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Abstract. We propose a new sufficient condition for verifying whether general rank-r complex
tensors of arbitrary order admit a unique decomposition as a linear combination of rank-1 tensors.
A practical algorithm is proposed for verifying this condition, with which it was established that in
all spaces of dimension less than 15000, with a few known exceptions, listed in the paper, generic
identifiability holds for ranks up to one less than the generic rank of the space. This is the largest
possible rank value for which generic identifiability can hold, except for spaces with a perfect shape.
The algorithm can also verify the identifiability of a given specific rank-r decomposition, provided that
it can be shown to correspond to a nonsingular point of the rth order secant variety. For sufficiently
small rank, which nevertheless improves upon the known bounds for specific identifiability, some
local equations of this variety are known, allowing us to verify this property. As a particular example
of our approach, we prove the identifiability of a specific 5× 5× 5 tensor of rank 7, which cannot be
handled by the conditions recently provided in [I. Domanov and L. De Lathauwer, SIAM J. Matrix
Anal. Appl., 34 (2013), pp. 876–903]. Finally, we also present a surprising new class of weakly
defective Segre varieties that nevertheless turns out to admit a generically unique decomposition.
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1. Introduction. A tensor, which can be represented by a multidimensional
array A ∈ Cn1×n2×···×nd in fixed bases, where we assume without loss of generality
that n1 ≥ n2 ≥ · · · ≥ nd, is said to admit a rank-r decomposition whenever

A =

r∑
i=1

a1i ⊗ a2i ⊗ · · · ⊗ adi with a�i ∈ Cn� , � = 1, . . . , d,(1.1)

and where ⊗ denotes the tensor product. In the above, r is assumed to be minimal in
the sense that no other decomposition of the above form with fewer terms exists: we
say that the rank of A is r. This general decomposition was introduced by Hitchcock
[31, 32] and was later rediscovered several times, notably by Caroll and Chang [13],
who called it Candecomp, and by Harschman [29], who called it Parafac. For this
reason, the decomposition is also often called the CP decomposition.

Essential uniqueness, or identifiability, of the decomposition in (1.1), up to trivial
indeterminacies, is one of its key properties in practice. According to Smilde, Bro, and
Geladi [44], the rank decomposition is nowadays widely used in chemistry, where it
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1266 CHIANTINI, OTTAVIANI, AND VANNIEUWENHOVEN

finds application in recovering the emission-excitation spectra of chemical components
in a multicomponent fluorescent mixture. This idea was introduced in 1981 by Ap-
pellof and Davidson [4], who stated that “the advantage of having a three-dimensional
data matrix [relative to analyzing only two-dimensional excitation-emission matrices]
is that if the factorization is found, it is unique.” In a different context, according to
Allman, Matias, and Rhodes [3], the identifiability of statistical models of type (1.1)
“is a prerequisite of statistical parameter inference.”

Notwithstanding very substantial interest in identifiability [3,8,9,10,14,15,17,23,
24, 25, 26, 29, 34, 35, 43, 45, 46, 47], its theoretical foundations are still not completely
understood. A well-known condition for specific identifiability—given a rank-r decom-
position, determine whether it is unique—was introduced by Kruskal in [35]. Letting

Aj =
[
ajl
]r
l=1

, j = 1, 2, 3, Kruskal’s condition states that if

(1.2) r ≤ 1
2 (kA1 + kA2 + kA3 − 2) ,

where kAj is the maximum number such that every set of kAj columns of Aj is lin-
early independent, then the decomposition given in (1.1) is unique. In addition to the
question of specific identifiability, the condition also yields results about generic iden-
tifiability—determine whether all rank-r decompositions not in some set of measure
zero are unique. From Kruskal’s condition it follows that a general rank-r decompo-
sition is unique if

r ≤ 1
2 (min(n1, r) + min(n2, r) + min(n3, r)− 2) .

In the n×n×n case, the above condition reduces to r ≤ 1
2 (3n− 2) . It has been known

since the work of Strassen [46] that Kruskal’s condition, as well as the recent conditions
by Domanov and De Lathauwer [24, Table 6.2], [25], are quite weak for addressing
the problem of generic identifiability, at least for such cubic tensors. Strassen proved
in [46, Corollary 3.7] that a general rank-r decomposition in Cn ×Cn ×Cn, n odd, is
unique whenever

r ≤
⌊

n3

3n− 2

⌋
− n,

which is asymptotically better than Kruskal’s condition by a factor n. This result was
recently extended to any n in [10, Corollary 6.2].

We will investigate the identifiability of rank decompositions using techniques
from algebraic geometry in this paper. Its language and terminology will be used,
while attempting to maintain an exposition that requires no specialist knowledge.
Before proceeding, some basic terminology is established. Recall from [37] that a point
pi ∈ S on the Segre variety S = PCn1 × PCn2 × · · · × PCnd embedded in PCn1n2···nd

can be parametrized by a tensor of rank 1: we shall write pi = a1i ⊗ a2i ⊗ · · · ⊗ adi ,
with a slight abuse of notation, where pi is literally a representative of the point,
up to scalar multiples.1 A rank-r decomposition is a linear combination of r points
pi ∈ S, where the number of summands r is minimal. Geometrically, every rank-r
decomposition corresponds to a point p ∈ σr(S) on the r-secant variety σr(S) of the
Segre variety S, which is defined as the closure in the Zariski topology of the set of
linear combinations of r points on S. Note that not every p ∈ σr(S)\σr−1(S) has rank
r, a situation arising from taking the closure in the Zariski or Euclidean topology, and

1We also refer the reader to [37, section 4.2] for basic definitions in projective algebraic geometry.
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GENERIC AND SPECIFIC IDENTIFIABILITY OF TENSORS 1267

which may lead to the ill-posedness of the standard approximation problem associated
with (1.1); see de Silva and Lim [20] for more details in this regard. A Segre variety
S is said to be generically r-identifiable if a general element of σr(S) admits a unique
representation as a linear combination of points in S; i.e., the representation in (1.1) is
unique up to the trivial scaling indeterminacies that arise when considering the rank
decomposition in an affine setting. In other words, if S is generically r-identifiable,
then there exists a set M of Zariski, and, thus, Euclidean, measure zero, such that
all elements of σr(S) \M are r-identifiable. In particular, if we sample a “random”
element on σr(S), imposing any reasonable continuous probability distribution, then
this element will be identifiable. Furthermore, and conversely, if S is generically r-
identifiable and we have a nonidentifiable element p ∈ σr(S), then there will exist, for
every ε > 0, points p′ ∈ σr(S) with ‖p− p′‖ ≤ ε and p′ r-identifiable, where the norm
is the Euclidean norm. Nonidentifiable points are, thus, in a sense, nonstable points
of a generically r-identifiable Segre variety S; a general infinitismal perturbation, on
σr(S), will make them r-identifiable.

In this paper, a new sufficient condition for generic identifiability is developed
based on the geometrical concept of tangential weak defectivity, extending [10, 17].
As the condition is more involved to verify, an algorithm, based on familiar linear
and multilinear operations, for testing the proposed condition is described in some
detail. As generic (r− 1)-identifiability is implied by generic r-identifiability [17], the
application of this algorithm for the problem of generic identifiability will be limited
to the largest r possible, which is one less than the expected generic rank:

r =

⌈
Πd

i=1ni

1 + Σd
i=1(ni − 1)

⌉
− 1;

however, if the fraction is integer, then the expected generic rank minus one is r+1. In
this case, one says that the Segre variety S has a perfect shape [40,46]. Unfortunately,
the proposed algorithm is not designed to handle the (r + 1)-secant in the case of
perfect shapes. Our investigation will, therefore, be limited to r for all Segre varieties.
We will say that tensors of rank r ≤ r are of subgeneric rank. We remark that generic
r-identifiability does not hold for r strictly larger than r, respectively, r+1 for perfect
shapes, as is well known [37, Proposition 3.3.1.2].

In [10], a list of all known cases where generic identifiability fails is presented.
Using the proposed algorithm, we verified generic r-identifiability for a large number
of complex tensor spaces, providing additional evidence that the list from [10] is
complete for the varieties tested. The main result we prove is as follows.

Theorem 1.1. A general tensor A ∈ Cn1×n2×···×nd of subgeneric rank r ≤ r is

r-identifiable if
∏d

i=1 ni ≤ 15000 unless we have one of the following:

(n1, . . . , nd) r Type

(4, 4, 3) 5 defective [2]
(4, 4, 4) 6 sporadic [17]
(6, 6, 3) 8 sporadic [16]

(n, n, 2, 2) 2n− 1 defective [2]
(2, 2, 2, 2, 2) 5 sporadic [9]

n1 >
∏d

i=2 ni −∑d
i=2(ni − 1) r ≥ ∏d

i=2 ni −∑d
i=2(ni − 1) unbalanced [10].

Theorem 1.1 was stated with 100 instead of 15000 in [10].2 With the exception

2The defective varieties PCn ×PCn ×PC3, n odd, appear to be missing relative to [10]; however,
that is because they are defective only in the (r + 1)-secant.
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1268 CHIANTINI, OTTAVIANI, AND VANNIEUWENHOVEN

of the perfect shapes, these results are optimal in the sense that generic (r + 1)-
identifiability does not hold.3

The algorithm presented in this paper allows us to treat a considerably larger
number of cases, yielding results we believe to be of practical relevance, because of an
additional result that is implied by Theorem 4.1 in section 4.

Corollary 1.2. A general tensor A ∈ Cn1×···×nd of multilinear rank (r1, . . . , rd)
and of subgeneric rank r ≤ r in Cr1×···×rd, i.e.,

r =

⌈ ∏d
i=1 ri

1 +
∑d

i=1(ri − 1)

⌉
− 1,

is r-identifiable if
∏d

i=1 ri ≤ 15000.
In addition to generic identifiability, we also investigate whether the algorithm

can be extended to handle the problem of specific identifiability. We will show that if a
specific rank-r decomposition, considered as a point on the r-secant variety of a Segre
variety, is nonsingular, then the algorithm for generic identifiability may be applied.
Unfortunately, little is known about the singularities of these varieties; nonetheless,
local equations for secant varieties of low order can be obtained, allowing us to propose
a test for nonsingularity of a given rank-r decomposition. This technique allows us
to handle specific tensors that cannot be covered by the criterions of Kruskal and
Domanov–De Lathauwer. In particular, we consider a specific example, in section 5,
of a 5× 5× 5 tensor of rank 7 that is proved to be identifiable.

The remainder of the paper is structured as follows. In section 2, a sufficient
condition for generic r-identifiability is proposed, and a new class of identifiable but
weakly defective secant varieties is presented. Section 3 investigates an algorithm
based on the proposed sufficient condition; Theorem 1.1 is proved. A sufficient con-
dition for specific r-identifiability is then proposed in section 4. This condition is
used in section 5 in combination with local equations for the r-secant variety to prove
identifiability of a specific example beyond the criterions of Kruskal and Domanov–De
Lathauwer. Finally, section 6 presents our conclusions and open questions.

Notational conventions. We denote by TpX the tangent space to an algebraic
variety X ⊂ PCN in p ∈ X . We let

S = PCn1 × PCn2 × · · · × PCnd , n1 ≥ n2 ≥ · · · ≥ nd,

be the Segre variety under study, and define furthermore the constants

Π =

d∏
i=1

ni, Σ =

d∑
i=1

(ni − 1), and r =

⌈
Π

1 + Σ

⌉
− 1.

Note that S has dimension Σ and is naturally embedded in PCΠ. The r-secant variety
of S is formally given by

σr(S) =
⋃

p1,...,pr∈S
〈p1, p2, . . . , pr〉 ⊂ PCΠ,

where the line denotes the Zariski closure. The linear span of the spaces Li ⊂ V ,
i = 1, . . . , k, is denoted by 〈L1, . . . , Lk〉 ⊂ V .

3As a corollary, this also proves nondefectivity of the r-secant variety of these Segre varieties,
providing further evidence for the Abo–Ottaviani–Peterson conjecture [2], which already received a
strong numerical confirmation in [52].
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GENERIC AND SPECIFIC IDENTIFIABILITY OF TENSORS 1269

2. A sufficient condition for generic identifiability. A symbolic algorithm
implemented in Macaulay2 for verifying whether a general rank-r tensor is identifiable
was sketched in [10]. In essence, it augments the well-known algorithm based on
Terracini’s lemma for verifying nondefectivity of the r-secant variety of a Segre variety
(see, e.g., [1, 52]), with an additional step verifying, essentially, that no other points
on the Segre variety have their tangent space contained within the linear span of the
tangent spaces in r general points on the Segre variety. In this section, we expound on
the correctness of the algorithm in [10, section 9], and present a sufficient condition for
generic r-identifiability based entirely on basic linear algebra. We restrict ourselves
to the case of the Segre variety. The proof of our main result, Proposition 2.3, applies
to every smooth nondegenerate algebraic variety not contained in a hyperplane; in
particular, it applies to other classic varieties such as Veronese and Segre–Veronese
varieties, whose secant varieties correspond to symmetric rank decompositions and
partially symmetric rank decompositions, respectively. Generic r-identifiability for
these varieties can be verified in a similar way as in Algorithm 3.1.

The starting point of our investigation is Terracini’s characterization of the tan-
gent space at a general point on the r-secant variety of any variety [48,54]. We recall
the result here, for we will need to refer often to the statement. In the specific case
of the Segre variety, it reads as follows.

Lemma 2.1 (Terracini’s lemma [48]). Let S ⊂ PCΠ be a Segre variety, let p1, p2,
. . ., pr ∈ S be general points, and let p ∈ σr(S) be general in 〈p1, p2, . . . , pr〉. Then,

Tpσr(S) = 〈Tp1S,Tp2S, . . . ,TprS〉;

that is, the tangent space to the r-secant variety in p is given by the linear span of the
tangent spaces to the Segre variety in each of the r points.

By definition, a general rank-r tensor with r ≤ r in PCn1×···×nd admits a unique
representation as a sum of rank-1 tensors if and only if the r-secant order of the Segre
variety S = PCn1 × · · · × PCnd is one [15]. This concept is strongly related to r-weak
defectivity [14]; a variety A is said to be r-weakly defective if a general hyperplane
containing the tangent space at r general points of A is also tangent to the variety
in another point distinct from these r points. It was proved in [15] that a variety
that is not r-weakly defective has r-secant order one. In Proposition 2.4 in [17], the
notion of not r-tangential weak defectivity, which entails not r-weak defectivity, was
introduced. This is the key geometrical property that the algorithm from [10] exploits.
The proposition from [17] states the following.

Proposition 2.2 (Chiantini and Ottaviani [17]). Let p1, p2, . . . , pr ∈ S be r ≤ r
particular points of a Segre variety S ⊂ PCΠ whose r-secant variety is nondefective
and let p ∈ S be any point. Let Y = 〈Tp1S,Tp2S, . . . ,TprS〉. If {p ∈ S | TpS ⊆
Y} consists only of the simple points {p1, p2, . . . , pr}, then the Segre variety S is
r-identifiable.

A Segre variety S is said to be not r-tangentially weakly defective whenever the
condition in the above proposition holds. Similar in spirit to Terracini’s lemma, this
proposition reduces the problem of investigating generic identifiability of an algebraic
variety, which is a global property, to a local computation. We can reduce this check
further to an infinitesimal computation that can be performed at a given point p1.
To this end, we recall the definition of r-tangential contact locus Cr from [10]:

Cr = {p ∈ S | TpS ⊂ Y = 〈Tp1S, . . . ,TprS〉} ⊂ S ⊂ PCΠ.(2.1)
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1270 CHIANTINI, OTTAVIANI, AND VANNIEUWENHOVEN

When no ambiguity arises, we denote C = Cr. The next proposition is the prime
ingredient of the newly proposed sufficient condition.

Proposition 2.3. Let S be a nondefective Segre variety, let r ≤ r, and assume
that it is not generically r-identifiable. Then, for r general points p1, p2, . . . , pr ∈ S,
the r-tangential contact locus Cr contains a curve, passing through p1, p2, . . . , pr.

Proof. If S is not r-identifiable, then we have in affine notation

p =
r∑

i=1

aipi =
r∑

i=1

biqi

with ai, bi ∈ C, qi ∈ S. At least one of the qi /∈ {p1, . . . , pr} for if p would have
two different expressions as a linear combination of the pi, it would follow that the
pi do not form a linearly independent set, contradicting the generality of the pi.
In fact, it would imply that p is an element of the (r − 1)-secant variety. By the
generality of the points, Terracini’s lemma applies, so that Tpσr(S) = Y. Letting
bi(t) �= 0 be a curve with a parameter t in a neighborhood of 0, in such a way that
bi(0) = bi, the resulting tensor p(t) =

∑r
i=1 bi(t)qi has a tangent space Tp(t)σr(S)

which is constant with respect to t by Terracini’s lemma. We can then choose bi(t)
in such a way that p(t) /∈ 〈p1, . . . , pr〉, because otherwise the (generalized) Trisecant
lemma (see, e.g., Proposition 2.6 in [14]) would be contradicted as we would have that
〈p1, . . . , pr〉 = 〈q1, . . . , qr〉 for general points. By the assumption of not r-identifiability
and nondefectivity of S, we may thus write

p(t) =

r∑
i=1

ai(t)pi(t) with ai(0) = ai and pi(0) = pi,

where, by the previous argument, not all pi(t) can be constant. Then, we have
infinitely many p1(t) such that Tp1(t)S ⊂ Tp(t)σr(S) = Y. By monodromy we get
infinitely many pi(t) such that pi(0) = pi and Tpi(t)S ⊂ Y for any i. Since in the
Zariski topology over C any set containing infinitely many points contains at least a
curve, the proof is concluded.

Note that we do not claim irreducibility of the tangential contact locus: it may
have many components. In this case, however, since we can interchange by mon-
odromy any couple of points pi, pj , it follows that the tangential contact locus has
one component through every point pi, though not necessarily the same, as explained
in Proposition 2.2 of [15].

The algorithm in [10] explicitly constructs Cartesian equations for the r-tangential
contact locus Cr, as in (2.1), for the nondefective Segre variety S. The dimension of
Cr equals the dimension of the tangent space at a general point, and by the generality
of the points p1, . . . , pr, we can can compute it, for the sake of simplicity, at p1. From
Proposition 2.3 it follows that S is r-identifiable if Cr is zero-dimensional at p1.

The gist of the algorithm in [10] concerns the construction of the equations for
C = Cr. Consider the Segre embedding:

s : Cn1 × Cn2 × · · · × Cnd → CΠ

(a1, a2, . . . , ad) → a1 ⊗ a2 ⊗ · · · ⊗ ad

whose image is the affine cone over the Segre variety. For notational convenience,
we let m(·) denote the bijection between linear and multilinear indices, such that
xm(i1,...,id) = a1i1 · · · adid whenever x = a1 ⊗ · · · ⊗ ad. We say that the source of s
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provides a parameterization of the points on the affine cone over the Segre variety S.
First, a particular Y is constructed by choosing r particular points p1, . . . , pr ∈ S and
considering the span of the tangent spaces in these points. We may assume without
loss of generality that p1 = e11 ⊗ · · · ⊗ ed1, where ei1 is the first standard basis vector
of the corresponding vector space Cni . Suppose that the � independent Cartesian
equations of Y ⊂ PCΠ are

ql(x1, x2, . . . , xΠ) =

Π∑
i=1

ki,lxi =

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

km(i1,i2,...,id),lxm(i1,i2,...,id) = 0

for l = 1, 2, . . . , �, wherein the coefficients ki,l are constants, because the choice of the
particular points p1, . . . , pr is fixed. Note that Y is thus a (Π− �)-dimensional linear
subspace of PCΠ. Then, the intersection of a general point p = a1⊗a2⊗· · ·⊗ad ∈ S,
assuming without loss of generality that ak1 = 1 for k = 1, . . . , d, with Y can be
parameterized by simple substitution:

ql(a
1, a2, . . . , ad) =

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

km(i1,i2,...,id),la
1
i1a

2
i2 · · ·adid = 0(2.2)

for l = 1, 2, . . . , �. Interestingly, to impose that TpS ⊂ Y, it suffices, due to linearity,
that each of the basis vectors in the tangent space TpS satisfies the above Cartesian
equations. An explicit description of the tangent space TpS to the Segre variety
S at a point p = a1 ⊗ · · · ⊗ ad is readily obtained by taking partial derivatives
with respect to the parameters a = a1, . . . , ad of the equations for the Segre variety:
xm(i1,...,id) = a1i1a

2
i2
· · ·adid . By the linearity of the Cartesian equations, it follows that

we may simply take partial derivatives of (2.2) with respect to the parameters a to
obtain the equations for C. We will concisely write

{ ∂
∂aql(a) = 0}�l=1,(2.3)

where ∂
∂aql(a) represents the system of equations obtained by partial derivation of

(2.2) with respect to each of the parameters a. Given these equations of C, the
dimension of this algebraic variety is obtained, by definition, as the dimension of
the (linear) tangent space in a general point of C, which is again obtained by taking
partial derivatives with respect to the parameterization. We note that this corresponds
to computing the Jacobian of the above equations, or, equivalently, the “stacked
Hessian” of the multivariate homogeneous polynomial (2.2) evaluated in a general
point of C. We choose to evaluate it in the point p = p1 ∈ C. The stacked Hessian
H = [H1 H2 ··· H� ] is a block matrix wherein every block corresponds to the double
partial derivation of ql with respect to the parameters; i.e., H l is the Hessian of ql
evaluated in p1. These Hessians admit an additional block structure:

H l =

⎡
⎢⎢⎢⎢⎢⎣

H l
11 H l

12 · · · H l
1d

H l
21 H l

22 · · · H l
2d

...
...

. . .
...

H l
d1 H l

d2 · · · H l
dd

⎤
⎥⎥⎥⎥⎥⎦ , where (H l

IJ )ij =
∂2ql

∂aI1+i∂a
J
1+j

∣∣∣∣∣
p=p1

,(2.4)

for 1 ≤ I, J ≤ d with i = 1, . . . , nI − 1 and j = 1, . . . , nJ − 1. Note that H l ∈ CΣ×Σ

because ak1 = 1; thus, we need not derive with respect to it. From (2.2) it is also
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1272 CHIANTINI, OTTAVIANI, AND VANNIEUWENHOVEN

clear that deriving twice in mode I, i.e., with respect to some aIi and aIj , is zero,
because none of the terms has two variables from the same mode. This explains why
the block diagonal of H l is, in fact, zero: H l

II = 0. It is straightforward to verify that
all nonconstant terms in (2.2) after the double partial derivation are zero due to the
special choice of p1. As a result, the off-diagonal block matrices H l

IJ , I �= J , are given
explicitly by

(H l
IJ )ij = km(1,...,1,i+1,1,...,1,j+1,1,...,1),l,(2.5)

where i is at position I and j at position J in the multi-index.
The rank of H reveals the local codimension of C; we recall that C is specified

by the Cartesian equations, so that its dimension is the dimension of S minus the
number of independent additionally imposed conditions in (2.3). If H is of maximal
rank, we can be sure that p = p1 is a general point and thus that the local dimension
equals the global dimension.4 On the other hand, if the rank of H is not maximal,
the algorithm is unable to conclude that the Segre variety S is r-identifiable. This
problem may have arisen from an unfortunate choice of initial points p1, . . . , pr, so
it may be advised to rerun the algorithm several times. If in none of these runs H
has maximum rank, this may be taken as an indication that the Segre variety S is
r-tangentially weakly defective, in which case it may or may not be r-identifiable.
Conversely, if H has the maximum dimension, C is zero-dimensional, and we may
conclude that S is r-identifiable by Proposition 2.3. For future reference, we state
this in the following proposition.

Proposition 2.4. Let S ⊂ PCΠ be a Segre variety of dimension Σ. Let H =
[H1 ··· H� ] be the stacked Hessian with H l as in (2.4). Assuming that the rank of H
is maximal, i.e., equal to Σ, then S is (generically) r-identifiable.

We left two items unspecified thus far: first, we did not mention how to assess
that the r-secant variety is nondefective, which is required for Proposition 2.3 to
be applicable; and, second, the construction of the equations of the kernel was not
detailed. We tackle both issues concurrently. Recall that σr(S) is nondefective if
and only if its dimension is maximal. For verifying this property, Terracini’s lemma is
typically exploited to reduce the computation of the tangent space at a point on σr(S)
to computing the span of tangent spaces to r general points on the Segre variety; see,
e.g., [1, 18, 52]. Recall that the linear space Y under consideration in Propositions
2.2 and 2.3 is exactly equal to Tpσr(S). For computing the Cartesian equations of
this space practically, we note that Y corresponds to the column span of some matrix
T ∈ CΠ×r(Σ+1); hence, the coefficients of the Cartesian equations can be found as any
set of basis vectors for the kernel of T T , which can be obtained by applying Gaussian
elimination to the extended system [ T I ]. If K = [ k1 k2 ··· k� ] is a basis for the null
space thusly obtained, then the columns of K are the coefficients in (2.2). The test
for nondefectivity consists of verifying that Π − r(Σ + 1) = �. If this equality is not
satisfied, the algorithm cannot conclude that the Segre variety is r-identifiable: the
lower rank may have been caused either by an unfortunate selection of the initial
points p1, p2, . . . , pr, or by a defective r-secant. As r-defective secant varieties are
not generically r-identifiable [37], the algorithm must stop here. Finally, the required
matrix representation of Y is easily constructed. It is well known (see, e.g., [2,37,52])

4This is easy to understand from the fact that the elements of H are multivariate polynomials in
the variables a. Consider the set of Σ× Σ minors of H, then the determinant is also a multivariate
polynomial in the parameters a and at least one of them is nonzero in p1 becauseH is of maximal rank.
The existence of an ε-neighborhood around a where this property is maintained follows immediately.
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that the span of TpiS, i = 1, . . . , r, is represented by the column span of

Ti =
[
T 1
i T 2

i · · · T d
i

]
with T k

i = a1i ⊗ · · · ⊗ ak−1
i ⊗ Ink

⊗ ak+1
i ⊗ · · · ⊗ adi ,(2.6)

and Ink
represents an identity matrix of order nk. By Terracini’s lemma, the span of

Y = Tpσr(S) coincides with the column span of

T ′ =
[
T1 T2 · · · Tr

]
,(2.7)

provided that the pi are sufficiently general. T ′ is overparameterized, but a simple
permutation matrix P can reduce T = T ′P to a Π × r(Σ + 1) matrix with the same
column span. Generically, it suffices to remove the last column from T k

i , i = 1, . . . , r,
k = 2, . . . , d; see [52] for more details.5

2.1. Unanticipated weakly defective varieties. Using the approach outlined
above, we encountered several previously unknown r-tangentially weakly defective,
and thus r-weakly defective, varieties. Remarkably, all of the discovered cases were
of the same type, and we will show that generic r-identifiability can still hold if the
sufficient condition of Theorem 2.7 about the rank of the stacked Hessian is satisfied.
These examples were not detected in [10] because only Segre varieties embedded in
PCΠ with Π ≤ 100 were investigated there, while the smallest instance of this new
class occurs in the space PC144, namely for the Segre variety PC8×PC3×PC3×PC2.

The key observation that characterizes all of the unanticipated cases is as follows.
Lemma 2.5. Let S be a nondefective Segre variety, � = Π− r(Σ + 1), and

n1 − 1 > �

d∑
i=2

(ni − 1).

Then the stacked Hessian H =
[
H1 H2 · · · H�

]
, where H l is as in (2.4), is not

of full rank. Instead, its rank is bounded from above by (�+ 1)
∑d

i=2(ni − 1).
Proof. We can rearrange the columns of H by applying an �Σ× �Σ permutation

matrix P ′ on the right, so that we find

HP ′ =

⎡
⎢⎢⎢⎢⎣

H1
12 · · · H1

1d · · · H�
12 · · · H�

1d H1
11 · · · H�

11

H1
22 · · · H1

2d · · · H�
22 · · · H�

2d H1
21 · · · H�

21
...

. . .
... · · · ...

. . .
...

...
. . .

...
H1

d2 · · · H1
dd · · · H�

d2 · · · H�
dd H1

d1 · · · H�
d1

⎤
⎥⎥⎥⎥⎦

=

[
H ′

11 0

H ′
21 H ′

22

]
,

where H and HP ′ are Σ × �Σ matrices, H ′
11 is (n1 − 1) × �

∑d
i=2(ni − 1), H ′

21 is∑d
i=2(ni − 1) × �

∑d
i=2(ni − 1), and H ′

22 is
∑d

i=2(ni − 1) × �(n1 − 1). The rank of

[H′
11 0 ] is the rank of H ′

11, which is at most �
∑d

i=2(ni − 1) because it is the smaller
of the two dimensions provided that the condition in the lemma holds. The rank of
[H′

21 H′
22 ] is bounded by

∑d
i=2(ni−1), because it is the smaller of the two dimensions.

Combining above upper bounds for the rank concludes the proof.

5It is not mandatory to work with a basis for representing the span of T , but we found that it
simplified the programming and improves the efficiency of the code.
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As an immediate corollary, we obtain the following.6

Corollary 2.6. A (possibly defective) Segre variety S satisfying the arithmetic
conditions in Lemma 2.5 is r-tangentially weakly defective, and, hence, r-weakly de-
fective.

As the arithmetical condition on the size of n1 in Lemma 2.5 cannot be satisfied
by replacing � with � + a(Σ + 1) for some a ≥ 1, this corollary can only show that
some Segre varieties are r-tangentially weakly defective: it never applies for r < r.

We mentioned before that not r-tangentially weakly defective is a sufficient condi-
tion for generic identifiability; now, it will be shown that it is not necessary. The fol-
lowing theorem namely states that Segre varieties satisfying the conditions of Lemma
2.5 can still be generically r-identifiable.

Theorem 2.7. Let S, �, and H be as in Lemma 2.5. Assume S is not r-defective.
If the rank of the stacked Hessian H is precisely

(�+ 1)

d∑
i=2

(ni − 1),

then S is r-(tangentially) weakly defective but nevertheless still r-identifiable.
Proof. Let p1, . . . , pr ∈ S be general points. By [42, Theorem 3.3], the 1-tangential

contact locus, say at the point p1, contains a linear space of dimension (n1 − 1) −∑d
j=2(nj−1) passing through p1 and which is contained in the linear space Pn1−1 ⊂ S

through p1. The same argument, applied � times, to � independent hyperplanes
defining the span 〈Tp1S, . . . , TprS〉, shows that the r-tangential contact locus contains
the disjoint7 union of r linear spaces Li, for i = 1, . . . , r, of dimension (n1 − 1) −
�
∑d

j=2(nj − 1), where pi ∈ Li and Li is contained in the corresponding linear space

Pn1−1 ⊂ S passing through pi. The assumption on the rank shows that each of Li

is a irreducible component of the r-tangential contact locus; more precisely, around
each pi, the r-tangentially contact locus locally coincides with Li. If S were not r-
identifiable, then, by the same argument in the proof of Proposition 2.3, we would get
different decompositions

∑r
i=1 aivi with vi ∈ Li. But the spaces Li span a subspace of

maximal dimension, because each Li ⊂ TpiS and the subspaces TpiS span a subspace
of maximal dimension. Then, we would have uniqueness of decomposition, which is a
contradiction.

3. An algorithm verifying generic identifiability. In the previous section,
it was explained in detail how the sufficient condition in Proposition 2.3 and Theorem
2.7 can be verified in practice, given a collection of r general points on S. Based on
the above considerations, the algorithm we propose for verifying generic identifiability
is summarized in Algorithm 3.1.

Note that in Algorithm 3.1 we propose to verify generic r-identifiability of S by
computations over the finite field Zq with q prime. The correctness of this approach
should be clear from the observation that all of the computed matrices over Zq, i.e., T ,
K, and H , are equivalent to the same matrices computed over C modulo q, combined
with the fact that if any of these matrices are of full rank in Zq, then they are
necessarily so in Z and C as well. By upper semicontinuity of matrix rank, it follows
that in a Zariski-open set Z around the point p = p1 + · · ·+ pr ∈ Z, the rank of the

6Note that the corollary exploits the observation that defective varieties are also generically
r-tangentially weakly defective.

7Terracini’s lemma is applicable because the points are general.
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Algorithm 3.1 An algorithm for verifying generic uniqueness.

S1. Choose r random points pi ∈ SZq = Zn1
q × · · · × Znd

q .

S2. Construct the tangent space matrix T ∈ Z
Π×r(Σ+1)
q following (2.6) and (2.7).

S3. Construct the extended matrix E = [ T IΠ ], where IΠ is the Π × Π identity
matrix. Perform row-wise Gaussian elimination (without column pivoting)
to reduce E to row-echelon form.

S4. Extract the null space matrix KT as the l × Π lower-right submatrix of E,
where l is maximal such that the l × r(Σ + 1) lower-left submatrix is zero.

S5. If l > �, the Segre variety may be r-defective; the algorithm halts and claims
it cannot prove r-identifiability for this choice of points. On the other hand,
if l = �, as expected, then continue with the next step.

S6. Construct the Hessian matrix Hk, k = 1, . . . , �, following (2.4) and (2.5).
S7. Compute the rank r of the stacked Hessian H by performing Gaussian elim-

ination. We distinguish between two cases:
S7a. Assume that the shape of S satisfies the condition in Lemma 2.5. If

the rank r satisfies Theorem 2.7, then the algorithm has proved r-
identifiability; otherwise, it claims that it cannot prove r-identifiability
for these points.

S7b. Assume that the shape of S does not satisfy the condition in Lemma
2.5. If the rank r is maximal, i.e., Σ, then the algorithm has proved r-
identifiability; otherwise, it claims that r-identifiability cannot be proved
with these points.

corresponding H is still maximal (and the general p′ ∈ Z will be general in σr(S)).
Consequently, if Algorithm 3.1 claims that the rank of H is maximal, then the variety
is generically r-identifiable even if p is not a general point.8 For this reason, it is
unnecessary to verify that p is general. Note that if H is not of full rank in Zq, then
no conclusions can be drawn: in particular, this should not be interpreted as a proof
that the Segre variety is not identifiable. At best, if in several independent trials H
is not of full rank, this can be an indication that the variety may not be generically
identifiable.

Electing to verify generic identifiability over a finite field has an additional compu-
tational advantage: with finite field computations the number of bits for representing
one number remains constant throughout the execution of the algorithm; the number
of bits required is the number of bits to represent q − 1. This advantage does not
hold for computations over Z, Q, or C: the storage bit-complexity of basic Gaussian
elimination is not constant but rather a function of the size of the matrix. In fact, to
obtain a nonexponential storage bit-complexity9 some nontrivial modifications to the
algorithm are necessary; see, e.g., [7, 22].

One may wonder why we do not consider an implementation with, e.g., double
precision floating-point arithmetic, which leads to faster algorithms in practice. The
problem with such an approach is the occurrence of roundoff errors, which necessitates
a numerical analysis for investigating their propagation throughout the algorithm. In
[52], such an approach was pursued for the simpler problem of verifying nondefectivity
of the Segre variety, leading to probabilistic statements; however, we believe that
approach is more involved than the one proposed here.

8An example of this phenomenon is given in Example 4.2.
9See [27] for some specific examples.
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The asymptotic time complexity of Algorithm 3.1, that is, the asymptotic number
of operations performed, is determined as follows. Recall that generic r-identifiability
implies generic r-identifiability for all r < r. We will restrict the analysis to the case
of r = r. Step S2 requires d multiplications for every element in T , so the complexity
is O(dΠ2). The Gaussian elimination in step S3 requires O(Π3) operations, while in
step S7 O(Σ4) operations are necessary. The cost of the remaining steps is dominated
by the cost of these operations: the total complexity is of the order

O(Π3 + dΠ2 +Σ4) operations.

In terms of storage complexity, it suffices to store O(2Π2) values for E and O(Σ3)
values for the stacked Hessian H , for a total of

O(2Π2 + Σ3) values.

3.1. Experimental results. The above algorithm was implemented in C++
using the Eigen matrix library [28]. The code for computing over the finite field Zq

with q = 27−1 = 127 was also developed, as Eigen has no native support for this. This
particular finite field with q a Mersenne prime was selected because these primes have
some favorable computational properties with respect to the modulus operations. A
C++ code implementing Algorithm 3.1 is included in the ancillary files accompanying
this paper. The algorithm we provide along with the manuscript handles the setting
in which the Hessian criterion is verified at every p1, . . . , pr (not only at p1), so that
not all optimizations discussed in section 2 apply. With this code one can also verify
the example presented in section 5.2.

Employing an implementation of Algorithm 3.1, generic r-identifiability was as-
sessed for all Segre varieties with Π ≤ 15000, extending the results of [10] by two
orders of magnitude. In total, 75993 varieties were tested; in this count, we do not
include the known exceptions that were presented in Theorem 1.1. The largest num-
ber of factors tested was 13 for the variety (PC2)13. All results pertaining to Segre
varieties with at least seven factors are original, as well as most results for less factors.

We ran our experiments on two computer systems: the first consists of two Intel
Xeon E5645 hexa-core CPUs clocked at 2.4GHz with 48GB of main memory, while
the second comprises two Intel Xeon X5550 quad-core CPUs clocked at 2.67GHz with
32GB of main memory. The performance of these two machines is comparable. We
ran several tests concurrently on each of the machines; at most 12 ran simultaneously
on the first machine, while at most 10 tests were performed concurrently on the sec-
ond machine. The total computation time for all experiments, if they would have
been executed sequentially, would have been 660 days, 21 hours, and 15 minutes. By
running them in parallel, this was reduced to only a couple of months. Note that
the average running time was only 12 minutes and 31 seconds. The maximum ex-
ecution time for a single variety was 39 hours and 35 minutes for the Segre variety
PC6 ×PC6 ×PC5 ×PC5×PC2 ×PC2 ×PC2 ×PC2. The memory consumption for an
individual test was never more than about 3GB. We believe that more computational
resources are necessary to improve the range for which generic r-identifiability can be
proved, mainly because of the vast amount of varieties that need to be tested. If we
would like to double the current range, i.e., test all varieties with Π ≤ 30000, we may
expect that a single experiment takes no more than eight times the execution time of
the longest experiment for Π ≤ 15000. This would mean that it takes no more than
about two weeks per experiment. In fact, in [50], it was verified with the second com-
puter system using a modified version of the presented algorithm that (PC14)4, where
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Table 1

A comparison between the maximum rank for which generic r-identifiability can be proved for
S = PCm ×PCn ×PCn using the Domanov–De Lathauwer criterion [24, Proposition 1.31 and Table
6.2] (♦) and the sufficient condition verified by Algorithm 3.1 (♣). A maximum rank displayed in a
slanted font indicates that the value is optimal. In boldface the possibly suboptimal maximum rank
values, all of which correspond to perfect shapes, are highlighted in the case of Algorithm 3.1.

m n

4 5 6 7 8 9

♦ ♣ ♦ ♣ ♦ ♣ ♦ ♣ ♦ ♣ ♦ ♣
2 4 3 5 4 6 5 7 6 8 7 9 8
3 4 5 5 6 6 8 7 9 8 11 9 12
4 5 6 6 8 7 10 8 12 9 14 10 16
5 5 7 6 9 7 11 8 14 10 16 11 19
6 6 7 7 10 8 13 9 16 10 19 11 22
7 7 8 8 11 9 14 9 18 11 21 12 24
8 8 9 9 12 9 15 10 19 11 23 12 26
9 9 9 9 13 10 17 11 20 12 25 13 29

10 9 9 10 13 11 17 12 22 13 26 14 31
11 9 9 11 14 12 18 13 23 14 28 15 32
12 9 9 12 14 13 19 14 24 15 29 15 34
13 9 9 13 15 14 20 14 25 15 30 16 36
14 9 9 14 15 14 20 15 26 16 31 17 37
15 9 9 14 16 15 21 16 27 17 33 18 39
16 9 9 14 16 16 22 17 27 18 34 19 40
17 9 9 14 16 17 22 18 28 19 35 20 41
18 9 9 14 16 18 23 19 29 20 35 20 42
19 9 9 14 16 19 23 20 30 20 36 21 43
20 9 9 14 16 20 23 20 30 21 37 22 44
21 9 9 14 16 21 24 21 31 22 38 23 45
22 9 9 14 16 21 24 22 31 23 39 24 46
23 9 9 14 16 21 25 23 32 24 39 25 47
24 9 9 14 16 21 25 24 32 25 40 26 48
25 9 9 14 16 21 25 25 33 26 41 26 49

Π = 38416, is a nondefective variety in approximately 30 hours. As a final remark
about the performance of the proposed algorithm, we note that the Macaulay2 code
accompanying [10], which also proves generic identifiability, requires approximately 10
minutes for proving generic r-identifiability of (PC5)4, where Π = 625, on the second
computer system using one processing core and Macaulay2 v1.4; with the method
in this paper, the same result was proved in less than one second. We believe that
the main reason for this difference can be attributed to the computationally more de-
manding algebraic algorithms, such as computing syzygies; a full comparison of such
differences in performance is out of the scope of the present study, however.

In all of the 75993 tested cases, the algorithm proved generic r-identifiability; these
results include the spaces PCn × PCn × PC3 with n odd, which are r-identifiable,
but not (r + 1)-identifiable because the variety is defective for that rank. In 973
cases, Lemma 2.5 applied, and, hence, step S7a in Algorithm 3.1 proved generic
identifiability; in all other cases, generic identifiability was proved through step S7b.
For the spaces PCn×PCn×PC2, we could not always prove r-identifiability in a small
number of attempts;10 therefore, r-identifiability in these spaces was established by
considering computations over the larger prime field Z8191.

10This could have been anticipated by considering the results from [33].
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For the sake of completeness, we present in Table 1 results analogous to Table
6.2 in [24], comparing the maximum rank for which generic r-identifiability holds,
according to the Domanov–De Lathauwer sufficient condition [24], which improves
Kruskal’s condition (1.2), and according to the sufficient criterion presented in this
paper. From Table 1 one learns that the proposed sufficient condition considerably
improves upon the best results from [24]; in fact, aside from the perfect shapes, our
results are optimal.11 We remark that in the first row of Table 1, it is well known that
generic (r+1)-identifiability holds, as can be detected using Domanov–De Lathauwer’s
criterion from [24], while our algorithm cannot provide an answer in this case because
they are perfect shapes.

4. A sufficient condition for specific identifiability. Assume we have a
decomposition of a tensor A as in (1.1). One could ask for an algorithm that detects
whether this particular decomposition is unique, such as in Kruskal’s lemma [35]. In
particular, one wonders if the algorithm we proposed is capable of giving a sufficient
criterion to check if the decomposition is unique. We investigate this next.

We begin with an observation concerning tensor subspaces. Assume that a tensor
A ∈ Fn1×···×nd with F = R or C whose decomposition is sought lives in a strict tensor
subspace A1⊗· · ·⊗Ad ⊂ Fn1×···×nd with dimAi = ri ≤ ni and at least one inequality
strict. Letting Qi ∈ Fni×ri be a matrix whose columns form a basis for Ai, which, in
practice, can be recovered using the HOSVD [19,49, 51], we may write

A = (Q1, . . . , Qd) · A′ with A′ ∈ Fr1×···×rd ,

where the multilinear multiplication A = (Q1, . . . , Qd) · A′ can be defined as

A =

r1∑
j1=1

r2∑
j2=1

· · ·
rd∑

jd=1

A′
j1,j2,...,jd

(Q1ej1)⊗ (Q2ej2)⊗ · · · ⊗ (Qdejd)

with ejk the jkth standard basis vector of Frk ; see, e.g., [20] for equivalent definitions.
In the literature, the tuple (r1, r2, . . . , rd) is called the multilinear rank of A [12,20,32].
The property of relevance to our discussion is the following.

Theorem 4.1. Let A ∈ A1 ⊗ · · · ⊗ Ad ⊂ Fn1×···×nd be a tensor of rank r where
Ai is a subspace of Fni of dimension ri ≤ ni. Let Qi be a matrix representing a basis
for Ai. Then, A = (Q1, . . . , Qd) · A′ is r-identifiable if and only if A′ ∈ Fr1×r2×···×rd

is r-identifiable.
Proof. Recall that the ranks of A and A′ are equal; see, e.g., [11, 37].
If A is r-identifiable, then A′ is also r-identifiable. Indeed, if we assume that A′

has two different decompositions, then A = (Q1, . . . , Qd) · A′ also has at least two
different decompositions by the properties of multilinear multiplication.

Conversely, if A′ has a unique decomposition, it follows, from the previous argu-
ment, that A has exactly one decomposition of the type

A =

r∑
i=1

Q1x
1
i ⊗Q2x

2
i ⊗ · · · ⊗Qdx

d
i ;

any alternative decomposition A =
∑r

i=1 a
1
i ⊗ · · · ⊗ adi should thus have at least one

i and k such that aki is not contained in the span of Ak. This, however, immediately

11As a consequence of the optimality of our results, they also improve on the conditions for generic
identifiability recently presented in [25].
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GENERIC AND SPECIFIC IDENTIFIABILITY OF TENSORS 1279

contradicts [11, Corollary 2.2]: that corollary implies that the number of terms in
such a decomposition of A would have to be strictly larger than r.

By combining this theorem with the existence of the sporadic cases in Theorem
1.1 where generic r-identifiability does not hold, e.g., PC4 × PC4 × P4 with r = 6,
we can readily prove the existence of some specific tensors to which the algorithm
proposed in section 3 cannot be applied straightforwardly.

Example 4.2 (a problematic case). Consider, for instance, a general rank-6 tensor
A of multilinear rank (4, 4, 4) in a space PCn1 ⊗ PCn2 ⊗ PCn3 that is generically 6-
identifiable. Note that several such spaces exist, as proved by Algorithm 3.1; however,
let us consider spaces of the type PCn×PCn×PCn with n ≥ 6, which are generically
6-identifiable as mentioned in the introduction. Then, by Theorem 4.1, A may be
written as A = (Q1, Q2, Q3) ·A′, Qi ∈ Cn×4, where A′ is a general tensor of rank 6 in
C4 ⊗C4 ⊗C4. From [17, section 5] it is known that a general A′ is not 6-identifiable;
indeed, it has two decompositions. On the other hand, by definition of generality, the
subset of tensors that are not identifiable in an open neighborhood of A has measure
zero, otherwise generic 6-identifiability of PCn ⊗ PCn ⊗ PCn would be contradicted.
As a consequence, inspecting Proposition 2.3, it is clear that the same proof can be
applied to this case,12 so that the proposed algorithm will detect that the rank of
the stacked Hessian is maximal. That is, the proposed algorithm correctly detects
that only in a set of measure zero (in either the Zariski or Euclidean topology) the
6-identifiability property fails around A, but the algorithm has no means to detect that
A is precisely in this set of measure zero.

The reason of the above behavior can be geometrically understood as follows.
Let S ′ be the Segre variety of PC4 × PC4 × PC4, which is naturally embedded in the
Segre variety S of PCn × PCn × PCn, n ≥ 6. When we consider the abstract secant
variety Aσ6(S), as defined in [15], i.e., the Zariski closure in P(C64)× Sym6(S) of the
variety of pairs (p, (p1, . . . , p6)), where p ∈ 〈p1, . . . , p6〉, and the natural projection
π6 : Aσ6(S) → σ6(S), then the fibers of π6 are singletons over general points of σ6(S),
while over (general) points p′ ∈ σ6(S ′) they consist of a pair of points. Zariski’s Main
Theorem [30, Corollary III.11.4] states that the inverse image of a normal point under
a birational projective morphism is connected. Then, we find that σ6(S ′) is contained
in the singular locus of σ6(S). Indeed, σ6(S) is two-folded at a general point of σ6(S ′).
The stacked Hessian only detects what happens in a neighborhood of p in one of the
two folds: the behavior is perfectly regular there.

The previous example showed that a straightforward application of the Hessian
criterion may fail if the given rank-r decomposition corresponds to a singular point
of σr(S). We continue to show that this is the only type of failure that prevents us
from applying the Hessian criterion. That is, if the given decomposition corresponds
to a nonsingular point, then one can try to prove its identifiability using the Hessian
criterion of Proposition 2.4. To prove this, we introduce two preparatory lemmas.

Lemma 4.3. Let S ⊂ PCΠ be a Segre variety of dimension Σ. Let p1, p2, . . . , pr ∈
S and p ∈ σr(S) in the span 〈p1, p2, . . . , pr〉. Assume that p is not contained in the
singular locus of σr(S) and assume that

dim(〈Tp1S,Tp2S, . . . ,TprS〉) = r(Σ + 1)− 1,

which is the expected dimension of the secant variety. Then, the variety S is not

12It is not difficult to prove that since Terracini’s lemma applies, i.e., the dimension of the span
of the individual tangent spaces is maximal, for (general) A′ in PC4 ×PC4×PC4, then it also applies
for the particular A = (Q1, Q2, Q3) · A′ in PCn × PCn × PCn.
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1280 CHIANTINI, OTTAVIANI, AND VANNIEUWENHOVEN

r-defective and the conclusion of Terracini’s lemma holds, i.e.,

Tpσr(S) = 〈Tp1S,Tp2S, . . . ,TprS〉.
Proof. Our assumptions imply that the points pi’s are linearly independent. Thus,

the abstract secant variety Aσr(S) is smooth at (p, (p1, . . . , pr)). The projection map
from the abstract secant variety to the secant variety sends the tangent space to
Aσr(S) at (p, (p1, . . . , pr)) to the linear span 〈Tp1S,Tp2S, . . . ,TprS〉, which is thus
contained in the Zariski tangent space of σr(S) at p. Comparing the dimensions, the
conclusion follows, since dim(σr(S)) cannot be greater than r(Σ + 1)− 1.

Lemma 4.4. Let S ⊂ PCΠ be a Segre variety of dimension Σ. Let p1, p2,
. . ., pr, q ∈ S be distinct points and let p ∈ σr(S) be in the intersection of the spans
〈p1, p2, . . . , pr〉∩〈q, p2, . . . , pr〉. Assume that the rank of the stacked Hessian H, defined
in section 2, at every p1, . . . , pr is maximal, i.e., equal to Σ. Then the point p ∈ σr(S)
is not normal. In particular it is singular.

Proof. Consider the projection from the abstract secant variety π : Aσr(S) →
σr(S). By the assumption on the rank of H , Proposition 2.4 implies that S is
generically r-identifiable. It follows that π is a birational morphism. By assump-
tion, after reordering the points, we have that, in affine notation, p =

∑r
i=1 aipi =

b1q +
∑r

i=2 bipi for convenient scalars ai, bi. Hence, the fiber π−1(p) contains the
two points (p, (p1, p2, . . . , pr)) and (p, (q, p2, . . . , pr)). The connected component of
the fiber passing through (p, (p1, p2, . . . , pr)) consists of just this single point, be-
cause it is contained in the r-contact locus of Tpσr(S), which is zero-dimensional at
(p, (p1, p2, . . . , pr)), by the assumption on the rank of H . It follows from Zariski’s
main theorem [30, Corollary III.11.4] that the point p ∈ σr(S) is not normal.

With the two previous lemmas, we get a criterion for detecting the uniqueness of
a given decomposition of a tensor p, provided that we know that p is not contained in
the singular locus of the secant variety. The criterion is the following.

Theorem 4.5. Let p =
∑r

i=1 aipi be a decomposition with ai ∈ C and pi ∈ S, and
assume p is a nonsingular point of σr(S). Let Y = 〈Tp1S,Tp2S, . . . ,TprS〉. Then,
the decomposition is unique if the rank of the stacked Hessian H, defined in section
2, at every p1, . . . , pr is maximal, i.e., equal to Σ.

Proof. We proceed similarly as in the proof of Proposition 2.3: if p is not r-
identifiable, then we have, in affine notation,

p =

r∑
i=1

aipi =

r∑
i=1

biqi

with ai, bi ∈ C, qi ∈ S. At least one of the qi /∈ {p1, . . . , pr}; otherwise, p would
have two different expressions as a linear combination of the pi, so that p would be
an element of the (r − 1)-secant variety, and, hence, a singular point of the r-secant
variety. By Lemma 4.3, Terracini’s lemma applies, so that Tpσr(S) = Y. Letting
bi(t) �= 0 be a curve with a parameter t in a neighborhood of 0, in such a way that
bi(0) = bi, the resulting tensor p(t) =

∑r
i=1 bi(t)qi has a tangent space Tp(t)σr(S)

which is constant with respect to t by Terracini’s lemma because general points in the
span of the qi’s all have the same tangent space in the secant variety, and p(t) moves
in the span of the qi’s. We can then choose bi(t) in such a way that p(t) /∈ 〈p1, . . . , pr〉,
because otherwise we have qi ∈ 〈p1, . . . , pr〉, contradicting Lemma 4.4. We may write

p(t) =

r∑
i=1

ai(t)pi(t) with ai(0) = ai and pi(0) = pi,
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where, by the previous argument, not all pi(t) can be constant. Then, we have
infinitely many p1(t) such that Tp1(t)S ⊂ Tp(t)σr(S) = Y.

Remark 4.6 (modifications to Algorithm 3.1). In light of Theorem 4.5, some
minor modifications are required to make Algorithm 3.1 work in the setting of spe-
cific identifiability, provided that we already know that the input rank-r decomposition
corresponds to a nonsingular point of the r-secant variety. Step S1 may be removed;
instead, each of the terms in the given rank-r decomposition corresponds to one point
pk ∈ S. Then, because the Hessian criterion must be checked for every point pk, steps
S6 and S7 should be repeated for every point; that is, for point pk, the submatrices
of the Hessian H l in (2.4) should be replaced with

(H l
IJ)ij =

∂2ql
∂aIi ∂a

J
j

∣∣∣∣
p=pk

, i = 1, . . . , nI , j = 1, . . . , nJ , 1 ≤ I, J ≤ d.

Note that H l ∈ CΣ+d×Σ+d whose rank will, by definition, be less than Σ. Let pk =
v1⊗· · ·⊗vd in affine notation. One can verify through straightforward computations
starting from (2.2) that, assuming I < J ,

H l
IJ = (vT

1 , . . . ,v
T
I−1, I,v

T
I+1, . . . ,v

T
J−1, I,v

T
J+1, . . . ,v

T
d ) · Kl,

where Kl
i1,...,id

= km(i1,...,id),l. For J < I, we have H l
IJ = (H l

JI)
T , and if J = I, then

HIJ = 0. If the rank of the stacked Hessian H = [H1 ··· H� ] is maximal, i.e., equal
to Σ, at p1, . . . , pr, then we conclude that the Hessian criterion applies, and that the
given decomposition is identifiable.

In the next section, we give some sufficient conditions for the nonsingularity of a
given tensor A of small rank. Regarding this topic, we mention the results of [5,6,39],
which solve the case of some symmetric tensors of low rank; see Corollary 1.5 of [6].

5. Identifiability of specific tensors beyond Kruskal’s bound. In this
section, we give examples of how Theorem 4.5 can be implemented in some specific
cases. This technique can be applied to all tensors of a given small rank, unless
they belong to a set of measure zero in the r-secant variety. Since we know enough
equations of the r-secant variety in a range that is often greater than Kruskal’s range
in (1.2), we may prove the uniqueness of a specific decomposition of a tensor, in
cases where neither Kruskal’s nor Domanov–De Lathauwer’s criterion applies. It is
important to stress that this does not contradict Derksen’s result in [21], who proved
that Kruskal’s criterion is sharp for certain tensors in a set of measure zero.

5.1. Some equations of secant varieties to Segre varieties. We restrict
ourselves to the case where the number of factors d equals 3:13 let A ∈ Cn1×n2×n3

with n1 ≥ n2 ≥ n3 ≥ 2. Recall that we can consider

A ∈ Cn1×n2×n3 � Cn1 ⊗ Cn2 ⊗ Cn3 � Cn1∗ ⊗ Cn2 ⊗ Cn3

using the identification of dual spaces Cn1 � Cn1∗. Moreover, the last space can
be identified with the space of maps (Cn1 → Cn2 ⊗ Cn3). A well-known technique
(see, e.g., Chapter 7 in [37]) for finding some equations of σr(S) is to compute the
(r + 1)-minors of the standard contraction map

FA : Cn1 → Cn2 ⊗ Cn3 .

13At least for odd d and small rank, one may expect that the technique presented in this subsection
provides enough equations for applying Theorem 4.5.
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The transpose of the matrix representing such map is usually called a flattening,
unfolding, or matricization, and has size n1 × n2n3. This technique gives nontrivial
equations of σr(S) only for r < n1.

In order to have nontrivial equations of σr(S) for larger values of r, the following
technique is useful. It was introduced in [39] in a geometric vector bundle setting.
For every q = 1, . . . , �n3

2 �, we can consider the more general contraction map14

AA : Cn1 ⊗ C(
n3
q ) → Cn2 ⊗ C(

n3
q+1),

which is defined in the following way: if A = a1 ⊗ a2 ⊗ a3, then

Aa1⊗a2⊗a3(f ⊗ g) := (a1 · f)a2 ⊗ (g ∧ a3), f ∈ Cn1 ,g ∈ C(
n3
q ),

where a · b is the standard inner product, and in the general case it is defined by
linearity; that is, if A =

∑r
i=1 a

1
i ⊗ a2i ⊗ a3i , then

AA =

r∑
i=1

Aa1
i⊗a2

i⊗a3
i
.

The matrix of this more general contraction is sometimes called a Young flattening.
For example, in the case n3 = 3 with q = 1, the matrix representing the linear map

AA has size 3n2 × 3n1 and, in convenient basis, it has the following block structure:⎛
⎝ 0 X3 −X2

−X3 0 X1

X2 −X1 0

⎞
⎠ ,

where Xi, i = 1, 2, 3, are the three n2 × n1 slices of A. As another example, consider
the case n3 = 4 with q = 2. Then, the matrix representing the linear map AA has
size 4n2 × 6n1 and has the following block structure:⎛

⎜⎜⎝
−X2 −X3 0 −X4 0 0
X1 0 −X3 0 −X4 0
0 X1 X2 0 0 −X4

0 0 0 X1 X2 X3

⎞
⎟⎟⎠ ,

where Xi, i = 1, . . . , 4, are the four n2 × n1 slices of A.
We have rank(Aa1⊗a2⊗a3) =

(
n3−1

q

)
. If A =

∑r
i=1 a

1
i ⊗ a2i ⊗ a3i , then it follows

that rank(AA) ≤ r
(
n3−1

q

)
, so that the minors of size r

(
n3−1

q

)
+ 1 of AA vanish on

A ∈ σr(S), hence furnishing some of the latter’s equations. The celebrated Strassen
equations introduced in [46] correspond to the particular case n1 = n2, n3 = 3, q = 1.

It is important to compute the tangent space at a determinantal locus. The
direct computation from minors is computationally infeasible. However, the following
lemma makes the computation much easier.

Lemma 5.1. Let A0 =
∑r

i=1 a
1
i ⊗ a2i ⊗ a3i ∈ Cn1×n2×n3 , choose 1 ≤ q ≤ �n3

2 �,
and let AA0 : C

n1 ⊗ C(
n3
q ) → Cn2 ⊗ C(

n3
q+1) be the corresponding contraction maps.

Consider kerAA0 ⊂ Cn1 ⊗C(
n3
q ) and (Im AA0 )

⊥ ⊂ Cn2 ⊗C(
n3
q+1). If the dimension of

the image of

(5.1) kerAA0 ⊗ (Im AA0 )
⊥ → Cn1×n2×n3

14We consider the identification ∧qCn3 = C

(
n3
q

)
.
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is equal to the codimension of σr(S), then the tensor A0 is a smooth point of σr(S).
Proof. Notice that in the formulation we have used the identification of C(

n3
q )

with ∧qCn3 and of C(
n3
q+1) with (∧q+1Cn3)∗, which is the dual space of ∧q+1Cn3 , and

exploited (∧q+1Cn3)∗ ⊗ ∧qCn3 → Cn3∗ � Cn3 . Now the proof follows from Theorem
8.4.2 of [39]. Indeed, the image of (5.1) coincides with the conormal space at A0 of
the variety cut by minors of size r

(
n3−1

q

)
+ 1 of AA, for general A ∈ Cn1×n2×n3 , so it

has the same dimension as the normal space of the variety cut by these minors.

Lemma 5.1 is the basic tool we use in this section, in order to apply our iden-
tifiability algorithm to a specific tensor A. It provides a sufficient condition that A
corresponds to a nonsingular point, which is requisite for applying Theorem 4.5.

Example 5.2. In the case n3 = 4, q = 2, we have seen that the matrix representing
the linear map AA0 has size 4n2×6n1; it can be written as a matrix A′ of size 4×6 with
entries linear in the coordinates of C4 = Cn3 . We have a kernel of dimension 6n1−3r,
whose basis gives a matrix K of size 6n1×(6n1−3r), which can be written as a matrix
K ′ of size 6×(6n1−3r) with entries linear in the coordinates of Cn1 . Correspondingly,

we have (Im AA0 )
⊥
of dimension 4n2−3r, whose basis gives a (transposed) matrix M

of size (4n2−3r)×4n2. We get a matrix M ′ of size (4n2−3r)×4 with entries linear in
the coordinates of Cn2 . The multiplication M ′ ·A′ ·K ′ has size (4n2−3r)× (6n1−3r)
and its entries, treating the coordinates of A as indeterminates, define Cartesian
equations for the image of the map in (5.1).

The following proposition reveals some cases where the zero locus of these equa-
tions contains σr(S) as irreducible component.

Proposition 5.3. Let q = �n3

2 �. The variety

{
A ∈ PCΠ

∣∣ the minors of size r
(
n3−1

q

)
+ 1 of AA vanish

}

contains σr(S) as irreducible component if n1, n2, n3, and r appear in the “Proposed”
column in Table 2. Thus, if r satisfies the inequalities in Table 2, then Lemma 5.1
applies to all tensors of border rank r not in some indeterminate subset of measure
zero.

Proof. In every case we can pick a random point in σr(S) and compute the
tangent space at that point of the zero locus of the minors of size r

(
n1−1

q

)
+ 1 of AA,

according to (5.1). The dimension of this tangent space coincides, in every case, with
the dimension of σr(S).

Remark 5.4. Conversely, when r does not satisfy the inequalities in Proposition
5.3, the assumption on the dimension of image of (5.1) is never satisfied and Lemma
5.1 does not apply. We notice that Theorem 1.2 in [38] provides, in the cubic case n1 =
n2 = n3, a lower bound on the rank of AA for general A, which grows asymptotically
as 2n1.

It is instructive to compare the range in which specific identifiability can be
checked using the criterion of Kruskal, in (1.2), the criterion of Domanov–De Lath-
auwer [24], and the method proposed in this paper; this is presented in Table 2.

In fact, the upper bound for (9, 9, 9) in Table 2 can be improved slightly by
generalizing Lemma 5.1.

Lemma 5.5. Let A =
∑r

i=1 a
1
i ⊗ a2i ⊗ a3i ∈ Cn1×n2×n3 , choose 1 ≤ qi ≤ �ni

2 �,
and let A1

A : Cn1 ⊗ C(
n3
q3
) → Cn2 ⊗ C(

n3
q3+1), A2

A : Cn2 ⊗ C(
n1
q1
) → Cn3 ⊗ C(

n1
q1+1) ,

A3
A : Cn3 ⊗ C(

n2
q2
) → Cn1 ⊗ C(

n1
q2+1) be the corresponding contraction maps. If the
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Table 2

Upper bounds on the rank r for which specific identifiability of a rank-r decomposition can be
verified with the proposed criterion, Kruskal’s criterion in (1.2), and Domanov–De Lathauwer’s
criterion in [24]. Indicated in boldface is the criterion with the widest range.

(n1, n2, n3) Proposed Kruskal Domanov–
De Lathauwer

(4, 4, 4) r ≤ 4 r ≤ 5 r ≤ 5
(5, 5, 5) r ≤ 7 r ≤ 6 r ≤ 6
(6, 6, 6) r ≤ 8 r ≤ 8 r ≤ 8
(7, 7, 7) r ≤ 11 r ≤ 9 r ≤ 9
(8, 8, 8) r ≤ 12 r ≤ 11 r ≤ 11
(9, 9, 9) r ≤ 15 r ≤ 12 r ≤ 13

dimension of the image of

(5.2)

3⊕
i=1

kerAi
A ⊗ (

Im Ai
A

)⊥ → Cn1×n2×n3

is equal to the codimension of σr(S), then the tensor A is a smooth point of σr(S).
Proof. The proof is a straightforward extension of Lemma 5.1.
The following proposition slightly generalizes Proposition 5.3.
Proposition 5.6. Let S = PC9 × PC9 × PC9 embedded in PC729. The common

zero locus of the minors of size r
(
8
4

)
+1 = 70r+1 of Ai

A for i = 1, 2, 3 contains σr(S)
as irreducible component for r ≤ 16.

Proof. We can pick a random point in σr(S) and compute the tangent space at
that point of the common zero locus of the minors of size 70r + 1 of Ai

A, according
to (5.2). The codimension of this tangent space is 329, which coincides with the
codimension of σr(S). We remark that, in this case, the codimension of the tangent
spaces of the zero locus of the minors of size 70r+1 of each individual Ai

A is 196. By
intersecting two individual tangent spaces (for example, for i = 1, 2), we get a linear
subspace which already has the desired codimension 329.

5.2. The algorithm at work for a specific tensor. Exploiting the equations
of the r-secant variety presented in the previous subsection, we can now apply the
algorithm for specific identifiability to some particular cases. Let A =

∑r
i=1 a

1
i ⊗

a2i ⊗a3i be a given decomposition with (n1, n2, n3) and let r be in a case appearing in
Proposition 5.3. Then, we can hope to apply our criterion for specific identifiability.

Example 5.7. We consider the following rank-7 tensor A ∈ C5 ⊗ C5 ⊗ C5:

A =

⎡
⎢⎢⎢⎢⎣
1
1
1
1
1

⎤
⎥⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎢⎣
1
2
3
4
5

⎤
⎥⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎢⎣

1
5
7
−5
−7

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

4
3
2
−1
−2

⎤
⎥⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎢⎣
11
13
12
15
14

⎤
⎥⎥⎥⎥⎦⊗

⎡
⎢⎢⎢⎢⎣
−2
6
5
−3
6

⎤
⎥⎥⎥⎥⎦ +

5∑
i=1

ei ⊗ ei ⊗ ei,(5.3)

where ei is the ith standard basis vector in C5. This example cannot be studied either
with Kruskal’s criterion or with Domanov–De Lathauwer’s condition, as we learn from
Table 2. We show that the decomposition (5.3) is unique. Let S = PC5×PC5×PC5.
We compute the map AA : C5 ⊗ ∧2C5 → C5 ⊗ ∧3C5 which has rank 42. Hence,
the subspaces kerAA and (Im AA)

⊥
both have dimension 8. We compute the image

of (kerAA) ⊗ (Im AA)
⊥ in C5 ⊗ C5 ⊗ C5, which has codimension 34; this image is

the normal space to σ7(S) at the point corresponding to A. It follows that σ7(S)
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is smooth at the point corresponding to A. In the ancillary files, we included a
Macaulay2 script for verifying this computation. Then, we may apply Algorithm 3.1
with the only change being that step S1 is replaced by the decomposition (5.3) and
r = 7. The algorithm runs, getting the matrix T in step S2 of size 125×105. The null
space matrix KT of step S4 has size 34× 91. Note that l = � = 34. Steps S6 and S7b
should be performed for each of the seven points. In step S6, we construct 34 Hessian
matrices of size 12 × 12. In step S7b, the stacked Hessian H has size 12 × 408. Its
rank is 12, for each of the seven points, hence concluding the proof.

6. Conclusions. We presented a sufficient condition for generic r-identifiability
along with an algorithm verifying it. Using this algorithm, we proved that in all spaces
of dimension less than 15000, except for the known exceptions, tensors of subgeneric
rank are generically r-identifiable. Thereafter, we extended the sufficient condition to
the case of specific r-identifiability, and demonstrated that our algorithm still works,
provided that the specific rank-r decomposition can be shown to correspond to a
nonsingular point of the r-secant variety. Using some local equations for this variety,
we were able to prove the identifiability of a specific tensor, whose identifiability could
not be investigated using the criteria of Kruskal and Domanov–De Lathauwer.

The contribution of this work is twofold: First, we showed that in spaces of practi-
cal size generic r-identifiability holds, so that a “random” tensor in such spaces admits
a unique rank decomposition. Second, a novel promising direction for investigating
specific identifiability was presented: the proposed criterion can, in principle, verify
specific identifiability up to the optimal rank value, provided that a good test for
nonsingularity of points on secant varieties of Segre varieties can be designed.

Despite progress in recent years, little is known about the singularities and equa-
tions of secant varieties of Segre varieties. Some promising results that we believe
may be useful in the present context include the works [36, 39, 41, 53]. As a conse-
quence of the lack of (local) equations, our results concerning specific identifiability
currently only slightly improve the range of feasible cases with respect to Kruskal’s
and Domanov–De Lathauwer’s conditions. However, the approach outlined here can,
in contrast, be applied up to the optimal rank value, and will benefit from advances
made in the characterization of equations and singularities of the r-secant variety.
This study is, nevertheless, well beyond the scope of this paper, and will require
advances in the state-of-the-art in algebraic geometry.

Acknowledgments. The authors thank the reviewers for their detailed remarks
that improved this manuscript.
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