An algorithm for minimax approximation in the nonlinear case

By M. R. Osborne and G. A. Watson*

Abstract

An algorithm for nonlinear minimax approximation is described, and shown to be convergent under conditions which are often assumed in practice. The algorithm is illustrated by the calculation of several approximations to the solution of the Blasius equation.

(First received November 1967, and in revised form June 1968)

1. Introduction

The classical problems
(i) find numbers a_{j} to minimise the maximum value of

$$
\left|f_{i}-\sum_{j=1}^{p} A_{i j} a_{j}\right|, i=1,2, \ldots, n
$$

where $n>p$ (the discrete T-problem), and
(ii) find numbers a_{j} to minimise the maximum value of

$$
\left|f(x)-\sum_{j=1}^{p} a_{j} \phi_{j}(x)\right|, a \leqslant x \leqslant b
$$

where $f(x)$ and $\phi_{j}(x), j=1,2, \ldots, p$, are continuous in $a \leqslant x \leqslant b$ (the continuous T-problem)
are now well understood. In particular the equivalence of (i) with a linear programming problem permits its solution under very general conditions (see, for example, Kelley (1959), Stiefel (1960), Rice (1964), Osborne and Watson (1967, 1968)).

In this paper, we consider the solution of the corresponding nonlinear minimax approximation problems, by solving a sequence of linear discrete T-problems. Certain properties of the solution of the linear problem are required, in particular, properties relevant to its solution as a linear programming problem, and these we now summarise.

If we write

$$
\begin{equation*}
r=f-A a \tag{1.1}
\end{equation*}
$$

where r is the residual vector, then the discrete T-problem (i) is to find a vector a such that $\max \left|r_{i}\right|, i=1,2, \ldots, n$, is a minimum. We assume that A has rank p.

Any $(p+1)$ equations of (1.1) are said to form a reference, and we can write a particular reference as

$$
\begin{equation*}
r^{\sigma}=f^{\sigma}-A^{\sigma} a \tag{1.2}
\end{equation*}
$$

If A^{o} has rank p, there exists a unique vector (to within a scaling factor) such that

$$
\begin{equation*}
\lambda_{\sigma} T A^{\sigma}=0 \tag{1.3}
\end{equation*}
$$

This vector is the λ-vector for the reference. If

$$
\lambda_{i}^{\sigma} r_{i}^{\sigma} \geqslant 0 \quad i=1,2, \ldots, p+1
$$

then a is called a reference vector. The vector which solves the discrete T-problem is called the levelled reference vector. The solution to the dual linear programming formulation of (1.1) by the simplex method is characterised by the property that the residual of maximum modulus occurs in the $(p+1)$ equations of
the optimal reference (Osborne and Watson, 1968). This reference can be written

$$
\begin{equation*}
h^{\sigma} \theta=f^{\sigma}-A^{\sigma} a \tag{1.4}
\end{equation*}
$$

where h^{σ} is the maximum residual, called the levelled reference deviation, and $\theta_{i}= \pm 1, i=1,2, \ldots, p+1$.

It is a property of the simplex method that A^{σ} has rank p, and this is possible because of the assumption on the rank of A.

Using equations (1.3) and (1.4), we see that the levelled reference deviation is given by

$$
\begin{equation*}
h=\frac{\lambda^{\sigma} f^{\sigma}{ }^{\sigma}}{\sum_{i=1}^{p+1}\left|\lambda_{i}^{\sigma}\right|} . \tag{1.5}
\end{equation*}
$$

The nonlinear approximation problems which correspond to the linear problems (i) and (ii) are:
(iii) find numbers a_{j} to minimise the maximum value of

$$
\left|f_{i}-F_{i}\left(a_{1}, a_{2}, \ldots, a_{p}\right)\right| \quad i=1,2, \ldots, n
$$

and
(iv) find numbers a_{j} to minimise the maximum value of

$$
\left|f(x)-F\left(x, a_{1}, a_{2}, \ldots, a_{p}\right)\right| \text { in } a \leqslant x \leqslant b
$$

We will assume the existence of at least one bounded minimum for each problem, and that F is continuous as a function of x. If problem (iv) is considered on a set of points $x_{i}, i=1,2, \ldots, n$, instead of on the interval $a \leqslant x \leqslant b$, then it reduces to a problem of type (iii) with the identification $F_{i}(a)=F\left(x_{i}, a\right)$. Here we consider only problems of type (iii) and we make three further assumptions. These are:

$$
\text { A1. } F_{i}(a+\delta a)=F_{i}(a)+\nabla F_{i} \delta a+0\left(\|\delta a\|^{2}\right), \quad i=1,2, \quad ., n
$$

where
∇F_{i} is the row vector with components $\frac{\partial F_{i}}{\partial a_{j}} \quad j=1,2, \ldots, p$.
This is a smoothness assumption on the F_{i} which permits at least a local linearisation of the nonlinear problem.

A2. The rank of the matrix $M, M=\nabla F$, is p.
(∇F is the matrix with rows $\nabla F_{i} \quad i=1,2, \ldots, n$.)
This corresponds to the assumption, made for problem (i), that the matrix A has rank p.

[^0]A3. The system of equations $f_{i}-F_{i}(a)=0, i=1,2, \ldots, n$ is inconsistent, i.e. no exact solution exists. (This assumption is also convenient in the linear case: see Osborne and Watson (1967).)

In Section 2, we describe an algorithm for solving the nonlinear approximation problem (iii) by an iterative technique. We show that the sequence of maximum residuals is convergent, and that the successive approximations to the solution vector a^{*} also converge under conditions which are often assumed in practice.

2. The nonlinear problem

The nonlinear problem (iii) can be formulated in a manner analogous to the linear programming formulation of problem (i). The solution is obtained by minimising h subject to the constraints

$$
\begin{equation*}
\left|f_{i}-F_{i}(a)\right| \leqslant h, \quad i=1,2, \ldots, n . \tag{2.1}
\end{equation*}
$$

This problem is solved iteratively, as follows:
(1) Calculate δa^{j} to minimise h^{j} subject to the constraints
$\left|f_{i}-F_{i}\left(a^{i}\right)-\nabla F_{i}\left(a^{j}\right) \delta a^{j}\right| \leqslant h^{j}, i=1,2, \ldots, n$.
(This is a discrete T-problem, and can be solved by linear programming, because of assumption A2 of Section 1.) Denote the minimum value of h^{j} by \hat{h}^{j}.
(2) Calculate γ^{j} to minimise the maximum value of

$$
\left|f_{i}-F_{i}\left(a^{j}+\gamma^{j} \delta a^{j}\right)\right|, \quad i=1,2, \ldots, n
$$

Let the minimum value be h^{j+1}.
(3) Set $a^{j+1}=a^{j}+\gamma^{j} \delta a^{j}$.

Lemma $2.1 \quad \hat{h}^{j} \leqslant h^{j}$.
Proof We assume for simplicity that the equations determining δa^{j} have been ordered so that the first ($p+1$) make up the optimal reference.

Then, by equation (1.5),

$$
\begin{equation*}
\hat{h}^{j}=\sum_{i=1}^{p+1} \lambda_{i}^{j}\left(f_{i}-F_{i}\left(a^{j}\right)\right) / \sum_{i=1}^{p+1}\left|\lambda_{i}^{j}\right| \leqslant h^{j} . \tag{2.4}
\end{equation*}
$$

Remark If $h^{j}>0$ then equality can hold only if, for each equation in the optimal reference for which $\lambda_{i}^{j} \neq 0$,
(i) $\left|f_{i}-F_{i}\left(a^{j}\right)\right|=h^{j}$,
(ii) $\operatorname{sign}\left(\lambda_{i}^{j}\right)=\operatorname{sign}\left(f_{i}-F_{i}\left(a^{j}\right)\right)$.
(Note that $h^{j}>0$ is a consequence of assumption A3.)
Definition A unit vector y is downhill at the point a if

$$
\max _{i}\left|f_{i}-F_{i}(a)\right|>\max _{i}\left|f_{i}-F_{i}(a+\gamma y)\right|
$$

where $\gamma>0$ is sufficiently small.
Lemma 2.2 If \| $\nabla F_{i}\left(a^{j}\right) \|>0$ for all i in the reference, then there is a downhill direction at the point a^{j} if and only if $\tilde{h}^{j}<h^{j}$.

Proof Let $h^{j}<h^{j}$.

Then the vector δa^{j} is downhill by assumption A1 of the previous section. This proves sufficiency.

Now let $\hat{h}^{j}=h^{j}$, and assume that there exists a downhill direction y. Then since equality holds in the $(p+1)$
equations of the reference defining \hat{h}^{j}, y must satisfy

$$
\nabla F_{i}\left(a^{j}\right) y=\operatorname{sign}\left(f_{i}-F_{i}\left(a^{j}\right)\right) \xi_{i}, i=1,2, \ldots, p+1
$$

for some numbers $\xi_{i}>0$.
If each equation is multiplied by the corresponding λ_{i}, summation gives

$$
0=\sum_{i=1}^{p+1} \lambda_{i} \operatorname{sign}\left(f_{i}-F_{i}\left(a^{j}\right)\right) \xi_{i}=\sum_{i=1}^{p+1}\left|\lambda_{i}\right| \xi_{i}
$$

where the second remark following Lemma 2.1 has been used.

This is a contradiction and so no downhill direction exists. This proves necessity.
Corollary 1 If $\hat{h}^{j}<h^{j}$, then $h^{j+1}<h^{j}$.
Corollary 2 Since the sequence h^{j} is monotonically decreasing and bounded below by zero, it is convergent. Remark The condition $\left\|\nabla F_{i}\left(a^{j}\right)\right\|>0$ is necessary, for consider the example \dagger

$$
\begin{aligned}
& f_{1}-F_{1}(a) \equiv 1-a_{1}^{2}-a_{2}^{2} \\
& f_{2}-F_{2}(a) \equiv \frac{1}{2}-a_{1} \\
& f_{3}-F_{3}(a) \equiv \frac{1}{2}-a_{2}
\end{aligned}
$$

at the point $a^{j}=(0,0)$. Then $\hat{h}^{j}=h^{j}$, and conditions A1 and A2 hold, but every direction is downhill.

Definition If every $p \times p$ submatrix of $M, M=\nabla F$, is non-singular, then we say that the matrix M satisfies the Haar condition. When required, it will be assumed to hold uniformly in the region of interest. It is clear that in this case $\left\|\nabla F_{i}\right\|>0, i=1,2, \ldots, n$.
Remark If the Haar condition holds, then all the components of the λ-vector are different from zero.
Lemma 2.3 A sufficient condition for the minimum to be isolated is that the matrix M satisfies the Haar condition.
Proof Suppose we have a solution a^{*} with

$$
\left\|f-F\left(a^{*}\right)\right\|=h^{*}
$$

(All norms are assumed to be maximum norms.)
Then if the Haar condition on M is satisfied, there exists a reference such that

$$
f_{i}-F_{i}\left(a^{*}\right)=\theta_{i} h^{*}, \quad i=1,2, \ldots, p+1
$$

where $\theta_{i}= \pm 1$, where the second remark following Lemma 2.1 has been used.

Let $\psi\left(a^{*}\right)=-\nabla F^{\circ}\left(a^{*}\right) t$
where the suffix σ means that we consider only the rows of M which form the reference, and we assume t to be any vector such that $\|t\|=1$.

Then $\lambda^{\sigma T} \psi\left(a^{*}\right)=0$, where λ^{σ} is the λ-vector for the reference.

Since the Haar condition is satisfied there exists at least two of the ψ_{i} which are non-zero. We infer that at least one of the $\theta_{i} \psi_{i}$ is positive, and consequently the expression $\max \left(\theta_{i} \psi_{i}\right)$ is a positive function of t. Since it is also a continuous function and the domain of t is compact,

$$
\delta=\min _{\|t\|=1}, \max _{i}\left(\theta_{i} \psi_{i}\right)>0
$$

$\dagger \mathrm{We}$ are indebted to the referee for this example and for other helpful suggestions which have greatly improved the paper.

We have

$$
\begin{aligned}
\| f- & F\left(a^{*}+\rho t\right) \| \geqslant \max _{i}\left\{\theta_{i}\left(f_{i}-F_{i}\left(a^{*}+\rho t\right)\right)\right\} \\
& =\max _{i}\left\{\theta_{i}\left(f_{i}-F_{i}\left(a^{*}\right)\right)+\theta_{i}\left(F_{i}\left(a^{*}\right)-F_{i}\left(a^{*}+\rho t\right)\right)\right\} \\
& =\left\|f-F\left(a^{*}\right)\right\|+\max _{i}\left\{-\theta_{i} \rho \nabla F_{i}\left(a^{*}\right) t-\rho^{2} K_{i}\right\}
\end{aligned}
$$

by assumption A1 where K_{i} are appropriately chosen constants.

Let $K^{*}=\max _{i}\left|K_{i}\right|$ for $\left\|a-a^{*}\right\|<R$.
Then $\left\|f-F\left(a^{*}+\rho t\right)\right\| \geqslant h^{*}+\rho \delta-\rho^{2} K^{*}$.
Choosing $0<\rho<\delta / K^{*}$, we have

$$
\begin{equation*}
\left\|f-F\left(a^{*}+\rho t\right)\right\|>h^{*} \tag{2.5}
\end{equation*}
$$

This completes the proof, as t is an arbitrary vector of unit norm.
Remark Cheney (1966, p. 81) has given an example which shows that the inequality (2.5) cannot be proved without assuming that the Haar condition holds.
Lemma 2.4 Let the equations (2.2) be ordered so that the first $(p+1)$ form the optimal reference defining \hat{h}^{j}, and let λ be the λ-vector for the reference scaled so that

$$
\sum_{i=1}^{p+1}\left|\lambda_{i}\right|=1
$$

Also let K be a positive constant. Then
(i) $\left\|\delta a^{j}\right\| \leqslant 2 K \bar{h}^{j}$
(ii) If $\left|\lambda_{i}\right|>0$ and $\lambda_{i}\left(f_{i}-F_{i}\left(a^{j}\right)\right) \geqslant 0, i=1,2, \ldots, p+1$ and $m=\min _{i}\left|\lambda_{i}\right|$, then

$$
\left\|\delta a^{j}\right\| \leqslant \frac{K}{m}\left(h^{j}-\hat{h}^{j}\right) .
$$

Proof
(i) We have
$\nabla F_{i}\left(a^{j}\right) . \delta a^{j}=f_{i}-F_{i}\left(a^{j}\right)-\hat{h}^{j} \theta_{i}$,
where $\theta_{i}= \pm 1, i=1,2, \ldots, p+1$, and $\theta_{i}=\operatorname{sgn}\left(\lambda_{i}\right)$ if $\left|\lambda_{i}\right|>0$. Further, we can arrange that the matrix formed by the first p rows ∇F_{i} is nonsingular, and so
$\left\|\delta a^{j}\right\| \leqslant \max _{1 \leqslant i \leqslant p}\left|f_{i}-F_{i}\left(a^{j}\right)-\hat{h}^{j} \theta_{i}\right| \leqslant 2 K h^{j}$.
(ii) If $\left|\lambda_{i}\right|>0$ and $\lambda_{i}\left(f_{i}-F_{i}\left(a^{j}\right)\right) \geqslant 0, i=1,2, \ldots$, $p+1$,
then $\quad \hat{h}^{j}=\sum_{i=1}^{p+1}\left|\lambda_{i}\right|\left|f_{i}-F_{i}\left(a^{j}\right)\right|$,
whence $\hat{h}^{j} \leqslant m \min _{i}\left|f_{i}-F_{i}\left(a^{j}\right)\right|+(1-m) h^{j}$, so that $h^{j}-\hat{h}^{j} \geqslant m\left(h^{j}-\min _{i}\left|f_{i}-F_{i}\left(a^{j}\right)\right|\right)$. This gives

$$
\begin{aligned}
\left\|\delta a^{j}\right\| & \leqslant K\left|h^{j}-\min _{i}\right| f_{i}-F_{i}\left(a^{j}\right) \| \\
& \leqslant \frac{K}{m}\left(h^{j}-\hat{h}^{j}\right)
\end{aligned}
$$

Lemma 2.5 Let $q_{i}(\gamma)=\left|f_{i}-F_{i}\left(a^{j}\right)\right|$

$$
-\gamma\left(\left|f_{i}-F_{i}\left(a^{j}\right)\right|-\hat{h}^{i}\right)
$$

Then

$$
\left|f_{i}-F_{i}\left(a^{j}+\gamma \delta a^{j}\right)\right| \leqslant q_{i}(\gamma)+W\left\|\delta a^{j}\right\|^{2} \gamma^{2}, 0 \leqslant \gamma \leqslant 1
$$

where $W>0$ is a constant independent of i.
Proof By assumption A1 of Section 1, we have

$$
\begin{aligned}
f_{i}-F_{i}\left(a^{j}+\gamma \delta a^{j}\right)= & f_{i}-F_{i}\left(a^{j}\right) \\
& -\gamma \nabla F_{i}\left(a^{j}\right) \delta a^{j}+W_{i}(\gamma)\left\|\delta a^{j}\right\|^{2} \gamma^{2}
\end{aligned}
$$

where $W_{i}(\gamma)$ is bounded in a finite region R.
Let $\quad g_{i}(\gamma)=f_{i}-F_{i}\left(a^{j}\right)-\gamma \nabla F_{i}\left(a^{j}\right) \delta a^{i}$,
and let W be chosen so that

$$
\left|W_{i}(\gamma)\right| \leqslant W, \quad 0 \leqslant \gamma \leqslant 1
$$

Then

$$
\left|f_{i}-F_{i}\left(a^{j}+\gamma \delta a^{i}\right)\right| \leqslant\left|g_{i}(\gamma)\right|+W| | \delta a^{j} \|^{2} \gamma^{2}
$$

and it only remains to show that $\left|g_{i}(\gamma)\right| \leqslant q_{i}(\gamma)$ in $0 \leqslant \gamma \leqslant 1$.

Now each equation of the set (2.2) can be written as an equality in the form, either
(i) $f_{i}-F_{i}\left(a^{j}\right)-\nabla F_{i}\left(a^{j}\right) \delta a^{j}=h^{j}-\phi_{i}$,
or
(ii) $f_{i}-F_{i}\left(a^{j}\right)-\nabla F_{i}\left(a^{j}\right) \delta a^{j}=-\hat{h}^{j}+\phi_{i}$,
where $0 \leqslant \phi_{i} \leqslant \hat{h}^{j}$.
We will only consider equations of type (i), as type (ii) can be treated in a similar manner. Then we have

$$
g_{i}(\gamma)=f_{i}-F_{i}\left(a^{j}\right)-\gamma\left(f_{i}-F_{i}\left(a^{j}\right)-\hat{h}^{j}+\phi_{i}\right)
$$

and we distinguish two possibilities:
(1) $f_{i}-F_{i}\left(a^{j}\right) \geqslant 0$.

> In this case

$$
\begin{aligned}
g_{i}(\gamma) & =(1-\gamma)\left(f_{i}-F_{i}\left(a^{j}\right)\right)+\gamma\left(\hat{h}^{j}-\phi_{i}\right) \\
& \geqslant 0 \text { in } 0 \leqslant \gamma \leqslant 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Also } q_{i}(\gamma)-g_{i}(\gamma)=\gamma \phi_{i} \geqslant 0 \text { in } 0 \leqslant \gamma, \text { and so } \\
& \left|g_{i}(\gamma)\right| \leqslant q_{i}(\gamma), 0 \leqslant \gamma \leqslant 1
\end{aligned}
$$

(2) $f_{i}-F_{i}\left(a^{i}\right)<0$.

Here, $g_{i}(\gamma)=0$ at $\gamma=\gamma^{*}<1$, and we have

$$
\begin{aligned}
q_{i}(\gamma)-g_{i}(\gamma) & =2(1-\gamma)\left|f_{i}-F_{i}\left(a^{j}\right)\right|+\gamma \phi_{i} \\
& \geqslant 0 \text { in } 0 \leqslant \gamma \leqslant 1
\end{aligned}
$$

and

$$
\begin{aligned}
q_{i}(\gamma)+g_{i}(\gamma) & =\gamma\left(2 \hat{h}^{j}-\phi_{i}\right) \\
& \geqslant 0 \text { in } 0 \leqslant \gamma \leqslant 1
\end{aligned}
$$

Thus again

$$
\left|g_{i}(\gamma)\right| \leqslant q_{i}(\gamma), 0 \leqslant \gamma \leqslant 1
$$

This completes the proof of the lemma.

Theorem 2.1

Assume that the iteration is confined to a bounded region R. Then

$$
\left|h^{j}-\hat{h}^{j}\right| \rightarrow 0 \text { as } j \rightarrow \infty .
$$

Proof Let $q_{i}(\gamma)$ and W be defined as in Lemma 2.5, and

$$
\text { let } Q_{i}(\gamma)=q_{i}(\gamma)+\gamma^{2} W\left\|\delta a^{j}\right\|^{2}
$$

so that $\quad Q_{i}(\gamma) \geqslant 0$ in $0 \leqslant \gamma \leqslant 1$.

Then $Q_{i}(\gamma)$ satisfies
(i) $Q_{i}(0)=\left|f_{i}-F_{i}\left(a^{j}\right)\right|$,
(ii) $\max _{i} Q_{i}(\gamma) \leqslant \max _{i} Q_{i}(0)$, for sufficiently small $\gamma>0$,
(iii) $Q_{i}(\gamma) \geqslant\left|f_{i}-F_{i}\left(a^{j}+\gamma \delta a^{j}\right)\right|, 0 \leqslant \gamma \leqslant 1$,
where Lemma 2.5 has been used in (iii).
Let $Q=\min _{0 \leqslant \gamma \leqslant 1} \max _{i} Q_{i}(\gamma)$.
Then

$$
\begin{aligned}
h^{j} \geqslant Q & \geqslant \min _{0 \leqslant \gamma \leqslant 1} \max _{i}\left|f_{i}-F_{i}\left(a^{j}+\gamma \delta a^{j}\right)\right| \\
& \geqslant h^{j+1} .
\end{aligned}
$$

Thus Q is an upper bound for h^{j+1}. Now the curves $Q_{i}(\gamma), i=1,2, \ldots, n$, all intersect at the point $\gamma=1$, or are coincident. Also, for at least one $i=s$,

$$
\left|f_{s}-F_{s}\left(a^{j}\right)\right|=h^{j}
$$

Thus Q is determined by either
(a) $Q=Q_{s}(\gamma), \frac{d Q_{s}(\gamma)}{d \gamma}=0$.

This gives

$$
\gamma=\frac{h^{j}-\hat{h}^{j}}{2 W\left\|\delta a^{j}\right\|^{2}},
$$

or
(b) $Q=Q_{s}(1)$,
whichever gives the smaller value of γ (see Fig. 1).

Fig. 1
If $\frac{h^{j}-\hat{h}^{i}}{2 W\left\|\delta a^{j}\right\|^{2}}<1$, then
$Q=h^{j}-\frac{\left(h^{j}-\hat{h}^{j}\right)^{2}}{4 W\left\|\delta a^{j}\right\|^{2}}$
$\leqslant h^{j}-\frac{\left(h^{j}-\hat{h^{j}}\right)^{2}}{16 K^{2} W\left(h^{0}\right)^{2}}$ by Lemma 2.4,
where

$$
\begin{aligned}
& h^{0}>h^{j}, j>0, \text { and so } \\
& \left(h^{j}-\hat{h}^{i}\right)^{2} \leqslant 16 K^{2} W\left(h^{0}\right)^{2}\left(h^{j}-h^{j+1}\right) .
\end{aligned}
$$

Otherwise

$$
\begin{aligned}
& \frac{h^{j}-\hat{h}^{j}}{2 W\left\|\delta a^{j}\right\|^{2}} \geqslant 1, \text { giving } \\
& W\left\|\delta a^{j}\right\|^{2} \leqslant \frac{h^{j}-\hat{h}^{j}}{2}, \text { and } \gamma=1, \text { so that } \\
& Q=\hat{h}^{j}+W\left\|\delta a^{j}\right\|^{2} \leqslant \hat{h}^{j}+\frac{h^{j}-\hat{h}^{j}}{2},
\end{aligned}
$$

and so

$$
h^{j}-\hat{h}^{j} \leqslant 2\left(h^{j}-h^{j+1}\right) .
$$

Thus, in either case, $\left|h^{j}-\hat{h}^{j}\right| \rightarrow 0$ as $j \rightarrow \infty$, by Corollary 2 to Lemma 2.2.
Corollary 1 At a limit point of the iteration, $h^{j}=\hat{h}^{j}$.
Corollary 2 If the conditions of Lemma 2.2 are fulfilled, then a limit point of the sequence a^{j} is a stationary point of

$$
\max _{i}\left|f_{i}-F_{i}(a)\right| .
$$

Theorem 2.2 If the Haar condition is satisfied on the matrix M in the region R, then the sequence a^{j} converges as $j \rightarrow \infty$.
Proof If λ is the λ-vector for the optimal reference defining \hat{h}^{j}, then all elements λ_{i} are nonzero. In this case, convergence of the $\left|h^{j}-\hat{h}^{j}\right|$ to zero implies that for j sufficiently large

$$
\lambda_{i}\left(f_{i}-F_{i}\left(a^{j}\right)\right)>0, \quad i=1,2, \ldots, p+1,
$$

where assumption A3 of Section 1 has been used.
Thus, from Lemma 2.4 we have

$$
\left\|\delta a^{j}\right\| \leqslant \frac{K}{m}\left(h^{j}-\hat{h}^{j}\right)
$$

Further, in case (a) of Theorem 2.1,

$$
Q=h^{j}-\frac{\left(h^{j}-\hat{h}^{j}\right)^{2}}{4 W\left\|\delta a^{i}\right\|^{2}} \leqslant h^{j}-\frac{m^{2}}{4 W K^{2}}
$$

and this implies

$$
h^{j}-h^{j+1} \geqslant \frac{m^{2}}{4 W K^{2}}
$$

which contradicts the convergence of the sequence h^{j}.
Thus, for sufficiently large j, we must have $Q=Q_{s}(1)$ in Theorem 2.1, and this gives

$$
\left\|\delta a^{j}\right\| \leqslant \frac{2 K}{m}\left(h^{j}-h^{j+1}\right) .
$$

The convergence of the sequence a^{j} is thus a consequence of the convergence of the h^{j} in this case. Note that the Haar condition ensures that m is bounded away from zero in R.

3. Application of the algorithm

As an example of the application of the algorithm described in the previous section, we consider the solution to the differential equation

$$
\begin{equation*}
y^{(3)}+y y^{(2)}=0 \tag{3.1}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
y(0)=y^{(1)}(0)=0, y^{(1)}(x) \rightarrow k \text { as } x \rightarrow \infty, \tag{3.2}
\end{equation*}
$$

where k is a constant.

This is the original equation of Blasius, and arises in the consideration of the flow of a fluid which streams past a plate placed edgeways in it (see, e.g., Davis, 1960).

We assume a trial solution containing free parameters and minimise the maximum residual on a discrete set of points. The form of solution is particularly important (polynomials, for example, give large residuals), and we use a form suggested by Mason (1965), where y is approximated by

$$
\begin{equation*}
\phi=A+B x+\psi(x), A, B \text { constants. } \tag{3.3}
\end{equation*}
$$

Table 1
Successive iterates, $r=4$

\hat{h}^{j}	γ^{j}	h^{j+1}
0.000445	0.008	0.420
0.017738	0.1	0.379
0.058304	0.4	0.286
0.013659	0.7	0.156
0.005463	1	0.018536
0.003450	1	0.003975
0.001343	0.9	0.001574
0.000366	1	0.000503
0.000019	0.9	0.000038
0.0000042	1	0.0000044
0.0000042	1	0.0000042

Table 3
Maximum residuals for various values of \boldsymbol{r}

r	MAXIMUM RESIDUAL
1	$0 \cdot 0126$
2	$0 \cdot 0001181$
3	$0 \cdot 0000174$
4	$0 \cdot 0000042$
5	$0 \cdot 0000017$
6	$0 \cdot 00000106$
7	$0 \cdot 000000901$
8	$0 \cdot 000000850$
9	$0 \cdot 000000834$
10	$0 \cdot 000000828$
11	$0 \cdot 000000826$

The boundary conditions are best dealt with by assuming that they are satisfied by ϕ, and so we have

$$
\begin{aligned}
& A+\psi(0)=0, \\
& B+\psi^{(1)}(0)=0, \\
& B+\psi^{(1)}(x) \rightarrow k \text { as } x \rightarrow \infty .
\end{aligned}
$$

The last condition suggests a $\psi(x)$ of the form

$$
\psi(x)=C /(P(x))^{r}
$$

where C and r are constants and $P(x)$ is a polynomial.

Table 2
Successive iterates, $r=8$

\hat{h}^{j}	γ^{j}	h^{j+1}
$0 \cdot 000341$	$0 \cdot 07$	$1 \cdot 227$
$0 \cdot 003053$	$0 \cdot 7$	$0 \cdot 409$
$0 \cdot 027909$	$1 \cdot 1$	$0 \cdot 129$
$0 \cdot 034045$	1	$0 \cdot 036$
$0 \cdot 008308$	0.9	$0 \cdot 012375$
$0 \cdot 001111$	1	$0 \cdot 002056$
$0 \cdot 000252$	1	$0 \cdot 000275$
$0 \cdot 00000957$	1	$0 \cdot 000011$
$0 \cdot 00000089$	1	$0 \cdot 00000091$
$0 \cdot 00000085$	1	$0 \cdot 00000085$

Table 5
Comparison of coefficients, $r=4$

	o. \& w	MASON
a_{1}	0.20545987	$0 \cdot 29056760$
a_{2}	0.05729253	$0 \cdot 11458794$
a_{3}	0.01549048	0.04381529
a_{4}	0.00343083	0.01373644
a_{5}	$0 \cdot 00069572$	0.00386942
a_{6}	$0 \cdot 00008901$	$0 \cdot 00088998$
a_{7}	$0 \cdot 00004165$	$0 \cdot 00020475$
a_{8}	-0.000 01217	$0 \cdot 00004257$
a_{9}	$0 \cdot 00000606$	$0 \cdot 00001198$
a_{10}	-0.000 00106	$0 \cdot 00000255$
a_{11}	$0 \cdot 00000012$	$0 \cdot 00000063$

Table 4

Computed solution values

	0.75	1.5	$2 \cdot 25$	3	3.75	$4 \cdot 25$	5
1	$0 \cdot 1309107$	$0 \cdot 5124484$	1.093292	1.788 004	2. 524424	3.021671	$3 \cdot 769888$
3	$0 \cdot 1316414$	$0 \cdot 5150305$	1.098369	1.795565	$2 \cdot 534712$	3.033496	3.783 228
4	$0 \cdot 1316416$	0.5150312	1.098370	1.795 567	$2 \cdot 534716$	3.033499	3.783 232
8	$0 \cdot 1316417$	$0 \cdot 5150315$	1.098371	1.795568	$2 \cdot 534717$	3.033501	$3 \cdot 783 \quad 234$
11	$0 \cdot 1316417$	$0 \cdot 5150315$	1.098371	1.795568	$2 \cdot 534717$	3.033501	3.783 234

In fact, the conditions (3.2) are satisfied if we set

$$
\psi(x)=\frac{k}{r a_{1}\left(1+a_{1} x+a_{2} x^{2}+\ldots\right)}, A=-\frac{k}{r a_{1}}, \quad B=k
$$

That is,

$$
\begin{equation*}
\phi=-\frac{k}{r a_{1}}+k x+\frac{k}{r a_{1}\left(1+a_{1} x+a_{2} x^{2}+\ldots\right)^{r}} \tag{3.4}
\end{equation*}
$$

Solutions were obtained, for $k=1$, on 31 equispaced points in the range $0 \leqslant x \leqslant 5 . \quad P(x)$ was taken to have degree 11 (i.e. there were 11 unknowns), and a range of integral values of r from 1 to 11 was considered.

In Table 1 we tabulate successive values of \hat{h}, h and γ for the solution with $r=4$. It was found to be sufficient to evaluate γ to one decimal place, except where this gave the value zero, when a more precise value was computed.

Incidence of a small γ occurs here (though certainly not always) when the starting point is far from the solution. Approaching the solution, we see that γ tends to 1 , and takes this value when convergence is finally obtained. This feature is exhibited again in Table 2 for the case $r=8$.

It is interesting to note that different values of r give a large range of maximum residual. This is shown in

Table 3. Computed solutions for some of those values of r, over a range of values of x, are given in Table 4. The solutions for $r=11$ are correct to about one figure in the last decimal place.

Finally, in Table 5, we list the coefficients obtained in the case $r=4$ along with those obtained by Mason for the same value of r, by collocation methods.

4. Conclusion

The algorithm described is applicable to a large range of nonlinear approximation problems. In particular, problems with linear constraints are easily handled. Nonlinearly constrained problems are best tackled by adjusting the form of solution to satisfy these constraints, but failing this, it may be possible to make progress by linearising the outstanding constraints.

Convergence is obtained provided the Haar condition is satisfied on the matrix M. However, it may happen that the values of γ^{j} become very small, and in this case steps towards the solution are small, and progress can become intolerably slow. Consequently, the initial approximation is often critical, expecially when a large number of unknowns is involved. Despite these drawbacks, the method has been used in a variety of nonlinear approximation problems with considerable success.

References

Cheney, E. W. (1966). Introduction to Approximation Theory, McGraw-Hill.
Davis, H. T. (1960). Introduction to Nonlinear Differential and Integral Equations, U.S. Atomic Energy Commission.
Kelley, James E. (Jnr.) (1959). An application of Linear Programming to Curve Fitting, J. Soc. Indust. Appl. Maths., Vol. 6, pp. 15-22.
Mason, J. (1965). Some New Approximations for the Solution of Differential Equations, D. Phil. Thesis, Oxford.
Osborne, M. R., and Watson, G. A. (1967). On the best linear Chebyshev approximation, Computer Journal, Vol. 10, pp. 172-177. Osborne, M. R., and Watson, G. A. (1968). A note on singular minimax approximation problems (to appear in J. Math. Anal. and Applications).
Rice, J. R. (1964). The Approximation of Functions, Vol. 1. Addison-Wesley Publishing Co.
Stiefel, E. (1960). Note on Jordan Elimination, Linear Programming, and Tschebyscheff Approximation, Numerische Mathematik, Vol. 2, pp. 1-17.

[^0]: * Computer Centre, The Australian National University, Canberra, A.C.T.

