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AN ALGORITHM FOR

MATRIX EXTENSION AND WAVELET CONSTRUCTION

W. LAWTON, S. L. LEE AND ZUOWEI SHEN

Abstract. This paper gives a practical method of extending an n× r matrix
P (z), r ≤ n, with Laurent polynomial entries in one complex variable z, to a
square matrix also with Laurent polynomial entries. If P (z) has orthonormal
columns when z is restricted to the torus T, it can be extended to a paraunitary

matrix. If P (z) has rank r for each z ∈ T, it can be extended to a matrix with
nonvanishing determinant on T. The method is easily implemented in the
computer. It is applied to the construction of compactly supported wavelets
and prewavelets from multiresolutions generated by several univariate scaling
functions with an arbitrary dilation parameter.

1. Introduction

This note deals with matrix extension and a practical method for the construc-
tion of compactly supported wavelets and prewavelets from multiresolutions gener-
ated by several univariate compactly supported scaling functions with an arbitrary
dilation parameter m ∈ N, m > 1. Such wavelets and prewavelets can have very
small supports, a feature which may be important in numerical applications. The
construction of wavelets and prewavelets from a multiresolution generated by a sin-
gle univariate scaling function with the dilation parameter 2 was given in [12] and
[1], respectively. It is well known that wavelet and prewavelet construction from a
multiresolution generated by a finite number of compactly supported scaling func-
tions can be reduced to the problem of extending a matrix with Laurent polynomial
entries. This is widely studied in the case of wavelet and prewavelet construction in
one and several dimensions from multiresolutions generated by one scaling function
(see [8, 9, 14, 15]) and by several scaling functions (see [5, 6, 7, 13]). In practice it is
necessary that the matrix extension be carried out constructively in order to obtain
the wavelets explicitly. However, in the existing methods such an extension requires
the knowledge of some intrinsic properties of the scaling functions. In this note, we
shall give a constructive method which does not rely on the intrinsic properties of
the scaling functions.

For a given finite set of compactly supported functions φj , j = 1, ..., r, let V0

denote the closed shift invariant subspace generated by φj , j = 1, ..., r, i.e.,
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724 W. LAWTON, S. L. LEE AND ZUOWEI SHEN

V0 := {
r∑
j=1

∑
k∈Z

aj(k)φj( · − k) : aj ∈ `0(Z)},

where `0 is the space of finitely supported sequences. For ν ∈ Z, let

Vν := {f(mν ·) : f ∈ V0}.

We say that φj , j = 1, ..., r, are refinable if there are finitely supported sequences
pi,j such that

φi(x) =
r∑
j=1

∑
k∈Z

pi,j(k)φj(mx− k), i = 1, . . . , r.(1.1)

The functions φj , j = 1, ..., r, are called refinable (or scaling) functions and pi,j ,
i, j = 1, ..., r, are called refinement masks.

If φj , j = 1, . . . , r, are refinable and the set {φj( · − k) : j = 1, ..., r, k ∈ Z}
forms an orthonormal (or Riesz) basis for V0, then it is well known that (Vν)ν∈Z

forms a multiresolution (cf. [9]). Compactly supported wavelets (prewavelets) are
compactly supported functions ψj , j = 1, ..., r, for which their shifts form an or-
thonormal (Riesz) basis of W0 := V ⊥0 |V1

, the orthogonal complement of V0 in V1.

Let R[z] be the univariate Laurent polynomial ring over the complex field, and
let Gn(R) be the group of all n× n matrices over R[z] for which the determinants
are nonvanishing on C \ {0}. An n × n matrix P (z) is called paraunitary if it is
unitary on the unit circle T. A diagonal matrix with diagonal entries of the form
zk, k ∈ Z, is called a diagonal z-matrix. Clearly a diagonal z-matrix is paraunitary.

Let Φ := (φ1, φ2, . . . , φr)
T and write (1.1) in matrix form

Φ(x) =
∑
k∈Z

PkΦ(mx− k),

where

Pk = (pi,j(k))ri,j=1 .

Consider the r × r matrices

P `(z) :=
1√
m

∑
k∈Z

P`+kmz
k, ` = 0, . . . ,m− 1,

with Laurent polynomial entries, and form the r ×mr block matrix

P (z) :=
(
P 0(z)| · · · |Pm−1(z)

)
,

which is called a polyphase matrix. It is well known that if {φj( · − k) : j =
1, ..., r, k ∈ Z} forms an orthonormal basis of V0, then P (z)P (z)∗ = Ir for all z ∈ T.
Compactly supported wavelets corresponding to the multiresolution generated by
the scaling functions φj , j = 1, ..., r, can be constructed by extending the matrix
P to an mr ×mr paraunitary matrix over R[z] in which the first r rows are the
matrix P . In §2, we give a constructive method to extend an arbitrary r × n
matrix P , satisfying P (z)P (z)∗ = Ir for all z ∈ T, to an n× n paraunitary matrix
over R[z]. This leads to a practical method for the construction of compactly
supported wavelets from a finite number of scaling functions with an arbitary scaling
parameter. In the construction of compactly supported wavelets, the refinement
masks are usually known (in most cases the scaling functions are defined by their
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AN ALGORITHM FOR MATRIX EXTENSION AND WAVELET CONSTRUCTION 725

refinement masks via their Fourier transforms). Therefore, the above approach is
quite natural.

If φj , j = 1, ..., r, form a Riesz basis of V0, then P (z) has rank r for each z ∈ T.
If the refinement masks, and hence the polyphase matrix P , are available, the
usual way of constructing the corresponding compactly supported prewavelets is to
extend the polyphase matrix P to an mr ×mr matrix Q over R[z] so that Q(z)
has rank mr for all z ∈ T. The standard Gram-Schmidt orthogonalization process
is then applied to obtain the compactly supported prewavelets. Section 3 gives an
algorithmic method to extend a general matrix. The method uses only elementary
transformations and transformations by z-matrices and is easily implementable in
the computer. Based on the matrix extension, we propose another approach in
the construction of prewavelets. This approach gives prewavelets directly without
using the Gram-Schmidt process after the matrix extension. The Gram-Schmidt
process requires extra computing and enlarges the supports of the prewavelets.
Our method usually gives prewavelets with shorter supports. This approach is
also applicable if the refinement masks are not available, as in the case of the
multiresolution generated by cardinal Hermite splines (see §4). The method is
based on the sequence

p̃i,j(k) := m

∫
R

φi(x)φj(mx− k)dx,(1.2)

where φj , j = 1, ..., r, are compactly supported scaling functions such that
{φj( · − k) : j = 1, ..., r, k ∈ Z} forms a Riesz basis for V0. The sequences p̃i,j ,
i, j = 1, . . . r, are finitely supported, since φj , j = 1, . . . , r, are compactly supported
functions. They are readily computed from the scaling functions.

If {φ̃j( · − k) : j = 1, ..., r, k ∈ Z} is the dual basis of {φj( · − k) : j =
1, . . . , r, k ∈ Z}, then

φi(x) =
r∑
j=1

∑
k∈Z

p̃i,j(k)φ̃j(mx− k), i = 1, . . . , r.(1.3)

Equivalently,

Φ(x) =
∑
k∈Z

P̃kΦ̃(mx− k),

where Φ̃ =
(
φ̃1, . . . , φ̃r

)T
and

P̃k = (p̃i,j(k))
r
i,j=1 .

The corresponding r × rm block matrix

P̃ (z) :=
(
P̃ 0(z)| · · · |P̃m−1(z)

)
,(1.4)

where

P̃ `(z) :=
∑
k∈Z

P̃`+kmz
k, ` = 0, . . . ,m− 1,

will be called the dual polyphase matrix of Φ. It has rank r for all z ∈ T, if φj ,
j = 1, ..., r, and their shifts form a Riesz basis for V0.
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In §3, we shall give an algorithm to find an (m − 1)r × mr matrix Q′(z) over

R[z] such that the mr ×mr matrix

(
P̃ (z)
Q′(z)

)
has rank mr for all z ∈ T and

P̃ (z)Q′(z)∗ = 0 for z ∈ T.(1.5)

Suppose that

Q′(z) =:
(
Q0(z)| · · · |Qm−1(z)

)
,

where each Q`, ` = 0, . . . ,m−1, is an r×r matrix with Laurent polynomial entries(
Q`
)
i,j

(z) =:
∑
k∈Z

qi,j(`+ km)zk, i, j = 1, . . . , r .

Then the functions

ψi(x) :=
r∑
j=1

∑
k∈Z

qi,j(k)φj(mx− k), i = 1, ...,mr− r,(1.6)

form a Riesz basis for W0. Indeed, ψj( · − k) ⊥ φi for j = 1, . . . , (m − 1)r, k ∈
Z, i = 1, . . . , r, because of (1.3), (1.5) and (1.6). Hence, ψj( · − k) ∈ W0, j =
1, . . . , (m − 1)r, k ∈ Z. Further, they form a Riesz basis of W0 since Q′(z) has
rank (m− 1)r for all z ∈ T. This result in Hilbert space can be found in [10].

If φj , j = 1, . . . , r, and their shifts form an orthonormal basis, then P̃ = P

and PP ∗ = Ir . In §2, we give a way to construct Q′ such that

(
P
Q′

)
is a

paraunitary matrix. With this Q′, equation (1.6) gives the corresponding wavelets.
The methods described above can also be extended to the construction of wavelets
and prewavelets in Hilbert space.

Geronimo, Hardin and Massopust [4] have constructed two scaling functions
whose shifts form an orthonormal basis of V0. The corresponding wavelets were
constructed by Donovan, Geronimo, Hardin and Massopust [3] and also by Strang
and Strela [18]. Their works together with that of Goodman [5] are the main sources
of motivation for this paper.

2. Paraunitary matrix extension

Let A(z) be an n× 1 matrix over R[z], and suppose that the smallest degree of
its jth component is kj ∈ Z, for j = 1, 2, ..., n. Let

D(z) := diag(z−k1 , . . . , z−kn).

Then DA(z) is expressible in the form

DA(z) = a0 + a1z + · · ·+ aNz
N ,

where aj ∈ Cn, j = 0, ..., N , and a0, aN 6= 0.

Lemma 2.1. Let A(z) =
∑
j∈Z ajz

j be an n×1 matrix over R[z] with ‖A(z)‖ = 1

for all z ∈ T, where ‖A(z)‖ denotes the Euclidean norm. Suppose that j1 and
j2 ∈ Z are respectively the lowest and highest degrees of A(z). Then∑

j∈Z

〈aj ,aj〉 = 1 and 〈aj1 ,aj2〉 = 0.
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Proof. As is observed before the lemma, there exists a diagonal z-matrix D such
that each component of DA is a polynomial. Hence, we need only to prove the case
for which

A(z) = a0 + a1z + · · ·+ aNz
N ,

with ‖A(z)‖ = 1 for z ∈ T and a0 6= 0, aN 6= 0. We note that on T, the constant

term of ‖A(z)‖2 is
∑N
j=0〈aj ,aj〉 and the coefficient of the highest degree is 〈a0,aN 〉.

The results then follow from the fact that ‖A(z)‖2 = 1 for z ∈ T.

Suppose that D1 is a diagonal z-matrix such that

D1A(z) = a
(1)
0 + a

(1)
1 z + · · ·+ a

(1)
N zN ,(2.1)

where a
(1)
j ∈ Cn, j = 0, . . . , N, and a

(1)
0 , a

(1)
N 6= 0. Let U1 be a unitary matrix

over C such that

U1a
(1)
0 = (α, 0, . . . , 0)T , α 6= 0.

By Lemma 2.1, 〈U1a
(1)
0 , U1a

(1)
N 〉 = 0. Hence, the first entry (U1a

(1)
N )1 of the vector

U1a
(1)
N is zero. Multiplying (2.1) by U1 followed by an appropriate diagonal z-matrix

D2, we can express

D2U1D1A(z) = a
(2)
0 + a

(2)
1 z + · · ·+ a

(2)
M zM ,(2.2)

where a
(2)
0 ,a

(2)
M 6= 0, and M < N . Furthermore,

‖D2U1D1A(z)‖ = 1, z ∈ T,

and 〈a(2)
0 ,a

(2)
M 〉 = 0, by Lemma 2.1. Repeating the above procedure gives a sequence

of unitary matrices Uj , j = 1, ..., k, over C and a sequence of diagonal z-matrices
Dj, j = 1, ..., k, such that

UkDkUk−1Dk−1 · · ·D2U1D1A(z) = (1, 0, . . . , 0)T , z ∈ T.

Let

P (z) := UkDk · · ·U1D1(z), z ∈ C \ {0}.(2.3)

Then P is paraunitary,

P (z)A(z) = (1, 0, ..., 0)T , z ∈ T,(2.4)

and for z ∈ T,

A(z) = P (z)∗(1, 0, . . . , 0)T ,(2.5)

where P (z)∗ is the conjugate transpose of P (z).
The relation (2.5) shows that the first column of the matrix P (z)∗ coincides with

A(z). Thus, P (z)∗ is a paraunitary extension of A(z). The above algorithm can
also be applied to extend an n×r matrix A(z) with orthonormal columns and with
entries in R[z], to a paraunitary matrix.

Theorem 2.1. Suppose that Aj(z), j = 1, . . . , r, are n × 1 column vectors over
R[z], r < n, which are orthonormal on T, and that A(z) := (A1(z)| · · · |Ar(z)) is
an n× r matrix over R[z]. Then there exists an n× n paraunitary matrix Q such
that

QA(z) =

(
Ir
0

)
.(2.6)
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728 W. LAWTON, S. L. LEE AND ZUOWEI SHEN

Furthermore,

Q = QrQr−1 · · ·Q1,(2.7)

where

Qk =

(
Ik−1 0

0 Pk

)
, k = 1, ..., r,(2.8)

is an n× n paraunitary matrix and Pk is an (n− k + 1)× (n− k + 1) paraunitary
matrix of the form (2.3).

Proof. The observation before the theorem shows that there is a paraunitary matrix
Q1 of the form (2.3) such that

Q1A1(z) = (1, 0, . . . , 0)T , z ∈ T.

Since Q1 is a paraunitary matrix, it follows that for i, j = 1, . . . , r,

〈Q1Ai(z), Q1Aj(z)〉 = δi,j , z ∈ T.

Hence, the first component (Q1Aj(z))1 of Q1Aj(z) is zero for z ∈ T, j = 2, ..., r,
and

Q1A(z) =

(
1 0 · · · 0

0 A
(2)
2 (z) · · · A

(2)
r (z)

)
, z ∈ T,

where A
(2)
j (z), j = 2, ..., r, are (n − 1) × 1 matrices, with 〈A(2)

i (z), A
(2)
j (z)〉 = δi,j

for all z ∈ T.
Suppose that there are paraunitary matrices Q1, ..., Qk−1, k < r, such that

Qk−1 · · ·Q2Q1A(z) =

(
Ik−1 0 · · · 0

0 A
(k)
k (z) · · · A

(k)
r (z)

)
, z ∈ T,

where A
(k)
j (z), j = k, ..., r, are (n−k+1)×1 matrices, with 〈A(k)

i (z), A
(k)
j (z)〉 = δi,j ,

z ∈ T. Let Pk be an (n− k+ 1)× (n− k+ 1) paraunitary matrix of the form (2.3)
such that

PkA
(k)
k (z) = (1, 0, . . . , 0)T , z ∈ T.

By a similar argument as above, we have for i, j = k, . . . , r,

〈PkA(k)
i (z), PkA

(k)
j (z)〉 = δi,j , z ∈ T,

and (
PkA

(k)
` (z)

)
1

= 0, ` = k + 1, ..., r, z ∈ T.

Let

Qk =

(
Ik−1 0

0 Pk

)
.

Then clearly Qk is paraunitary, and

QkQk−1 · · ·Q1A(z) =

(
Ik 0 · · · 0

0 PkA
(k)
k (z) · · · PkA

(k)
r (z)

)
.

Finally, letting
Q := QrQr−1 · · ·Q1,

we have

QA(z) =

(
Ir
0

)
, z ∈ T.

This completes the proof.
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Remark 1. If Q(z) satisfies (2.6), then Q(z)∗ is a paraunitary extension of A(z).
Further, the proof gives an algorithm for the construction of Q(z). This can be
applied in the construction of wavelets if the scaling functions and refinement masks
are known.

Example 1. Consider the scaling functions φ1 and φ2 constructed by Geronimo,
Hardin and Massopust [4]. They satisfy the matrix dilation equation(

φ1(x)
φ2(x)

)
=

3∑
k=0

Pk

(
φ1(2x− k)
φ2(2x− k)

)
,

where

P0 =
1

10

(
6 8

√
2

−
√

2
2 −3

)
, P1 =

1

10

(
6 0

9
√

2
2 10

)
,

P2 =
1

10

(
0 0

9
√

2
2 −3

)
, P3 =

1

10

(
0 0
−
√

2
2 0

)
.

The corresponding polyphase matrix P is given by

P (z) =

√
2

20

(
6 8

√
2 6 0

−1+9z√
2

−3− 3z 9−z√
2

10

)
.

Let

A(z) =

√
2

20


6 −1+9z√

2

8
√

2 −3− 3z
6 9−z√

2

0 10

 .

Symbolic computation using the above algorithm produces a 4× 4 paraunitary
matrix

Q =


3

5
√

2
4
5

3
5
√

2
0

9 z−1−1
20

−3 (z−1+1)
10
√

2
−z−1+9

20
1√
2

−9 z−1+1
20

3 (z−1+1)
10
√

2
z−1−9

20
1√
2

9 z−1+1
10
√

2

3 (−z−1+1)
10

−z−1−9
10
√

2
0


satisfying the relation

QA(z) =

(
I2
0

)
.

The matrixQ is a product of Householder matrices and a diagonal z-matrix. Indeed,

Q = Q3DQ2Q1 ,

where

Q1 =


3

5
√

2
4
5

3
5
√

2
0

4
5

15−9
√

2
15−25

√
2

12
15−25

√
2

0
3

5
√

2
12

15−25
√

2
41−15

√
2

50−15
√

2
0

0 0 0 1

 ,
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Q2 =


1 0 0 0

0
6 (−3+

√
2)

−20+6
√

2
1−3
√

2
−10+3

√
2

0

0 1−3
√

2
−10+3

√
2

3 (3−
√

2)
−10+3

√
2

0

0 0 0 1

 ,

Q3 =


1 0 0 0
0 1

2 − 1
2

1√
2

0 − 1
2

1
2

1√
2

0 1√
2

1√
2

0


and

D = diag(1, 1/z, 1, 1) .

The conjugate transpose Q(z)∗ of Q(z) is a paraunitary extension of A(z). Hence,
the corresponding wavelets can be constructed using the last two columns of Q∗

and (1.6). The resulting wavelets are a symmetric and antisymmetric pair.

3. Matrix extension

In Theorem 2.1 it was assumed that the columns of the matrix A(z) are or-
thonormal on T, and we obtain a paraunitary matrix Q such that

QA(z) =

(
Ir
0

)
.

The conjugate transpose Q(z)∗ of Q(z) is a paraunitary extension of A(z). In
this section we shall impose no conditions on A(z) and consider the extension of
A(z) over R[z]. The extension can be achieved in the same way as in the case
of paraunitary extension. However, the transformations are accomplished by a
sequence of elementary matrices and diagonal z-matrices instead of by unitary
matrices.

Theorem 3.1. Let A(z) be an n × 1 matrix over R[z]. Then there is a matrix
P ∈ Gn(R) such that

PA(z) = (p(z), 0, . . . , 0)T ,(3.1)

where p ∈ R[z]. Furthermore, P is a product of elementary matrices and diagonal
z-matrices.

Proof. Suppose D1(z) is a diagonal z-matrix such that

D1A(z) = a
(1)
0 + · · ·+ a

(1)
N zN ,

where a
(1)
j ∈ Cn and a

(1)
0 ,a

(1)
N 6= 0. In practice, D1(z) is chosen so that the vector

a
(1)
0 has as many nonzero entries as possible, in order to speed up the process. Let

E1 be a product of elementary matrices which reduce the n × 2 matrix (a
(1)
0 |a

(1)
N )

to its “echelon form” with E1a
(1)
0 = (α, 0, . . . , 0)T , where α 6= 0. Further, if a

(1)
0

and a
(1)
N are linearly independent, we can choose E1 so that the first entry of the

vector E1a
(1)
N is zero.

In the case

E1a
(1)
j = αjE1a

(1)
0 = (αj , 0, . . . , 0)T , j = 1, ..., N,
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then (3.1) holds with P (z) := E1D1(z) and

p(z) := 1 + α1z + · · ·+ αNz
N , z ∈ C \ {0}.

Otherwise, E1a
(1)
j is not a multiple of E1a

(1)
0 for some j. Multiplying E1D1A(z)

by an appropriate diagonal z-matrix D2(z) gives

D2E1D1A(z) = a
(2)
0 + · · ·+ a

(2)
N1
zN1, z ∈ C \ {0},

where N1 ≤ N , and a
(2)
0 ,a

(2)
N1
6= 0. Recall that D2 is chosen so that the vector a

(2)
0

has as many nonzero entries as possible. The case N1 = N occurs if and only if

E1a
(1)
N = αNE1a

(1)
0 for some αN 6= 0 , i.e., a

(1)
0 and a

(1)
N are linearly dependent.

But in this case the vectors a
(2)
0 and a

(2)
N1

are linearly independent.
Applying the above procedure, we can constructively find an invertible con-

stant matrix E2 which reduces (a
(2)
0 |a

(2)
N1

) to its “echelon form”, with E2a
(2)
0 =

(α′, 0, . . . , 0)T , α′ 6= 0. Further, if N1 = N , then a
(2)
0 and a

(2)
N1

are linearly indepen-

dent. Hence, E2 can be chosen such that (E2a
(2)
N1

)1 = 0. Again, either (3.1) holds
with P := E2D2E1D1, or we can choose an appropriate diagonal z-matrix D3(z)
such that

D3E2D2E1D1A(z) = a
(3)
0 + · · ·+ a

(3)
N2
zN2,(3.2)

where N2 < N , and a
(3)
0 ,a

(3)
N2
6= 0.

Since each entry of D1A(z) is a polynomial, and since the procedure reduces the
degree of the entries, the process will stop after a finite number of steps. Hence,
there is a sequence of invertible matrices Ej , j = 1, ..., k, and a sequence of diagonal
z-matrices Dj , j = 1, ..., k, such that

EkDkEk−1Dk−1 · · ·E1D1A(z) = (p(z), 0, . . . , 0)T

for some p ∈ R[z]. Therefore, (3.1) holds with

P (z) := EkDkEk−1Dk−1 · · ·E1D1(z) ∈ Gn(R), z ∈ C \ {0},(3.3)

as desired.

Direct application of Theorem 3.1 gives the following results.

Theorem 3.2. Suppose that Aj(z), j = 1, . . . , r, are n × 1 column vectors over
R[z], r < n, and A(z) := (A1(z)| · · · |Ar(z)) is an n × r matrix over R[z]. Then
there exists Q ∈ Gn(R) such that

QA(z) =

(
Br(z)

0

)
,(3.4)

where Br(z) is an upper triangular r × r matrix over R[z]. Furthermore,

Q = QrQr−1 · · ·Q1,(3.5)

where

Qk =

(
Ik−1 0

0 Pk

)
, k = 1, . . . , r,(3.6)

and Pk is an (n− k + 1)× (n− k + 1) matrix in Gn−k+1(R) of the form (3.3).
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Note that the last n − r rows of Q, which we denote by Q′r+1, . . . , Q
′
n, form an

(n− r) × n matrix

Q′ :=

 Q′r+1
...
Q′n


of rank n− r for all z ∈ C \ {0}. Further, by (3.4),

A(z)∗Q′(z)∗ = 0, z ∈ C \ {0}.(3.7)

If A(z) = (A1(z)| · · · |Ar(z)) is an n×r matrix over R[z] of rank r for each z ∈ T
(or z ∈ C \ {0}), then the n×n matrix (A(z)|Q′(z)∗) is an extension of A satisfying
(3.7) and of rank n for all z ∈ T (or z ∈ C \ {0}). That (A(z)|Q′(z)∗) is of rank
n follows from (3.7) and the fact that A(z) and Q′(z)∗ are of ranks r and n − r,
respectively, for all z ∈ T (or z ∈ C \ {0}). This observation leads to

Corollary 3.1. Suppose that A(z) = (A1(z)| · · · |Ar(z)) is an n × r matrix over
R[z] of rank r for each z ∈ T (or z ∈ C \ {0}) and that Q is a product of elementary
matrices and diagonal z-matrices satisfying (3.4). If Q′r+1, ..., Q

′
n are the last n− r

rows of Q and

Q′(z) :=

 Q′r+1(z)
...

Q′n(z)

 ,

then the matrix (A(z)|Q′(z)∗) is an extension of A of rank n for all z ∈ T (or
z ∈ C \ {0}) satisfying (3.7).

We note that this corollary can be applied directly in the construction of uni-
variate prewavelets from a multiresolution generated by several scaling functions
with an arbitrary dilation parameter m ∈ Z. Since our proof of Theorem 3.1 is
constructive and can be implemented in the computer step by step, this leads to a
constructive method for the construction of prewavelets. We further remark that
the Quillen-Suslin Theorem shows the existence of such an extension when the n×r
matrix A(z) over R[z] has rank r for all z ∈ C \ {0}. However, in the prewavelet
construction, we usually assume that the scaling functions and their shifts form a
Riesz basis of V0, hence the corresponding n× r matrix A is of rank r only on T.
Further, our proof here for the univariate case is elementary and constructive.

We remark that further row operations may be performed on the last n− r rows
of the matrix Q in Theorem 3.2 to obtain wavelets with desirable properties, like
smallest support and symmetry. These operations preserve the relations (3.7). This
is illustrated in the example in the following section.

4. Cardinal Hermite spline wavelets

For nonnegative integers n ≥ r, let S2n−1,r(S) be the space of spline functions
of degree 2n − 1 defined on R with knots of multiplicity r on the set S. The
space S2n−1,r(Z) has a basis comprising functions φ`, ` = 1, . . . , r, with minimal
supports. The functions are called cardinal Hermite B-splines and are uniquely
determined by the condition that they vanish outside [0, 2n− 2r+ 2] and that they
satisfy the Hermite interpolating conditions

φ
(k−1)
` (ν) = cνδ`,k, ν = 1, . . . , 2m− 2r + 1, k, ` = 1, . . . , r,(4.1)
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where cν , ν = 1, . . . , 2n − 2r + 1, are the coefficients of the generalized Euler-
Frobenius polynomial

Π2n−1,r(λ) =
2n−2r∑
ν=0

cν+1λ
ν ,(4.2)

which may be defined as the minor of order (2n−r)×(2n−r) obtained by removing
the first r rows and last r columns of the matrix

F2n−1(λ) :=

((
k

`

)
− λδk,`

)2n−1

k,`=0

(see [17, 11]).
Let V0 be the shift invariant subspace generated by φ`, ` = 1, . . . , r. In [6] it

was shown that the shifts φ`(x− k), ` = 1, . . . , r, k ∈ Z, form a Riesz basis of V0.
Let

Vν := {f(2νx) : f ∈ V0}, ν ∈ Z.

Then Vν ⊂ Vν+1, ν ∈ Z, and {Vν}ν∈Z is a multiresolution of L2(R) of multiplicity
r.

Since the scaling functions are explicitly known, their dual polyphase matrix

P̃ (z) can be computed using (1.2), and hence the method of §3 is applicable for
the construction of the corresponding prewavelets. The following example shows
the construction of cubic cardinal Hermite spline wavelets from two interpolatory
cubic Hermite scaling functions. This corresponds to the case m = r = 2.

Example 2. The scaling functions φ1, φ2 are supported on [0, 2], and are given
by

φ1(x) =

{
3x2 − 2x3, 0 ≤ x ≤ 1,
−4 + 12x− 9x2 + 2x3, 1 ≤ x ≤ 2,

φ2(x) =

{
−x2 + x3, 0 ≤ x ≤ 1,
−4 + 8x− 5x2 + x3, 1 ≤ x ≤ 2.

They are C1 on R and satisfy the interpolation conditions

φ1(ν + 1) = δ0ν , φ′2(ν) = 0, ν ∈ Z,

φ′2(ν + 1) = δ0ν , φ2(ν) = 0, ν ∈ Z.

The dual polyphase matrix for φ1, φ2 is

6720P̃(z) =

(
1680 + 1680z 152− 152z
−364 + 364z −20− 20z

138z−1 + 3084 + 138z 34z−1 − 34z
−41z−1 + 41z −10z−1 + 64− 10z

)
.

Let A(z) := P̃ (z)∗, z ∈ T. The method of §3 gives a 4× 4 matrix Q satisfying the
relation QA = B, where

B =


304

(
194 z−1 − 794

)
/15

0 1358/19
0 0
0 0

 .
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Further row operations on the last two rows of Q produce another matrix, which
we shall still denote by Q = (Qij) and which still satifies QA = B. The entries of
Q are

Q11(z) =
19

210
, Q12(z) = 1, Q13(z) = 0, Q14(z) = 0,

Q21(z) =
23273695 z

290116016
− 102640647 z2

290116016
,

Q22(z) =
628606657 z

290116016
+

1361706661 z2

290116016
,

Q23(z) =
679 z

2482
, Q24(z) =

269563 z

58444
,

Q31(z) = −5261

3076
+

2185 z

1538
− 5261 z2

3076
,

Q32(z) = −34895

1538
+

34895 z2

1538
,

Q33(z) = 1 + z, Q34(z) = −16133

769
+

16133 z

769
,

Q41(z) = −179219

204554
+

179219 z2

204554
,

Q42(z) = −679449

58444
− 139611 z

29222
− 679449 z2

58444
,

Q43(z) = 1− z, Q44(z) = −186150

14611
− 186150 z

14611
.

Let Q′ be the 2×4 matrix comprising the last two rows of Q. Then (A(z)|Q′(z)∗)
is an extension of A(z) of rank 4 satisfying (3.7). If we write

Q′ =
(
Q0|Q1

)
=

(
Q0

11 Q0
12 Q1

11 Q1
12

Q0
21 Q0

22 Q1
21 Q1

22

)
,

and define qi,j(k), i, j = 1, 2, k = 1, . . . , 4, by

Q`i,j(z) =:
2∑
k=0

qi,j(`+ 2k)zk, ` = 0, 1,

the corresponding wavelets {ψ1, ψ2} which generate a Riesz basis for W0 are given
by

ψ1(x) =
4∑
k=0

q1,1(k)φ1(2x− k) + q1,2(k)φ2(2x− k)

and

ψ2(x) =
4∑
k=0

q2,1(k)φ1(2x− k) + q2,2(k)φ2(2x− k),

where the coefficients q1,j(k) and q2,j(k), up to 10 significant figures, are given in
Tables 1 and 2.
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Table 1. Coefficients q1,j(k)

k\j 1 2
0 -1.710338101 -22.68855657
1 1 -20.97919376
2 1.420676202 0
3 1 20.97919376
4 -1.710338101 22.68855657

Table 2. Coefficients q2,j(k)

k\j 1 2
0 -0.8761451744 -11.62564164
1 1 -12.74040107
2 0 -4.777599069
3 -1 -12.74040107
4 0.8761451744 -11.62564164

Figures 1 and 2 show the graphs of ψ1 and ψ2, respectively. Note that ψ1 is
symmetric and ψ2 is antisymmetric about 3

2 , and both have support on [0, 3].
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Figure 1. Graph of ψ1
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Figure 2. Graph of ψ2
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