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AN ALGORITHM FOR FINDING THE
DISTANCE BETWEEN TWO ELLIPSES

Ik-Sung Kim

ABSTRACT. We are interested in the distance problem between two
objects in three dimensional Euclidean space. There are many dis-
tance problems for various types of objects including line segments,
boxes, polygons, circles, disks, etc. In this paper we present an iter-
ative algorithm for finding the distance between two given ellipses.
Numerical examples are given.

1. Introduction and preliminaries

The distance problem between two given objects in three dimensional
space can be found often in computer-aided geometric design systems.
Further, it is important to propose an efficient algorithm for finding the
distance between two objects. There are many distance problems for
various types of objects including line segments [5], boxes [6], polygons
[8], circles [7], disks [1], etc. In the literature, many problems already
have been studied and various numerical techniques to compute the
optimal distance have been given. In this paper we consider the problem
of finding the distance between two given ellipses. The representation of
an ellipse in three dimensional space can be given by using a geometric
transformation of a standard ellipse in the zy—plane. This may simplify
the distance function between the two ellipses. Thus, our problem is
reduced to the distance problem between one standard ellipse and the
other ellipse. We can present an iterative algorithm which is mainly
based on computing the distance between a given point and a standard
ellipse.
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The standard form of the equation of an ellipse centered with origin
in the ry—plane can be represented by

2 2
¢yt
(1.1) po} + i 1,
where a and b are the semimajor axis and the semiminor axis respec-
tively. Further, the parametric form of this standard ellipse can be given

by
(1.2) ‘ x = acost,y = bsint,

where —n <t < 7.

Also, one may characterize an ellipse in three dimensional Euclidean
space by giving the three points ¢, p and ¢, where c is its center and p
denotes one of the ends of the major axis and g denotes one of the ends
of the minor axis. Let F be an arbitrary ellipse defined by its center
¢ = (c1,¢2,¢3)" and the two points p = (p1,p2,p3)” and ¢ = (g1, g2, ¢3)”.
Then E can be represented by a geometric transformation(rotation and
translation) of a standard ellipse.

Let us consider a relative standard ellipse F; with respect to E:

2 2
VLY
(13) Es.;+b—2——1
in its parametric form
(1.4) x =acost,y = bsint,

where
(1.5) a=lp—cl=v(p—c)?+ (p2 —2)? + (p3 — c3)?,

(1.6) b=lg—cl = (g —c1)?+ (g2 — 2)? + (g3 — c3)>.
Then, by using a 3 x 3 rotation matrix R = (r;;) given by

(L7 (r11,721,731)7 = Rey = R(1,0,0)" = IZ : Z|’
(r12,722,732)" = Rez = R(0,1,0)" = IZ - zl’

o _ (-0 x(g—9
(r13,723,733)" = Reg = R(0,0,1)" = p—0) x (g—a)

the coordinate @ = (Z,7,%)” of a point on E can be represented by
(1.8) w = Rw + ¢,

where the coordinate w = (z,y,0)” is the corresponding coordinate of
a point of a standard ellipse E; with respect to w.
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2. Distance between a point and a standard ellipse

Let there be a point s = (s1, $2, 83)T and a standard ellipse defined
by

oy
in its parametric form
(2.2) Zz = acost,y = bsint.

We consider the problem of computing the distance between s and F,
and finding the optimal point lying on E;.

Suppose that Q(s, Es;t) is a function of a parameter ¢ with respect
to s and E; defined by

(2.3) Q(s,Eq;t) = (s1 — acost)? 4 (sg — bsint)?.

Then, by finding the optimal point @ = (&,9,0)¥ = (acost,bsint,0)7
on E such that

m = Q(s,Fs;t) = min Q(s, F;t)

(2 4) —nr<t<mw

= min (s; —acost)? + (so — bsint)?
—n<t<n

we can compute the distance d(s, E) given by d(s, E) = v/m + s32.

The necessary condition B = 0 for a minimum induces the following
equation:
(2.5) Asint — Bcost + Csintcost =0

with A = asy, B = bsy and C = (b? — a?).
Thus, if C = 0 in (2.5), then we can easily find ¢t = £ by

. B
(2.6) t = arctan (Z) .

In case of C = ¢4 — 2 # 0 the equation (2.5) induces the following two
equations:

(2.7) Asint — Bcost + Csintcost =0 (0 <t < )
and

(2.8) Asint+ Bcost + Csintcost =0 (—m < ¢t <0).
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Thus, if we let v = cost in (2.7) and (2.8), then the corresponding values
of sint can be given by

Gint — V1 -2 if 0<t<m
Tl =V1I—-v? i -7 <t<0,

and the equation (2.5) leads to the following quartic equation:

A A2+ B2 - (C? A A\’
4 3 2 _
(2.9) v +2<5)v + <——C’2——>v —2(5>v— (5> =0.
By solving the equation (2.9) for v we have some solutions v; (j =
1,2,...,s) such that —1 < wv; < 1and 1 < s < 4, and get the value
for each v; such that cosf; = v; (0 < #; < ). Thus, ¢ has two values

u} = {; and u? = —1; for each #;, and the corresponding values of sint
can be given by

sinpi =1/1—()2(G=1,2,...,5),

sin,u? = —4/1-()?([F=12,...,5).

(2.10)

A

In this case we can choose ¢ = t = u]" for the solution of (2.5) such that
(51 — acos u™)? + (s2 — bsin uf™)?
(2.11) = 112%112 [(sy — acosp?)® + (s2 — bsin pf)?] .
F=1,2,...,8
Thus, we can find the optimal point @ = (%,§,0)T = (acost,bsinf, 0)T
on F;.

3. Distance between two ellipses

Let E* and EP be the two given ellipses in the three dimensional
space. Suppose that E% is defined by its center ¢* = (c‘l", g, c$)T and
the two points p* = (p$,p%,p$)7 and ¢* = (¢¢,4¢5,¢5)T and EP is
defined by ¢ = (¢f,c5,c§)T, p° = (0], 15, p5)7 and ¢ = (¢ ,qz,qB)T
Then we can give the corresponding two standard ellipses EY and Es
defined by

;. w® =(a®cost®, b*sint*,0)7, —m<t*<nm

le4
(3.1) ° 5 6. 8 T p
Ef . w? =(aP cost P sint? 0)7, - <t? <,
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where

(32 ="~ = \of — )P+ (0 — B + (05— )2,

(33) b=l = = \(af — )P + (e — 5P+ (a§ -~ B

(34) o =[pf — ) = /(o — )2+ (o — B2+ (off — ),

(385) WP =l == -+ (- B+ (- B

—~— o~ e

Also, the coordinate w® = (wa, ye, za)T of a point of £ and the coor-
dinate w8 = (:,c\é , 375, ;E)T of a point of E# can be represented by
E® : w® = R®w* + c*
= R*(a®cost®, b*sint®,0)T + (¢, ¢5,¢)T, —n <t* <7
B . wh = BB 4
= R’B(aﬁcostﬁ,bﬂsintﬁ,O)T + (cf,cg,cg)T, —r<t?t<nm,

(3.6)

where the two 3 x 3 rotation matrices R* = (r%) and R® = (rﬁj) are
given by the following:

Fork=aor g
k_ ok
pT—C
(rfr,r51,75)T = RYer = R*(1,0,0)" = lp* — ck|’
k_ .k
& —c
B:1) (ko ki) = Bes = BF0,1,0)7 =

k

k_ k k_
(r13%, 753, 753) T = RFe3 = R¥(0,0,1)7 = p —c)x (e —c ; :

|(pF — c¥) x (¢F — )]
Furthermore, since Euclidean metric is invariant under R* = (r{)
and RP = (rg) the distance between E* and E? can be given by

d(E* EP) = min |u— |

= min [(R%w®+ ¢®) — (RPw? + P)|
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_ : « a a\—-1ps,,.08 oy—1/ B8 &
= min_|R (w (R*)™1RPwP — (RY)™Y(cP — ¢ ))}
—<tf<r
. : a ay—1 8,8 B _ o
= _min | (R%) (R w” + (¢” — ¢ ))‘
—n<th<n
or
d(E®,EP) = min |u —v|
u€E%
(3 9) vEEA
' = min |wf—(RF)! (Rawa+(ca—cﬂ))|.
—n<tB < '
—n<t*<m

We now describe an iteration algorithm for finding the optimal points
e e T

we = (wa,yo‘,zo‘ and 1;5 = ;;\3/,3;5, %)T lying on E® and E” re-
spectively. Our algorithm is mainly based on computing the distance
between a point and a standard ellipse.

Algorithm:

Step 0. Compute a®, 5%, a?, ¥ from (3.2), (3.3), (3.4) and (3.5). De-
fine the rotation matrices R* and R® and their inverse matrices (R%*)™*
and (Rﬂ)—1 from (3.7). Set j := 0.

Step 1. Let t§ be given as an initial value for t*. Then, from (3.1)
and (3.6) we can initialize w§ = (2§, 3§, 28)T = (a® costg, b*sin tg,0)T
and ﬂ;g = (%E,ﬂg,?g)T = R*w§ + c*.

We consider the following minimization problem:

—~ e~ AT
To find wg = (aﬁcostg,bﬂsintg,O)T and wg = <x€,y€,z€) =
R'Bwoﬁ +¢# such that
B

(3.10) wh — wd

— i ﬁ_Rﬁ_l R%w& o B ’
min [0 = (B (R + (= )

Thus, let s = (Rﬁ)_1 (R*w§ + (¢* — ¢P)) and E, = E? with a = of
and b = b% in (2.3). Then we can find the optimal point @ = (Z,7,0) =
(acos?,bsint, 0)7 on E? such that

(3.11) Qs B®) = min_Q(s, Euit).
Set wf = (acostd, bsints, 07 = @ = (acost,bsin?,0)T and wh =
Rﬂwoﬁ + A,
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: T _
Step 2. Find wi; = (2§, y51,251)" = (a%costfy,b%sintd,,

— S \T
0)T and wy = (:c;?‘+1,y;?‘+1,z;‘+1) = R*w§; + c¢* such that

min

12
(3.12) wéeES

*_ (R‘")_1 (Rﬁw? -+ (cﬂ — co‘))’ )

o _ .8 | _
Wipr — Wig1| =

That is, let s = (R®)™! (Rﬁwf 4 (P — ca)) and E, = E® with a =
a* and b = b in (2.3). Then, the optimal point @ = (Z,y,0) =
(acost,bsint, 0)T on E¥ such that

(3.13) (s, Eg;t) = mln Q s, Es; t).
S/\et/'w]‘?ﬁr1 = (acostﬁl,bsmt]H,O)T = @ = (acost,bsint,0)7 and

wi, = R*wf,; + ¢ Further, find wf_H = (a® costjﬁH,bﬂ sint§-3+1,0)T

N ——— ——— —— T
8 _ 8 B _ 8
and Wi = (x?_H, Yit1> zj+1) = Rﬁwﬂ_1 + ¢? such that

o~
—

(3.14) wfﬂ —w$,| = min ’wﬁ — (RB)—1 (R"‘wjY + (c¢* — CB))‘ .

wBGEg
In other words, let s = (Rf) ™" (Ra'w;?‘ + (c* — cﬁ)> and E, = E? with

=af and b = b¥ in (2 3). Then we obtain the optimal point @ =
(55, 7,0) = (acos?, bsin?, 0)T on E? such that

(3.15) Q(s,Es;t) = min  Q(s, Es;t).
—r<t<m
Set w]'6+1 = @ = (acost,bsint, 0)T and wfﬂ = Rﬁwfﬂ + ¢B. Define a

distance function U between two optimal points ’I;% and w,f on K% and
EP respectively, given by U(k) = ’1;,‘;‘ — wf‘ for k = 1,2,.... And if
U(j+1) <U(j), then we set j := j+ 1 and go back to step 1.

Here, we see that for k = 0,1, 2, ... two optimal points {U\,‘;’ and wg can

be found after k iterations with an initial value {Jg‘. Further, though the
proof is not given the convergence of our algorithm may be guaranteed
by a descent property : U(k + 1) < U(k) for k£ = 0,1,2,.... Thus,
two sequences <&1\g> and wg of optimal points converge to the global

optimal points w® and w8 respectively, and the optimal distance between
two ellipses E* and E” is given by d(E®, EP) = ‘ufz\a - wﬁl.
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FIGURE 1. Convergence of the distance function for dif-
ferent initial values.

Finally, to test our algorithm we give an example for finding the
distance between two ellipses £% and E? in the three dimensional space.
We can see the convergence of the corresponding distance function U (k)
for each initial value t§. In fact, it is certain that each function U(k)
converges to the distance between two given ellipses E® and E? which
is the global minimum.

EXAMPLE. Let there be two ellipses E® and EP. E® is characterized
by its center ¢ = (cf,c§,c§)T = (1,1,1)7 and the two points p* =
(p?,pg,pg)T = (2’37 2)T and ¢¢ = (qtllaqqu??)T = (5’ 2, _S)T' Also,
EP is defined by ¢f = (cf,cg,cg)T = (3,5,5)7T, p = ( f,pg,pg)T =
(1,2,5)7 and ¢° = (qf,qg,qg)T = (6,3,2)T. We employ our algo-
rithm for finding the distance between two ellipses E* and E® by using
four different values t§ = =, t§ = %’r, t§ = 7 and t§f = 0 as ini-
tial values for ¢* . Then we have the corresponding four initial opti-
mal points w§ = (0,—1,0)T, w$ = (3.9641,0.8660, —4.6962)7, wg =
(4.9641,2.8660, —3.6962)” and 1178‘ = (2,3,2)7. Moreover, using these
initial optimal points we find the same optimal points w® = (—0.0827,

2.2560, 4.8051)7 and wh = (0.6134, 2.2973,5.4048)7 in each case. We
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can obtain them after the same 13 iterations for ¢f = %” and t§ = 3.

Also the optimal points can be found after 10 iterations for each of t§ = 7
and t§ = 0. The distance is given by d(E*, Ef) = |w® — wB| = 0.9198.
Further, in Figure 1 we see the convergence of the distance function
U(k) to the optimal distance between two ellipses in each case.
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