . 

That is, 

D,o,(?,?) = max IX(i) - Y(i)/ . 08) 
llilk 

Since the separate coordinate distance functions are identical for these 

distances, the linear distance function, ?(x,y) = Ix-y/, can be used to 

estimate the key spreads for building the k-d tree. (3) For the special 

case of the p = co distance (eqn 18), the geometric constant G(k) (eqns 

9a and 13) is unity, and the inequality of eqn 13 becomes an equality. 

For this particular distance, we can therefore calculate the expected 

number of records examined (instead of an upper bound on the ex- 

pected number) as a function of the number of best matches, m, and number 

of keys, k : 

i 

Rco(m,k) = (m + l)k . (1-9) 

Note that for m=l, Rco(l,k) = 2k. The number of buckets overlapped by a 

ball of constant volume decreases with increasing p, so the p = co result 

serves as a lower bound for all vector space p norms. -- 
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There is an assumption that is implicit in the results of the pre- 

vious section. It is that the search algorithm examines the buckets in 

optimal order; that is, in order of increasing dissimilarity from the 

query record. It is not clear how close the k-d tree search algorithm 

comes to this ideal. Since this inefficiency is purely geometrical, it 

can be absorbed into the geometric constant, G(k), in eqns 12 and 13, 

., 

leaving the general conclusions unchanged. However, to the extent that 

this inefficiency does exist, eqn 19 is overly optimistic (as it assumes 

G(k) = 1) and thus, eqn 19 represents a lower bound even for the p = co 

distance. 

Simulation Results 

Several simulations were performed to gain insight into the perfor- 

mance of the algorithm and to compare it to the performance predicted by 

eqn 19. The results are presented in Figures 1 and 2. For each simu- 

lation, a file of 8192 sets of record keys was generated from a normal 

distribution with unit dispersion matrix. A similar set of 2000 query 

record keys was generated and the number of record examinations required 

to find the m best matches was averaged over these 2000 queries. The 

statistical uncertainty of these averages is quite small, being around 

two percent in the worst cases. 

Figure 1 shows how the average number of record examinations required 

to find the best match (m=l) varies with dimensionality (number of keys per - 

record). Results are shown both for the p=2 (Euclidean) and the p=co vec- 

tor space norms. The solid line represents eqn l-9 which predicts the 

expected number for the p = co metric (R = 2k). 

The behavior of the algorithm corresponds closely to that discussed 

in the previous section. For low dimensionality (k I6), the p=co results 
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strongly exhibit the 2k dependence. These simulation results indicate 

that, at least for m=l, the k-d tree search algorithm is not far from 

optimal. For those dimensionalities (k 5 6) where N = 8192 appears to 

be big enough for the validity of the large file assumption, (4) the simu- 

lation results for p = co lie no more than 2C$ above that predicted by 

eqn 19. 

The Euclidean distance results shown in Figure 1 confirm that the 

performance of the algorithm for lower p-norms is not as good as for 

p=co. The increase in expected number of records examined is not severe, 

but becomes more pronounced for the higher dimensionalities. If a dis- 

tance is to be chosen mainly for rapid calculation, the p=co distance is 

a good choice. 

Figure 2 shows how the number of records examined depends on the num- 

ber of best matches sought. The average number of record examinations re- 

quired to find the corresponding number of best matches for both the 

Euclidean and p=co norms is displayed along with the prediction of eqn 19 

(solid line). The average number of records examined rises with increasing 

number of best matches slightly more slowly than linearly. One would in- 

tuitively expect the increase to be linear since the expected volume of 

the m-nearest neighbor ball grows linearly with m. The average number of 

overlapped cells, therefore, should increase similarly. This is approxi- 

mately borne out by the results shown. Figure 2 also shows that the effect - 

of the non-optimality of the search algorithm becomes more pronounced for 

a larger number of best matches. If it is assumed that 8192 records is 

large enough so that the large file assumption is valid even for m=25 in 

fwa dtiensions, thee Figure 2ashows that the inefficiency-‘ls-l%--r--- 

m-l and 5% for m=25. 
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Implementation 

The above discussion has centered on the expected number of records ex- 

amined as the sole criterion for performance evaluation cf the algorithm. 

This has the advantage that evaluation is independent of the details of 

implementation and the computer upon which the algorithm is executed. Al- 

though the computational requirements of the algorithm are strongly related 

to the number of records examined, there are other considerations as well. 

These considerations include the computation required to build the k-d 

tree and the overhead computation required to search the tree. 

The computation required to build the k-d tree is proportional to 

kNlogN, as previously stated. This is illustrated empirically in Figure 

3 where the actual computation (5) per record needed to build the tree is 

shown as a function of the total number of records for several values of k. 

The overhead required to search the tree is dominated by the bounds- 

overlap-ball calculation. This calculation must be performed at each 

non-terminal node visited in the search. As described in Appendix 1, 

it involves calculating the dissimilarity from the query record to the 

closest boundary of the subfile under consideration. The coordinate dis- 

tances are compared one key at a time; if the boundary is far from the 

test point, the subfile can be excluded quickly on the basis of only a 

few keys. If, on the oth.erhand,the boundary is close to the test point, 

then it may be necessary to examine most or all of the keys. If the 

bounds do in fact overlap the ball, then all keys are included and the 

test becomes as expensive as a full dissimilarity calculation. This 

suggests that if a subfile is very likely to overlap the ball, it should 

simply be investigated and the bounds-overlap-ball calculation omitted. 

This situation is most likely to occur near the bottom of the tree where 
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the file records are closest to the query record. Therefore, it may be 

profitable to increase the bucket sizes even at the expense of increasing 

the number of record comparisons. 

With one record per bucket, a bounds-overlap-ball calculation must 

be made for each file record close to the query record near the-bottom of 

the tree. With several records per bucket, a bounds-overlap-ball calcu- 

lation need only be performed once for each bucket. Since the records in 

a bucket are relatively close together, it is very likely that if one of 

them passes the test, most or all will pass. It is then more computation- 

ally efficient to have larger bucket sizes ezen though this increases 

the number of records examined. 

This speculation is confirmed in Figure 4. Here the computation re- 

quired for finding best matches is shown for various bucket sizes. In- 

creasing the bucket size from one record per bucket considerably improves 

the performance of the search. This improvement is approximately constant 

for bucket sizes from 4 to 32. 

Although Figure 4 shows results for only a few situations, other 

simulations (not shown) verify that this behavior is completely indepen- 

dent of dimensionality, k, number of best matches, m, and number of file 

records, N. 

Comparison to Other Methods 

The only previous method with verified expected performance for 

various dimensionalities, number of best matches, and number of file 

records is the sorting algorithm of Friedman, Baskett and Shustek [?I]. 

This algorithm has been shown to yield a considerable improvment over 

the brute force method (linear search over all the records in the file) 

for a wide variety of situations. Figure 5 shows the computation (CPU 
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milliseconds per query) required by this sorting algorithm and the k-d 

tree algorithm (using buckets of sixteen records) for increasing file size. 

Also shown is the average number of records examined under the k-d tree 

method. The rate of increase of this average with increasing file size 

indicates how near it is to the asymptotic limit where the large file as- 

sumption is valid. The results in Figure 5 show that in two dimensions 

near-asymptotic behavior occurs even for files as small as 128 records. 

In four dimensions, the asymptotic limit appears reasonably close for 

file sizes greater than 2000. In eight dimensions, the limit is not near 

for files of 16000 records. Even for this case, however, the increase 

in average number of records examined with file size is only slightly 

faster than logarithmic. 

The logarithmic behavior 

size increases is illustrated 

of the overall computation as the file 

for the k-d tree algorithm in Figure 5, 

except that for eight dimensions the 

Comparison of Figure 3 to Figure 5 

tation involved in building the tree 

increase is slightly faster. (6) 

shows that the preprocessing compu- 

is not excessive. The fraction of 

computation spent on preprocessing decreases with increasing dimensionality. 

When the number of query records is the same as the number of file records, 

preprocessing represents about 25% of the total computation for two di- 

mensions, while for eight dimensions that fraction is between three and 

five percent. 

The computation required by the sorting algorithm has been shown 
11 
I; 1-I; 

[3] to be proportionalto km N . Although this is much worse than 

logN, the sorting algorithm introduces very little overhead so that for 

very small files, it is faster than the k-d tree algorithm. For larger 
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files, ,however, the k-d tree algorithm is seen to have a clear computational 

advantage, especially for higher dimensions. (7) 

Implementation on Secondary Storage 

. . 

Efficient operation of the k-d tree algorithm does not require that 

all of the terminal buckets reside in fast memory. During the.preproc- 

essing, these data can be arranged on an external storage device so that 

records in the same bucket are stored together. Buckets close together 

in the tree can be stored similarly. Since the search algorithm examines 

a small number of buckets on the average, there will be few accesses to 

the external storage for each query. 63) For ex&memely large files, it 

is not even necessary that the entire k-d tree reside in fast memory. 

Only the top levels of the tree need to be in fast memory; the lower 

levels can be stored on an external device under an arrangement that 

keeps non-terminal nodes close to their sons. 
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This appendix describes algorithms for the bounds-overlap-ball and 

ball-within-bounds tests discussed in the text. 

APPENDIX 1 

The purpose of the bounds-overlap-ball test is to determine if the 

geometric boundaries delimiting a subfile of records overlap a ball cen- 

tered at the query record with radius r equal to the dissimilarity to the mth 

closest record so far encountered. That is, r = D(?m,?q) where x" is the 
q 

query record and zrn is the mth best match so far encountered in the search. 

The technique employed is to find the smallest dissimilarity between the 

bounded region and the query record. If this dissimilarity is greater 

than r, then the subfile can be eliminated from consideration. This mini- 

mal dissimilarity is determined as follows: if the query record's jth key 

is within the bounds for the jth coordinate of the geometric domain, then 

the jth partial distance is set to zero; otherwise it is set to the co- 

ordinate distance f 
3 

(eqns 14, 15) by which the key falls outside the do- 

main in that coordinate. If any of these coordinate distances is greater 

than the radius of the neighborhood, then there is no overlap between the 

domain and the neighborhood. If the sum of coordinate distances exceeds 

F-l(r) (eqn 14), there is no overlap. The test can terminate with failure 

as soon as the partial sum of coordinate distances exceeds F -l(r). In 

the special case of the p=co vector space norm, this technique reduces 

to testing whether any of the distances is greater than the radius and, 

if so, failing. 

The ball-within-bounds test is simpler. Here the coordinate distance 

from the query record to the closer boundary along each key is in turn 

compared to the radius, r. The test fails as soon as one of these co- 

ordinate distances is less than the radius. The test succeeds if all 
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of these coordinate distances are greater than the radius. 

Descriptions of these tests in an algorithmic notation are presented 

in the next appendix. 

APPENDIX 2 

This appendix presents the k-d tree search algorithm 

mic notation. 

global 

Xq[l:k], "key values of the query record" 

in an algorith- 

WD[l:ml, "priority queue of the m closest distances en 

countered at any phase of the search. RD[ 11 

is the distance to the mth nearest neighbor so 

far encountered." 

P&R[l:ml, "priority queue of the record numbers of the 

corresponding m best matches encountered at 

any phase of the search" 

B+[l:kl, "coordinate upper bounds" 

B-b:k], "coordinate lower bounds" 

discriminator [l:I], "discriminator at each k-d tree node" 

partition [l:I]; "partition value at each k-d tree node" 

"I is the number of internal nodes' 

"initialize" P&D[l:m] t co; B+[l:k] t CO; B-[l:k] + - ~0; 

"search" SEARCH(root); 

procedure SEARCH(node); 

begin 

local p, a, temp; 

if node is terminal 

then begin I_- 

(examine records in bucket(node), updating P&D, p&R); 

if BALL WITHIN BOUNDS then done else return - --I_ 

e+; 

d tdiscriminator[node]; p tpartition[node]; 
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"recursive call on closer son" 

if X 
- q 

[d] 5 p 

then begin 

temp +-B+[dl; B+[dl +P; 

SEARCH(leftson(node)); B+[d] ttemp; 

end 

else begin -- 

temp tB-[d]; ~-[a] +P; 

SEARCH(rightson(node)); B-Cd] ttemp; 

'recursive call on farther son, if necessary" 

if X [d] 5 p 
- q 

then begin -- 

temp +B-[dl; B-Cdl +P; 

if BOUNDS OVERLAP BALL then SRARCH(rightson(node)); 

B-b] ttemp; 

end 

else begin -- 

temp + B+[aJ; B+Cdl + P; 

if BOUNDS OVERLAP BALL then SEARCH( - 

B+[d] ttemp; 

a; 

'see if we should return or terminate' 

leftson(node) 

i-J BALL WITHIN BOUNDS then done else return; --- 

>; 
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logical procedure BALL WITHIN BOUNDS; 

begin 

local d; 

for d t 

if - 

or - 

1 step 1 until k do -- 

COORDINATE DISTANCE (d, Xq[d], B-L 

COORDINATE DISTANCE (d, Xq[d], B+[ 

., 

then return(false); 

return(true); 

a; 

logical procedure BOUNDS OVERLAP BALL; 

begin 

local sum, d; 

sum to; 

for d t 1 step 1 until k & 

if Xqral < B-t-d] 

then begin "lower than low boundary" 

sum +-sum + COORDINATE DISTANCE 

s DISSIM(sum) > 

end 

if Xqkd > B+[dl 

FQD[l] then return (true); 

else 

then begin "higher than high boundary" 

sum t sum + COORDINATE DISTANCE (d,Xq[d], B,[d]); 

if DISSIM(sum) > KJD[l] then return (true); 

a; 

aI> 5 P&DC 1-l 

(d,Xq[d], B-La]); 

return (false); 

*; 
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The procedures DISSIM (x) and COORDINATE 

functions F(x) and fj(x,y) that appear in the 

ilarity measure (eqn 14). 

APRENDIX 3 

DISTANCE (j,x,y) are the 

definition of the dissim- 

This appendix presents a description in an algorithmic notation of 

the procedure for constructing an optimized k-d tree for best match file 

searching. 

root tBUILD TREE (entire file); 

node procedure BUILD TREE (file); 

begin 

local j,d, maxspread, p; 

if SIZE(subfile) 5 b then return@&?, TERMINAL(file)); - 

maxspread to; 

for j tl step 1 until k do - - "find coordinate with greatest spreadll 

if SPREADEST(j,file) > maxspread - 

then begin 

maxspread tSPREADEST(j,file); 

d tj; 

e&; 

en&; 

p tMEDIAN(d,file); 

return MARE NONTERMINAL(d,p,BUILMREE(LEFT SUBFILE(d,p,file)),BUILM'REE - 
(RIGHTSUBFILE(d,p,file)); 

The procedure SFREADEST (j,subfile) returns the estimated jth key 

value spread for the records in the subfile represented by the node, using 

the jth coordinate distance function. The procedure MEDIAN (j,subfile) 

returns the median of the jth key values. MfKE TERMINAL and MAKE NONTERMINAL 

are procedures that store their parameters as values of a node in the k-d 

tree and return a pointer to that node. 
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FOOTNOTES 

(1) A record examination involves fetching the record keys from memory, 

calculating the dissimilarity to the query record, comparing it 

to the dissimilarity to the mth closest record so far encounter- 

ed, and if necessary, updating the list of m closest records. 

(2) Since the k-d tree is a complete binary tree, it is not necessary 

to store pointers to the sons of each nonterminal node [11]. 

(3) The spread of values along each key can be estimated by cal- 

culating the trimmed variance of the key values. The trimming in- 

sures that the estimate is robust against extreme outliers. 

(4) Asymptotic behavior can be determined empirically by observ- 

ing the rate of increase of the average number of records examined 

with increasing file size. This is illustrated in Figure 5. 

(5) All simulations were performed on an IBM 370/168 computer. All 

programs were coded in FORTRAN IV and compiled with the IBM FORTRAN 

H (extended) compiler with optimization level two. 

(6) The behavior for eight dimensions will, of course, become logarith- 

mic for large enough file sizes. 

(7) The comparison in Figure 5 is for the best match (m=l) since this is 

the most co 
T 

on application. The increase in computation for larger 

E 
m grows as m for the sorting algorithm, while for k-d tree algor- 

ithm, it grows nearly linearly with m. Thus, for large numbers of 

best matches, the crossover file size at which the performance of 

the two algorithms is comparable will increase. 

(8) Inspection of Figure 5 shows that for bucket size of 16 records,the 

average number of buckets accessed is 1i.56, 6.25 and 75.0 for two, 

four, and eight dimensions, respectively, for total file size of 

16000 records. Increasing the bucket size to 32 records (not shown) re- 

duces the average number of accesses for eight dimensions to 44.0 while 

increasing the total computation required for the search by only 8%. 
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I 

FIGURF: CAPTIOrJS 

FIGURE 1. Variation of the average number of records examined 

with dimensionality (number of keys per record) for 

constant file size. Results are shown for the Euclidean 

FIGURE 2. 

FIGURE 3. 

(p=2) and p=co metrics. The solid line is the pre- 

diction of eqn 19 for the p=co metric. 

Variation of the average number of records examined 

with number of best matches sought for several dimen- 

sionalities. Results are shown for the Euclidean 

(p=2) and p=co metrics. The solid lines are the pre- 

dictions of eqn 19 for the p=oo metric. 

Computation per file record required to build the k-d 

tree as a function of total file size for several 

FIGURE 4. 

FIGURF: 5. 

dimensionalities. 

Computation required 

function of terminal 

Computation required 

for the best match search as a 

bucket size. 

for best match searching as a 

function of total file size for both the sorting and 

k-d tree algorithms at several dimensionalities. 

Also shown is the variation of the average number of 

records examined with total file size. Terminal * 

buckets of 16 records were used with the k-d tree 

algorithm. 
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