
SLAC-PUB-1549 (Rev.)
STAN-CS-75-482
February 1975
Revised December 1975
Revised July 1976

AN ALGORITHM FOR FINDING BEST MATCHES

IN LOGARITHMIC EXPECTED TIME

Jerome H. Friedman
Stanford Linear Accelerator Center

Stanford University, Stanford, Ca. 94305

Jon Louis Bentley
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, N.C. 27514

Raphael Ari Finkel
Department of Computer Science

Stanford University, Stanford, Ca. 94305

ABSTRACT

An algorithm and data structure are presented for searching

a file containing N records, each described by k real valued keys,

for the m closest matches or nearest neighbors to a given query

record. The computation required to organize the file is propor-

tional to kNlogN. The expected number of records examined in

each search is independent of the file size. The expected compu-

tation to perform each search is proportional-to 1ogN. Empirical

evidence suggests that except for very small files, this algorithm

is considerably faster than other methods.

(Submitted to ACM Transactions on Mathematical Software)

Work supported in part by U.S. Energy Research and Development
Administration under contract E(O43)515

The Best Match or Nearest Neighbor Problem

The best match or nearest neighbor problem applies to data files

that store records with several real valued keys or attributes. The pro-

blem is to find those records in the file most similar to a query record

according to some dissimilarity or distance measure. Formally, given a

file of N recor,ds (each of which is described by k real valued attributes)

and a dissimilarity measure D, find the m closest records to a query

record (possibly not in the file) with specified attribute values.

A data file, for example, might contain information on all cities

with post offices. Associated with each city is its longitude and lati-

tude. If a letter is addressed to a town without a post office, the

closest town that has a post office might be chosen as the destination.

The solution to this problem is of use in many applications. Infor-

mation retrieval might involve searching a catalog for those items most

similar to a given query item; each item in the file would be cataloged

by numerical attributes that describe its characteristics. Classification

decisions can be made by selecting prototype features from each category

and finding which of these prototypes is closest to the record to be

classified. Multivariate density estimation can be performed by calcu-

lating the volume about a given point ccntaining the closest m neighbors.

Structures Used for Associative Searching

One straightforward technique for solving the best match or nearest

neighbor problem is the cell method. The k-dimensional key space is di-

vided into small,identically sized cells. A spiral search of the cells

from any query record will find the best matches of that record. Although _

this procedure minimizes the number of records examined, it is extremely

costly in space and time, especially when the dimensionality of the space

is large.

-l-

I

Burkhard and Keller [l] and later Fukunaga and Narendra [2] des-

cribe heuristic strategies based on clustering techniques. These strate-

gies use the triangle inequality to eliminate some of the records from

consideration while searching the file. Although no calculations of ex-

pected performance are presented, simulation experiments indfcate that

these techniques permit a substantial fraction of the records to be

eliminated from consideration.

Friedman, Basket-t, and Shustek [3] describe another strategy for

solving the nearest neighbor problem. It involves forming a projection

of the records onto one or more keys, keeping a linear list on those

keys, and searching only those records that match closely enough on one

of the keys. The

measures and does

They were able to

method is applicable to a wide variety of dissimilarity

not require that they satisfy the triangle inequality.

show that the expected computation required to search

1 1
the file with this method is proportional to kmk l$-*E .

Rivest [4] shows the optimality of an algorithm due to Elias which

deals with binary keys. That is, each key takes on only two values; the

distance function applied is the Hamming distance.

Shamos [5] employs the Voroni diagram (a general structure for

searching the plane) to the best match problem for the special case of

two keys per record (two dimensions) and Euclidean distance measure. He

presents two algorithms. One can search for best matches in worst case

O[(logN)2] time, after a file organization that requires storage propor-

tional to N and computation proportional to NlogN. The other algorithm

can perform the search in worst case O[logN] time, after a file organi-

zation that requires both storage and computation proportional to N?

Unfortunately, these methods have not yet been generalized to higher

-2-

dimensionalities or more general dissimilarity measures.

Finkel and Bentley [6] describe a tree structure, called the quad

tree, for the storage of composite keys. It is a generalization of the

binary tree for storing data on single keys. Bentley l-71 develops a

different generalization of the same one-dimensional structure; it is

termed the k-d tree. In his article, Bentley suggests that k-d trees

could be applied to the best match problem.

This paper introduces an optimized k-d tree algorithm for the pro-

blem of finding best matches. This data structure is very effective in

partitioning the records in the file so that the average number of record

examinations (1) involved in searching the file for best matches is quite

small. This method can be applied with a wide variety of dissimilarity

measures and does not require that they obey the triangle inequality.

The storage required for file organization is proportional to N, while

computation is proportional to kNlogN. For large files, the expected

number of record examinations required for the search is shown to be in-

dependent of the file size, N. The time spent in descending the tree

during the search is proportional to logN, so that the expected time re-

quired to search for best matches with this method is proportional to

1ogN.

Definition of the k-d Tree

The k-d tree is a generalization of the simple binary tree used for

sorting and searching. The k-d tree is a binary tree in which each node

represents a subfile of the records in the file and a partitioning of

that subfile. The root of the tree represents the entire file. Each

nonterminal node has two sons or successor nodes. These successor nodes

-3-

.,

represent the two subfiles defined by the partitioning. The terminal

nodes represent mutually exclusive small subsets of the data records,

which collectively form a partition of the record space. These terminal

subsets of records are called buckets.

In the case of one-dimensional searching, a record is represented

by a single key and a partition is defined by some value of that key.

All records in a subfile with key values less than or equal to the par-

tition value belong to the left son, while those with a larger value be-

long to the right son. The keg variable thus becomes a discriminator for

assigning records to the two subfiles.

In k dimensions, a record is represented by k keys. Any one of

these can serve as the discriminator for partitioning the subfile repre-

sented by a particular node in the tree; that is, the discriminating key

number can range from 1 to k. The original k-d tree proposed by Bentley

[7] chooses the discriminator for each node on the basis of its level in

the tree; the discriminator for each level is obtained by cycling through

the keys in order. That is,

D=Lmodk+l

where D is the discriminating key number for level L and the root node

is defined to be at level zero. The partition values are chosen to be

random key values in each particular subfile.

This paper deals with choosing both the discriminator and partition

value for each subfile, as well as the bucket size, to minimize the ex-

pected cost of searching for nearest neighbors. This process yields

what is termed an optimized k-d tree.

-4-

The Search Algorithm

The k-d tree data structure provides an efficient mechanism for

examining only those records closest to the query record, thereby greatly

reducing the computation required to find the best matches.

The search algorithm is most easily described as a recursive pro-

cedure. The argument to the procedure is the node under investigation.

The first invocation passes the root of the tree as this argument. Avail-

able as a global array is the domain of that node; that is, the geometric

boundaries delimiting the subfile represented by the node. The domain of

the root node is defined to be plus and minus infinity on all keys. These

geometric boundaries are determined by the partitions defined at the nodes

above it in the tree. At each node, the partition not only divides the

current subfile, but it also defines a lower or upper limit on the value

of the discriminator key for each record in the two new subfiles. The

accrual of these limits in the ancestors of any node defines a cell in

the multidimensional record-key space containing its subfile. The volume

of this cell is smaller for subfiles defined by nodes deeper in the tree.

If the node under investigation is terminal, then all the records in the

bucket are examined. A list of the m closest records so far encountered

and their dissimilarity to the query record is always maintained as a

priority queue during the search. Whenever a record is examined and

found to be closer than the most distant member of this list, the list

is updated. If the node under investigation is not terminal, the recur-

sive procedure is called for the node representing the subfile on the

same side of the partition as the query record. When control returns, a

test is made to determine if it is necessary to consider the records on

the side of the partition opposite the query record. It is necessary to

-5-

consider that subfile only if the geometric boundaries delimiting those

records overlap the ball centered at the query record with radius equal

to the dissimilarity to the mth closest record so far encountered. This

is referred to as the "bounds-overlap-ball" test. If the bounds-overlap-

ball test fails, then none of the records on the opposite side of the

partition can be among the m closest records to the query record. If the

bounds do overlap the ball, then the records of that subtree must be con-

sidered and the procedure is called recursively for the node representing

that subfile. A "ball-within-bounds" test is made before returning to

determine if it is necessary to continue the search. This test deter-

mines whether the ball is entirely within the geometric domain of the

node. If so, the current list of m best matches is correct for the en-

tire file and no more records need be examined. The bounds-overlap-ball

and ball-within-bounds tests are described in Appendix 1. Appendix 2

contains a detailed description of the complete search algorithm using

an algorithmic notation.

The Optimized k-d Tree

The goal of the optimization is to minimize the expected number of

records examined with the search algorithm. The parameters to be adjusted

are the discriminating key nwnber and partition value at each non-terminal

node, and the number of records contained in each terminal bucket.

The solution to the optimization will, in general, depend upon the

distribution of query records in the record key space. Usually, one has

no knowledge of this distribution in advance of the queries. Thus, we

seek a procedure that is independent of the distribution of queries and

only uses information contained in the file records. Such a procedure

will be seen to be good for all possible query distributions but will not

be optimal for any particular one.

-6-

A second restriction is that the solution values for discriminating

key number and partition value at any particular node depend only on the

subfile represented by that node. This restriction is necessary so that

the k-d tree can be defined recursively, avoiding a general binary tree

optimization. Such an optimization is known to be NP-complete [8] and

thus, very likely of non-polynomial time complexity.

Under these two restrictions, we can provide a prescription for

choosing the discriminating key and partition value at each nonterminal

node. The information provided to the search algorithm by the partition-

ing is the location of the partition and the identities of those records

that lie on either side. It is well known that information provided to

a binary choice is maximal when the two alternatives were equally likely.

Thus, each record should have had equal probability of being on either

side of the partition. This criterion dictates that we locate the parti-

tion at the median of the marginal distribution of key values, irrespec-

tive of which key is chosen for the discriminator.

The search algorithm can exclude searching the subfile on the opposite

side of the partition to the query record if the partition does not inter-

sect the current m-nearest neighbor ball. That is, if the distance to

the partition is greater than the radius of the ball. By definition, the

radius is the same along all key coordinates. Thus, the probability of

the partition intersecting the ball is least (averaged over all possible

query locations) for that key which exhibited the greatest spread or

range in values before the partitioning.

The prescription for optimizing the k-d tree, then, is to choose at

every nonterminal node the key with the largest spread in values as the

discriminator, and to choose the median of the discriminator key values

-7-

as the partition. The optimum number of records for each terminal bucket

is developed in the next section on analysis of performance. Appendix 3

presents an algorithm that builds an optimized k-d tree according to this

prescription.

Analysis of the Performance

The storage required for file organization is proportionalto the

file size, N. The discriminating key number and partition value must be

stored for each nonterminal node of the k-d tree. (2) The number of non-

N
terminal nodes is I;

11
- lwhere b is the number of records in each term-

inal bucket.

The computation required to build the k-d tree is easily derived.

At each level of the tree, the entire set of key values must be scanned.

This requires computation proportional to kN. The depth of the tree is

logN, so the total computation to build the tree is proportional to

kNlogN. [Here we are solving the recurrence relation TN = 2T N/2 + m'

which is well-known to have the solution TN = O(kNlogN).]

The expected time performance of the search is not so easily derived.

It is most easily discussed in a geometric framework. Let ?i =

C',(l), xi(2), " ' Xi(k)] represent the set of key values for the ith record

in the file. If the value of each key is plotted along a coordinate axis,

then the set of key values for a record represents a point in a coordinate

space of k dimensions. The entire file is a collection of such points in

k-dimensional coordinate space. The query record can similarly be repre-

sented as a point, x"
q'

in this space. The best match problem is then to

find the m closest points to the query point in this space by the given

dissimilarity measure.

-8-

The performance of the algorithm may depend upon the total number

of records in the file, N, the dimensionality (number of keys), k, the

number of nearest neighbors sought, m, the number of records in the

terminal buckets, b, the dissimilarity measure D(?,?), employed, and the

distribution p(x", of the file records in the record key space.

Let S-(3-) be the smallest ball in the coordinate space centered

is,
l” Y

at ?q that exactly contains the m closest points to x”
q'

That

So q {x” 1 D(x’,?q) 5 D(it,~?~) 3 0)

where 4 is the mth nearest neighbor to ? . The volume
q

and the probability content of this region, um(zq), is defined

as

J
~(8 dx", with 0 I um(Xq) Il. (3)

sm(2q)

It can be shown [g] that the probability distribution of um,(Tq)

follows a beta distribution, B(m,N); that is,

dim) = (m-l):(N-m), . . ruml m-1 [l-;lm]N-m (4)

independently of the probability density function of the points, p (3,

or the dissimilarity measure, D@,% - The expected value of this dis-

tribution is

E[u,l =
m

urn p[u,l du = -
m N+l

-9-

These results state that any compact volume enclosing exactly m points

has probability content m/(N+l) on the average.

To proceed further, we assume that the file size, N, is large

enough so that Sm(zq) is small and thus the probability distribution

p(x", is approximately constant within the region Sm(?q). In this case,

we can approximate eqn 3 by .

and from eqn 5

E[vm(X3,)] 3 m ' .
N+l p (xi,,

(7)

Here 5 (zq) is the probability density averaged over the small region

sm($) * Note that it can never be zero.

Consider now the effect of the optimized k-d tree partitioning al-

gorithm described in the previous section. Choosing the median insures

that each bucket will contain very nearly b records, where b is the maxi-

mum bucket size. Choosing the key with the largest spread in values at

each node insures that the geometric shape of these buckets will be

reasonably compact. In fact, the expected shape of these buckets is

hypercubical with edge length equal to the kth root of the volume of the

space occupied by the bucket. The edges are parallel to the coordinate

axes. The effect of the optimized k-d tree partitioning, then, is to

divide the coordinate space into approximately hypercubical subregions,

each containing very nearly the same number of records. From eqn 7, we

have that the expected volume of such a bucket is

E[vb(‘b)I - j& +j
b

(8)

- 10 -

G 5 bc = b{[; G(k)]
;

+ ljk . 02)

Two important results follow from this expression. First,

minimizing it with respect to b yields the result b=l; to minimize

the (upper bound on the) number of records examined, the terminal

buckets should each contain one record. With this provision, kqn 12

becomes
1

5 2 {[mG(k)]
E

+ ljk. 03)

The second important result is that the expected number of records ex-

amined is independent of the file size, N, and the probability dis-

tribution of the key values, p (3, in the record key space.

Although derived here in a somewhat obtuse fashion, these results

can be easily understood intuitively. If the goal is to minimize the

accumulated coverage of all the buckets overlapped by any region, then

the partitioning should be as fine as possible. This is accomplished

by making each bucket as small as possible.

The independence of the number of overlapped buckets to file size

and distribution of key values is a direct consequence of the prescription

for optimizing k-d trees. This prescription partitions the k-dimensional

record space so that each terminal bucket has the same properties as the

region, Sm(?q), containing the m best matches. Namely, each contains

a fixed number of records (b and m, respectively) and their geometrical

shapes are reasonably compact. As a result, the dependence of the buc-

ket volumes on total file size and distribution of key values is identi-

cal to that for the region Sm(?q) containing the m best matches. As the

file size or the local key density increases, the bucket volumes and the

volume containing the m best matches shrink at exactly the same rate,

leaving the number of overlapped buckets, J, constant.

- 12 -

The constancy of the number of records examined as file size in-

creases implies that the time required to search for best matches is

logarithmic in file size. The k-d tree is a balanced binary tree. Thus,

the time required to descend from the root to the terminal buckets is

logarithmic in the number of nodes,which is directly proportional to the

file size, N. The amount of backtracking in the tree is proportional to

4, which we have demonstrated to be independent of N. Thus, the expected

search time for the m best matches to a prespecified query record is pro-

portional to 1ogN.

I . Dissimilarity Measures

The derivations of the preceding section make no explicit assumptions

concerning the particular dissimilarity measure, D(x",%, employed. There

are, however, some implicit assumptions that are now discussed.,

A dissimilarity measure is defined as

k

D(x",,3 = F
11

fib(i), YWI 3 04)

i=l

where the k -i- 1 arbitrary functions F and {fi]tZl, are required to satisfy

the basic properties of symmetry

f,b,Y) = f,(Y,X) 15i5k (15s)
I

and monotonicity

J.

F(x) 2 F(Y) if x>y

‘z 2 y-l x

fi(x,z) 2 fi(x,y) if \ or !

xryr z j

The k functions, {fi(x,y)]t,L, are called the

(15b) -

Isick . 05c)

coordinate distance functions;

they define the one-dimensional distance along each coordinate. Since the

- 13 -

spread in coordinate values is defined to be the average distance from

the center, the ith coordinate distance function should be used to

estimate the spread in the ith key values during the construction of the

optimized k-d tree. (Th ese coordinate distance functions also appear in

the bounds-overlap-ball and ball-within-bounds tests described in Appen-

dix 1.) To this extent, the construction of the k-d tree depends upon

the particular dissimilarity measure employed. It is not necessary that

exactly these functions be used in building the k-d tree. The purpose

of the spread estimation is to order the key numbers. Any set of func-

tions that yields the same ordering as the coordinate distance functions

will serve just as well. For example, if the coordinate distance func-

tions are all identical, that is, fi(x,y) = f(x,y) for II i 5 k, then

the linear function ?(x,y) = Ix-y/ can be used to estimate the spread in

key values.

The properties of the dissimilarity measure enter into this algorithm

directly through the bounds-overlap-ball and ball-within-bounds tests (see

Appendix 1). These tests require only two properties of a dissimilarity

measure. First, the dissimilarity between two points, 63, must be

nondecreasing with increasing linear distance, IX(i)-W)l, along any co-

ordinate. Second, a partial dissimilarity based on any subset of the co-

ordinates must be less than or equal to the actual dissimilarity based

on the full coordinate set. The form required for a dissimilarity measure .-

by eqn 14, together with the restrictions of eqn 15, are sufficient to

guarantee both of these properties.

A dissimilarity measure is said to be a metric distance if, in

addition to symmetry and monotonicity (eqns 14-15c), it obeys the tri-

angle inequality

D(x",?) + D(?,,z? 2 D(?,a. 06)

- 14 -

The most common metric distances are the vectorspace p-norms

rk

0,(x”,?) = ‘1
i

IX(i) - Y(i)j' i;
i=l r

m)

Of these, the most commonly used are:

p = 1: taxicab or city block distance

p = 2: Euclidean distance

p= co: maximum coordinate distance .

That is,

D,o,(?,?) = max IX(i) - Y(i)/ . 08)
llilk

Since the separate coordinate distance functions are identical for these

distances, the linear distance function, ?(x,y) = Ix-y/, can be used to

estimate the key spreads for building the k-d tree. (3) For the special

case of the p = co distance (eqn 18), the geometric constant G(k) (eqns

9a and 13) is unity, and the inequality of eqn 13 becomes an equality.

For this particular distance, we can therefore calculate the expected

number of records examined (instead of an upper bound on the ex-

pected number) as a function of the number of best matches, m, and number

of keys, k :

i

Rco(m,k) = (m + l)k . (1-9)

Note that for m=l, Rco(l,k) = 2k. The number of buckets overlapped by a

ball of constant volume decreases with increasing p, so the p = co result

serves as a lower bound for all vector space p norms. --

- 15 -

There is an assumption that is implicit in the results of the pre-

vious section. It is that the search algorithm examines the buckets in

optimal order; that is, in order of increasing dissimilarity from the

query record. It is not clear how close the k-d tree search algorithm

comes to this ideal. Since this inefficiency is purely geometrical, it

can be absorbed into the geometric constant, G(k), in eqns 12 and 13,

.,

leaving the general conclusions unchanged. However, to the extent that

this inefficiency does exist, eqn 19 is overly optimistic (as it assumes

G(k) = 1) and thus, eqn 19 represents a lower bound even for the p = co

distance.

Simulation Results

Several simulations were performed to gain insight into the perfor-

mance of the algorithm and to compare it to the performance predicted by

eqn 19. The results are presented in Figures 1 and 2. For each simu-

lation, a file of 8192 sets of record keys was generated from a normal

distribution with unit dispersion matrix. A similar set of 2000 query

record keys was generated and the number of record examinations required

to find the m best matches was averaged over these 2000 queries. The

statistical uncertainty of these averages is quite small, being around

two percent in the worst cases.

Figure 1 shows how the average number of record examinations required

to find the best match (m=l) varies with dimensionality (number of keys per -

record). Results are shown both for the p=2 (Euclidean) and the p=co vec-

tor space norms. The solid line represents eqn l-9 which predicts the

expected number for the p = co metric (R = 2k).

The behavior of the algorithm corresponds closely to that discussed

in the previous section. For low dimensionality (k I6), the p=co results

- 16 -

strongly exhibit the 2k dependence. These simulation results indicate

that, at least for m=l, the k-d tree search algorithm is not far from

optimal. For those dimensionalities (k 5 6) where N = 8192 appears to

be big enough for the validity of the large file assumption, (4) the simu-

lation results for p = co lie no more than 2C$ above that predicted by

eqn 19.

The Euclidean distance results shown in Figure 1 confirm that the

performance of the algorithm for lower p-norms is not as good as for

p=co. The increase in expected number of records examined is not severe,

but becomes more pronounced for the higher dimensionalities. If a dis-

tance is to be chosen mainly for rapid calculation, the p=co distance is

a good choice.

Figure 2 shows how the number of records examined depends on the num-

ber of best matches sought. The average number of record examinations re-

quired to find the corresponding number of best matches for both the

Euclidean and p=co norms is displayed along with the prediction of eqn 19

(solid line). The average number of records examined rises with increasing

number of best matches slightly more slowly than linearly. One would in-

tuitively expect the increase to be linear since the expected volume of

the m-nearest neighbor ball grows linearly with m. The average number of

overlapped cells, therefore, should increase similarly. This is approxi-

mately borne out by the results shown. Figure 2 also shows that the effect -

of the non-optimality of the search algorithm becomes more pronounced for

a larger number of best matches. If it is assumed that 8192 records is

large enough so that the large file assumption is valid even for m=25 in

fwa dtiensions, thee Figure 2ashows that the inefficiency-‘ls-l%--r---

m-l and 5% for m=25.

- 17 -

Implementation

The above discussion has centered on the expected number of records ex-

amined as the sole criterion for performance evaluation cf the algorithm.

This has the advantage that evaluation is independent of the details of

implementation and the computer upon which the algorithm is executed. Al-

though the computational requirements of the algorithm are strongly related

to the number of records examined, there are other considerations as well.

These considerations include the computation required to build the k-d

tree and the overhead computation required to search the tree.

The computation required to build the k-d tree is proportional to

kNlogN, as previously stated. This is illustrated empirically in Figure

3 where the actual computation (5) per record needed to build the tree is

shown as a function of the total number of records for several values of k.

The overhead required to search the tree is dominated by the bounds-

overlap-ball calculation. This calculation must be performed at each

non-terminal node visited in the search. As described in Appendix 1,

it involves calculating the dissimilarity from the query record to the

closest boundary of the subfile under consideration. The coordinate dis-

tances are compared one key at a time; if the boundary is far from the

test point, the subfile can be excluded quickly on the basis of only a

few keys. If, on the oth.erhand,the boundary is close to the test point,

then it may be necessary to examine most or all of the keys. If the

bounds do in fact overlap the ball, then all keys are included and the

test becomes as expensive as a full dissimilarity calculation. This

suggests that if a subfile is very likely to overlap the ball, it should

simply be investigated and the bounds-overlap-ball calculation omitted.

This situation is most likely to occur near the bottom of the tree where

- 18 -

the file records are closest to the query record. Therefore, it may be

profitable to increase the bucket sizes even at the expense of increasing

the number of record comparisons.

With one record per bucket, a bounds-overlap-ball calculation must

be made for each file record close to the query record near the-bottom of

the tree. With several records per bucket, a bounds-overlap-ball calcu-

lation need only be performed once for each bucket. Since the records in

a bucket are relatively close together, it is very likely that if one of

them passes the test, most or all will pass. It is then more computation-

ally efficient to have larger bucket sizes ezen though this increases

the number of records examined.

This speculation is confirmed in Figure 4. Here the computation re-

quired for finding best matches is shown for various bucket sizes. In-

creasing the bucket size from one record per bucket considerably improves

the performance of the search. This improvement is approximately constant

for bucket sizes from 4 to 32.

Although Figure 4 shows results for only a few situations, other

simulations (not shown) verify that this behavior is completely indepen-

dent of dimensionality, k, number of best matches, m, and number of file

records, N.

Comparison to Other Methods

The only previous method with verified expected performance for

various dimensionalities, number of best matches, and number of file

records is the sorting algorithm of Friedman, Baskett and Shustek [?I].

This algorithm has been shown to yield a considerable improvment over

the brute force method (linear search over all the records in the file)

for a wide variety of situations. Figure 5 shows the computation (CPU

- 1-g -

milliseconds per query) required by this sorting algorithm and the k-d

tree algorithm (using buckets of sixteen records) for increasing file size.

Also shown is the average number of records examined under the k-d tree

method. The rate of increase of this average with increasing file size

indicates how near it is to the asymptotic limit where the large file as-

sumption is valid. The results in Figure 5 show that in two dimensions

near-asymptotic behavior occurs even for files as small as 128 records.

In four dimensions, the asymptotic limit appears reasonably close for

file sizes greater than 2000. In eight dimensions, the limit is not near

for files of 16000 records. Even for this case, however, the increase

in average number of records examined with file size is only slightly

faster than logarithmic.

The logarithmic behavior

size increases is illustrated

of the overall computation as the file

for the k-d tree algorithm in Figure 5,

except that for eight dimensions the

Comparison of Figure 3 to Figure 5

tation involved in building the tree

increase is slightly faster. (6)

shows that the preprocessing compu-

is not excessive. The fraction of

computation spent on preprocessing decreases with increasing dimensionality.

When the number of query records is the same as the number of file records,

preprocessing represents about 25% of the total computation for two di-

mensions, while for eight dimensions that fraction is between three and

five percent.

The computation required by the sorting algorithm has been shown
11
I; 1-I;

[3] to be proportionalto km N . Although this is much worse than

logN, the sorting algorithm introduces very little overhead so that for

very small files, it is faster than the k-d tree algorithm. For larger

- 20 -

files, ,however, the k-d tree algorithm is seen to have a clear computational

advantage, especially for higher dimensions. (7)

Implementation on Secondary Storage

. .

Efficient operation of the k-d tree algorithm does not require that

all of the terminal buckets reside in fast memory. During the.preproc-

essing, these data can be arranged on an external storage device so that

records in the same bucket are stored together. Buckets close together

in the tree can be stored similarly. Since the search algorithm examines

a small number of buckets on the average, there will be few accesses to

the external storage for each query. 63) For ex&memely large files, it

is not even necessary that the entire k-d tree reside in fast memory.

Only the top levels of the tree need to be in fast memory; the lower

levels can be stored on an external device under an arrangement that

keeps non-terminal nodes close to their sons.

ACKNOWLEDGMENT

Helpful discussions with F. Baskett, M.G.N. Hine, C.T. Zahn,

and J.E. Zolnowsky are gratefully acknowledged.

- 21 -

This appendix describes algorithms for the bounds-overlap-ball and

ball-within-bounds tests discussed in the text.

APPENDIX 1

The purpose of the bounds-overlap-ball test is to determine if the

geometric boundaries delimiting a subfile of records overlap a ball cen-

tered at the query record with radius r equal to the dissimilarity to the mth

closest record so far encountered. That is, r = D(?m,?q) where x" is the
q

query record and zrn is the mth best match so far encountered in the search.

The technique employed is to find the smallest dissimilarity between the

bounded region and the query record. If this dissimilarity is greater

than r, then the subfile can be eliminated from consideration. This mini-

mal dissimilarity is determined as follows: if the query record's jth key

is within the bounds for the jth coordinate of the geometric domain, then

the jth partial distance is set to zero; otherwise it is set to the co-

ordinate distance f
3

(eqns 14, 15) by which the key falls outside the do-

main in that coordinate. If any of these coordinate distances is greater

than the radius of the neighborhood, then there is no overlap between the

domain and the neighborhood. If the sum of coordinate distances exceeds

F-l(r) (eqn 14), there is no overlap. The test can terminate with failure

as soon as the partial sum of coordinate distances exceeds F -l(r). In

the special case of the p=co vector space norm, this technique reduces

to testing whether any of the distances is greater than the radius and,

if so, failing.

The ball-within-bounds test is simpler. Here the coordinate distance

from the query record to the closer boundary along each key is in turn

compared to the radius, r. The test fails as soon as one of these co-

ordinate distances is less than the radius. The test succeeds if all

- 22 -

of these coordinate distances are greater than the radius.

Descriptions of these tests in an algorithmic notation are presented

in the next appendix.

APPENDIX 2

This appendix presents the k-d tree search algorithm

mic notation.

global

Xq[l:k], "key values of the query record"

in an algorith-

WD[l:ml, "priority queue of the m closest distances en

countered at any phase of the search. RD[11

is the distance to the mth nearest neighbor so

far encountered."

P&R[l:ml, "priority queue of the record numbers of the

corresponding m best matches encountered at

any phase of the search"

B+[l:kl, "coordinate upper bounds"

B-b:k], "coordinate lower bounds"

discriminator [l:I], "discriminator at each k-d tree node"

partition [l:I]; "partition value at each k-d tree node"

"I is the number of internal nodes'

"initialize" P&D[l:m] t co; B+[l:k] t CO; B-[l:k] + - ~0;

"search" SEARCH(root);

procedure SEARCH(node);

begin

local p, a, temp;

if node is terminal

then begin I_-

(examine records in bucket(node), updating P&D, p&R);

if BALL WITHIN BOUNDS then done else return - --I_

e+;

d tdiscriminator[node]; p tpartition[node];

- 23 -

"recursive call on closer son"

if X
- q

[d] 5 p

then begin

temp +-B+[dl; B+[dl +P;

SEARCH(leftson(node)); B+[d] ttemp;

end

else begin --

temp tB-[d]; ~-[a] +P;

SEARCH(rightson(node)); B-Cd] ttemp;

'recursive call on farther son, if necessary"

if X [d] 5 p
- q

then begin --

temp +B-[dl; B-Cdl +P;

if BOUNDS OVERLAP BALL then SRARCH(rightson(node));

B-b] ttemp;

end

else begin --

temp + B+[aJ; B+Cdl + P;

if BOUNDS OVERLAP BALL then SEARCH(-

B+[d] ttemp;

a;

'see if we should return or terminate'

leftson(node)

i-J BALL WITHIN BOUNDS then done else return; ---

>;

- 24 -

logical procedure BALL WITHIN BOUNDS;

begin

local d;

for d t

if -

or -

1 step 1 until k do --

COORDINATE DISTANCE (d, Xq[d], B-L

COORDINATE DISTANCE (d, Xq[d], B+[

.,

then return(false);

return(true);

a;

logical procedure BOUNDS OVERLAP BALL;

begin

local sum, d;

sum to;

for d t 1 step 1 until k &

if Xqral < B-t-d]

then begin "lower than low boundary"

sum +-sum + COORDINATE DISTANCE

s DISSIM(sum) >

end

if Xqkd > B+[dl

FQD[l] then return (true);

else

then begin "higher than high boundary"

sum t sum + COORDINATE DISTANCE (d,Xq[d], B,[d]);

if DISSIM(sum) > KJD[l] then return (true);

a;

aI> 5 P&DC 1-l

(d,Xq[d], B-La]);

return (false);

*;

- 25 -

The procedures DISSIM (x) and COORDINATE

functions F(x) and fj(x,y) that appear in the

ilarity measure (eqn 14).

APRENDIX 3

DISTANCE (j,x,y) are the

definition of the dissim-

This appendix presents a description in an algorithmic notation of

the procedure for constructing an optimized k-d tree for best match file

searching.

root tBUILD TREE (entire file);

node procedure BUILD TREE (file);

begin

local j,d, maxspread, p;

if SIZE(subfile) 5 b then return@&?, TERMINAL(file)); -

maxspread to;

for j tl step 1 until k do - - "find coordinate with greatest spreadll

if SPREADEST(j,file) > maxspread -

then begin

maxspread tSPREADEST(j,file);

d tj;

e&;

en&;

p tMEDIAN(d,file);

return MARE NONTERMINAL(d,p,BUILMREE(LEFT SUBFILE(d,p,file)),BUILM'REE -
(RIGHTSUBFILE(d,p,file));

The procedure SFREADEST (j,subfile) returns the estimated jth key

value spread for the records in the subfile represented by the node, using

the jth coordinate distance function. The procedure MEDIAN (j,subfile)

returns the median of the jth key values. MfKE TERMINAL and MAKE NONTERMINAL

are procedures that store their parameters as values of a node in the k-d

tree and return a pointer to that node.

- 26 -

FOOTNOTES

(1) A record examination involves fetching the record keys from memory,

calculating the dissimilarity to the query record, comparing it

to the dissimilarity to the mth closest record so far encounter-

ed, and if necessary, updating the list of m closest records.

(2) Since the k-d tree is a complete binary tree, it is not necessary

to store pointers to the sons of each nonterminal node [11].

(3) The spread of values along each key can be estimated by cal-

culating the trimmed variance of the key values. The trimming in-

sures that the estimate is robust against extreme outliers.

(4) Asymptotic behavior can be determined empirically by observ-

ing the rate of increase of the average number of records examined

with increasing file size. This is illustrated in Figure 5.

(5) All simulations were performed on an IBM 370/168 computer. All

programs were coded in FORTRAN IV and compiled with the IBM FORTRAN

H (extended) compiler with optimization level two.

(6) The behavior for eight dimensions will, of course, become logarith-

mic for large enough file sizes.

(7) The comparison in Figure 5 is for the best match (m=l) since this is

the most co
T

on application. The increase in computation for larger

E
m grows as m for the sorting algorithm, while for k-d tree algor-

ithm, it grows nearly linearly with m. Thus, for large numbers of

best matches, the crossover file size at which the performance of

the two algorithms is comparable will increase.

(8) Inspection of Figure 5 shows that for bucket size of 16 records,the

average number of buckets accessed is 1i.56, 6.25 and 75.0 for two,

four, and eight dimensions, respectively, for total file size of

16000 records. Increasing the bucket size to 32 records (not shown) re-

duces the average number of accesses for eight dimensions to 44.0 while

increasing the total computation required for the search by only 8%.

- 27 -

REFERENCES

[1] Burkhard, W.A. and Keller, R.M. Some approaches to best match file

searching. Corn. of ACM, Vol. 16 (April 1973), 230-236.

[2] Fukunaga, K., and Narendra, P.M. A Branch and bound algorithm for

computing k-nearest neighbors. IEEE Trans. Comput., ~24 (1975),

750-753.

[3] Friedman, J.H., Baskett, F., and Shustek, L.J. An algorithm for

finding nearest neighbors. IFEE Trans. Comput., C-24(1975)

looo- 1006.

[4] Rivest, R. On the optimality of Elias' algorithm for performing

best match searches. Proceedings IFIP Congress 74, Stockholm,

Sweden (August 1974), 678-681.

[5] Shamos, M.I. Computational Geometry. Conference record of Seventh

Annual ACM Symposium of Theory of Computing, Albuquerque, N.M.,

(May 7, 1975).

[6] Finkel, R.A. and Bentley, J.L. Quad trees - a data structure for

retrieval on composite keys. Acta Informatica 4(1)(1974),1-9.

[7] Bentley, J.L. Multidimensional binary search trees used for associ-

ative searching. Corn. of ACM, vol.18 (Sept.l975), 509-517.

[8I Hyafil, L., and Rivest, R.L., Constructing optimal binary decision

trees is NP-complete. Information Processing Letters, Vol. 5,

(May l976), 15-17.

[F] Fukunaga, K., and Hostetler, L.D., Optimization of k-nearest neighbor

density estimates. IEEE Trans. Info. Theory, IT-19 (1973), 320-326.

[lo] Pizer, S.M., Numerical Computing and.Mathematical Analysis, Science

Research Associates, Palo Alto, Ca., 1975, pp 88, eqn 87.

[ll] Knuth, D.E., The Art of Computer Programming, Vol. 1, Addison-Wesley,

Menlo Park, Ca., 1969, p 4OP.

- 28 -

I

FIGURF: CAPTIOrJS

FIGURE 1. Variation of the average number of records examined

with dimensionality (number of keys per record) for

constant file size. Results are shown for the Euclidean

FIGURE 2.

FIGURE 3.

(p=2) and p=co metrics. The solid line is the pre-

diction of eqn 19 for the p=co metric.

Variation of the average number of records examined

with number of best matches sought for several dimen-

sionalities. Results are shown for the Euclidean

(p=2) and p=co metrics. The solid lines are the pre-

dictions of eqn 19 for the p=oo metric.

Computation per file record required to build the k-d

tree as a function of total file size for several

FIGURE 4.

FIGURF: 5.

dimensionalities.

Computation required

function of terminal

Computation required

for the best match search as a

bucket size.

for best match searching as a

function of total file size for both the sorting and

k-d tree algorithms at several dimensionalities.

Also shown is the variation of the average number of

records examined with total file size. Terminal *

buckets of 16 records were used with the k-d tree

algorithm.

- 29 -

IO3

102

IO’

I I

8 I92 Records

0 Euclidean Metric

q p= co Metric

I I I

2 4 6 8

NUMBER OF KEYS (dimens ional I

IO

-

tY)
2668Al

Figure 1

60

50

40

30

20

IO

0

-Two Keys per Record

8192 Records -

0

0 Euclidean Metric

5 IO I5 20 25

NUMBER OF BEST MATCHES
2660A2

Figure 23

200

I50

100

50

0

Four Keys per Record

8192 Records -

0

0

0 Euclidean Metric
q p=a Metric

5 IO 15 20 25

NUMBER OF BEST MATCHES
2668A3

Figure 2b

600

400

200

0

I I I I I

Six Keys per Record
0

0

cl

0

8192 Records

Euclidean Me
p= ~0 Metric

0

tric

I I I I I

5 IO I5 20 25

NUMBER OF BEST MATCHES
2668A4

Figure 2c

I .4

1.2

I .o

0.8

0.6

’ I

-

-

I I I IIIII~ I I I lllll~ r
.,

-

2

4

8

2

Euclidean Metric

Two Keys per Record

Four Keys per Record

Eight Keys per Record
8

8

4

2

8

4

2

8

8

8
4

4

2

4

2

4

2

4

2
3

II I I I IllIll I I I llllll

102 IO3 I04

TOTAL NUMBER OF RECORDS IN FILE
2668A7

Figure 3

c

70

60

50

40

30

20

IO

0

-

-

-

.

I I 1 I I I I IIIII I I’ I-

Euclidean Metric

2
8

Two Keys per Record (x10)

8 Eight Keys per Record

8

8
8 8

8

2 2 2 2 2 2

I I I I I I I IIIII I I

I

NUMBER OF

5 IO 50

RECORDS PER BUCKET
2668A5

Figure 4

r F
l

N

: m

:

M
IL

LI
S

E
C

O
N

D
S

P

E
R

Q

U
E

R
Y

0
z-

-
y-

Iv

0

in

0
cm

s

b-
J

0
0

A
V

E
R

A
G

E

N
U

M
B

E
R

O

F

R
E

C
O

R
D

S

E
X

A
M

IN
E

D

30

25

20

I5

IO

5

0

I I I IIIII~ I I I Illll~ I

Euclidean Metric

Four Keys per Record

Sorting Algorithm
k-d Tree Algorithm

Ave. Records Examined

TOTAL NUMBER OF RECORDS IN FILE

Figure 5b

I

300

250

I I I III(I I I I IllI] I

I Euclidean Metric

I Eight Keys per Record n i
0 Sor

200 • I k-d

ting Algorithm

Tree Algorithm
a Ave. Records Examined

TOTAL NUMBER OF RECORDS IN FILE

150

100

50

0

3000

2500

2000

1500

1000

500

0

Figure 5c

