
An algorithm for learning real-time
automata

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen

Overview

• Detecting driving behavior
• Automata
• Learning an automaton
• Real-time automata
• An algorithm for learning real-time automata
• Results
• Conclusions

Truck driving behavior

• Required is a system that detects driving behavior from
sensor data

• This system will be used to give real-time feedback to the
driver

• However, there is not enough expert knowledge to
construct one from

• It is possible to gather loads of sensor data from trucks

An automaton model for driving
behavior

• It is beneficial if the system determines the behavior using
discrete events:
• Discrete events are easy to interpret

• A finite state automaton is used:
• An automaton is interpretable and powerful

• The intuitive idea: a good driver speaks a ‘language’ different
from the ‘language’ of a bad driver

Automata

• A finite set of states
• A finite set of symbols
• A finite set of state transitions, each labeled with an symbol
• A Boolean output value

• Used to determine whether a string (of discrete events) is
an element of a regular language

Learning an automaton

• The input is a finite input sample S:
• { (true, abab), (false, aaabab), .. }

• The output is an automaton such that:
• It is consistent with S
• It has the least number of states among all possible

automata consistent with S

State merging

• Construct an augmented prefix tree acceptor:
• a tree automaton accepting only the positive examples

from the input sample and rejecting the negative
• Merge states of the automaton into one until no more

merges are possible:
• Two states q and q’ can be merged if the data at q is

consistent with the data at q’
• Optionally backtrack or make use some other search

mechanism

Augmented prefix tree acceptor

Merging a state

Red blue framework

Evidence driven state merging

• Evidence driven state merging currently is a well-known
algorithm for identifying DFAs

• A merge is performed if:
• It is consistent
• It has highest score amongst all possible merges

• The evidence score is:
• # positive states merged with positive states + #

negative states merged with negative states
• No backtracking is performed

Real-time automata

• A state transition can depend on the time delay d between
two consecutive events:
• state transitions optionally contain a guard: d ∈ [t,t’]

• a transition can fire only if its guard is satisfied

• In normal timed automata there can be a guard between
any two events

Harmonica behavior

Learning a real-time automaton

• The input is a finite timed input sample S:
• {(true, (a,1.0)(b,3.4)..),(false, (a,0.2)(a,0.5)..).. }

• The output is a real-time automaton such that:
• It is consistent with S
• It has the least number of transitions among all possible

automata consistent with S

Learning a real-time automaton

• Construct a timed augmented prefix tree acceptor
• Merge states of the automaton
• Split transitions of the automaton into two:

• [t, t’] → [t,t’’], [t’’ + 1, t’]
• Optionally backtrack or make use some other search

mechanism

Prefix tree delay automaton

Splitting a transition

Timed evidence

• A tail is the suffix of an example starting at a blue node:
• (a,1)(b,2)(a,2)...(a,1)(a,3)(b,5)

• The probability that two tails end up in the same state is
determined by how ‘close’ their time values are

• For each tail we divide the EDSM score by the distance
from its closest tail

Experiments

• Data is generated randomly from randomly generated real-
time automata with:
• 2, 4, 8, 16, 32 states
• 1/2, 1, and 2 times #states of split points
• 10000 different possibly time values

• Inputs: 50, 500, 1000, 2000, 5000, and 10000 samples
• We compared with a red blue state merging algorithm on

the same data, sampled at a fixed rate: (a,300) → aaa

Results - 50 samples

Results - 500 samples

Results - 2000 samples

Results - 10000 samples

Conclusions

