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An algorithm for minimax approximation in the nonlinear case

By M. R. Osborne and G. A. Watson*

An algorithm for nonlinear minimax approximation is described, and shown to be convergent
under conditions which are often assumed in practice. The algorithm is illustrated by the cal-
culation of several approximations to the solution of the Biasius equation.
(First received November 1967, and in revised form June 1968)

1. Introduction

The classical problems

(i) find numbers a} to minimise the maximum value
of

/ / - 2 , ; = 1, 2 , . . ., n

where n > p (the discrete T-problem), and

(ii) find numbers fl,- to minimise the maximum value of

/(*) - S aj
; i

, a < x < b

where/(x) and <j>j(x),j = 1,2, . . ., p, are continuous
in a < x < b (the continuous T-problem)

are now well understood. In particular the equivalence
of (i) with a linear programming problem permits its
solution under very general conditions (see, for example,
Kelley (1959), Stiefel (1960), Rice (1964), Osborne and
Watson (1967, 1968)).

In this paper, we consider the solution of the corre-
sponding nonlinear minimax approximation problems,
by solving a sequence of linear discrete T-problems.
Certain properties of the solution of the linear problem
are required, in particular, properties relevant to its
solution as a linear programming problem, and these
we now summarise.

If we write
r=f-Aa, (1.1)

where r is the residual vector, then the discrete T-problem
(i) is to find a vector a such that max|r,|, i = 1, 2, . . . , « ,
is a minimum. We assume that A has rank p.

Any (p + 1) equations of (1.1) are said to form a
reference, and we can write a particular reference as

r° = / ° - Aaa (1.2)

If A° has rank p, there exists a unique vector (to
within a scaling factor) such that

A°ry4° = 0. (1.3)

This vector is the A-vector for the reference. If

A?r?>0 / = 1,2, . . . , /> + 1 ,

then a is called a reference vector. The vector which
solves the discrete T-problem is called the levelled
reference vector. The solution to the dual linear pro-
gramming formulation of (1.1) by the simplex method
is characterised by the property that the residual of
maximum modulus occurs in the (p + 1) equations of

the optimal reference (Osborne and Watson, 1968).
This reference can be written

= f — A°a, (1.4)

where h" is the maximum residual, called the levelled
reference deviation, and 0, = + 1, i = 1, 2, . . ., p + 1.

It is a property of the simplex method that Aa has
rank p, and this is possible because of the assumption
on the rank of A.

Using equations (1.3) and (1.4), we see that the
levelled reference deviation is given by

h =
\°Tf°

(1.5)

The nonlinear approximation problems which corre-
spond to the linear problems (i) and (ii) are:

(iii) find numbers a,- to minimise the maximum value
of

\f — F,(Oi, a2, . .., ap)\ i = 1, 2, . . ., n,

and

(iv) find numbers a,- to minimise the maximum value
of

\f(x) — F(x, au a2, • . ., ap)\ in a < x < b.

We will assume the existence of at least one bounded
minimum for each problem, and that F is continuous
as a function of x. If problem (iv) is considered on a set
of points xh i = 1, 2, . . . , « , instead of on the interval
a < x < b, then it reduces to a problem of type (iii)
with the identification F,{a) = F(xh a). Here we con-
sider only problems of type (iii) and we make three
further assumptions. These are:

Al . JF1.(a + Sa)=F,.(a) + VF,.Sa+0(||8a||2), i = l , 2 , ., n

where
~i>F

VF,is the row vector with components ~ j—\,2,...,p.

This is a smoothness assumption on the F, which permits
at least a local linearisation of the nonlinear problem.

A2. The rank of the matrix M, M = VF, is p.

(VFis the matrix with rows VF, / = 1 ,2, . . ., n.)

This corresponds to the assumption, made for problem
(i), that the matrix A has rank p.
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A3. The system of equations/ — F,(a) = 0, / = 1, 2,...,n

is inconsistent, i.e. no exact solution exists. (This
assumption is also convenient in the linear case: see
Osborne and Watson (1967).)

In Section 2, we describe an algorithm for solving the
nonlinear approximation problem (iii) by an iterative
technique. We show that the sequence of maximum
residuals is convergent, and that the successive approxi-
mations to the solution vector a* also converge under
conditions which are often assumed in practice.

2. The nonlinear problem
The nonlinear problem (iii) can be formulated in a

manner analogous to the linear programming formu-
lation of problem (i). The solution is obtained by
minimising h subject to the constraints

\f, - F,(a)\ < K i = 1,2, . . . , « . (2.1)

This problem is solved iteratively, as follows:

(1) Calculate 8aJ to minimise hJ subject to the con-
straints

Osborne and Watson

equations of the reference denning hJ, y must satisfy

VFt{ai)y = sign (f, - F&*))£„ i= 1, 2, . . . , / > + 1

for some numbers £,• > 0.

/ , - F,(ai) - VF,(aJ)8aJ\ < hi, i = 1,2,...,n. (2.2)

(This is a discrete T-problem, and can be solved by
linear programming, because of assumption A2 of
Section 1.) Denote the minimum value of h> by hi.

(2) Calculate y> to minimise the maximum value of

\ft - F,(aJ + YJ8aJ)\, t= 1,2, . . . , « .

Let the minimum value be hJ+l.

(3) Set a>+> = aJ + yJbai. (2.3)

Lemma 2.1 fi' < hK

Proof We assume for simplicity that the equations
determining SaJ have been ordered so that the first
(p + 1) make up the optimal reference.

Then, by equation (1.5),

P P

ftJ = 2 W, - F,(aJ))/ S W\ < hJ. (2.4)
( = i / = I

Remark If hi > 0 then equality can hold only if, for
each equation in the optimal reference for which A/ ̂  0,

0) \fi ~ F,(fii)\ = hi,

(ii) sign (A{) = sign (/, - F,(«>)).

(Note that h} > 0 is a consequence of assumption A3.)

Definition A unit vector y is downhill at the point a if

max \f - F,(d)\ > max \ft - F,(a + yy)\,
i i

where y > 0 is sufficiently small.

Lemma 2.2 If || VF,-(a-OII > 0 for all i in the reference,
then there is a downhill direction at the point a> if and
only if h> < hi.

Proof Let hi < hi.
Then the vector 8ai is downhill by assumption Al of

the previous section. This proves sufficiency.
Now let hJ = hJ, and assume that there exists a down-

hill direction y. Then since equality holds in the (/> + 1)

If each equation is multiplied by the corresponding A;,
summation gives

P+I
0 = S A, sign (/i -

I;= I

P, = S
i = I

where the second remark following Lemma 2.1 has been
used.

This is a contradiction and so no downhill direction
exists. This proves necessity.

Corollary 1 If hi < hi, then hi + l < hi.

Corollary 2 Since the sequence hi is monotonically
decreasing and bounded below by zero, it is convergent.
Remark The condition || VF,(a-')|| > 0 is necessary,
for consider the example f

/ , - F,(fl) = 1 - a] - a\,
fi ~ F2{a) = i - alt

f3 - F3(fl) = * - a2,

at the point a1 = (0, 0). Then h> — h1, and conditions
Al and A2 hold, but every direction is downhill.

Definition If every p X p submatrix of M, M = VF, is
non-singular, then we say that the matrix M satisfies
the Haar condition. When required, it will be assumed
to hold uniformly in the region of interest. It is clear
that in this case 11 VF,| | > 0, i = 1, 2, . . ., n.

Remark If the Haar condition holds, then all the
components of the A-vector are different from zero.

Lemma 2.3 A sufficient condition for the minimum to
be isolated is that the matrix M satisfies the Haar
condition.

Proof Suppose we have a solution a* with

\\f-F(a*)\\=h*

(All norms are assumed to be maximum norms.)
Then if the Haar condition on M is satisfied, there

exists a reference such that

fi-Fi(a*) = 9ih*, i=l,2,...,p + l,

where 6, = ± 1, where the second remark following
Lemma 2.1 has been used.

Let 0(a*) = - VF°(a*)t

where the suffix a means that we consider only the rows
of M which form the reference, and we assume t to be
any vector such that ||f|| = 1.

Then \°Tip(a*) = 0, where A" is the A-vector for the
reference.

Since the Haar condition is satisfied there exists at
least two of the if>, which are non-zero. We infer that
at least one of the 0,-i/r(- is positive, and consequently the
expression max (0,i/<,) is a positive function of t. Since
it is also a continuous function and the domain of t is
compact,

S = min, max (0,^,) > 0.

t We are indebted to the referee for this example and for other
helpful suggestions which have greatly improved the paper.
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We have

| | / - F{a* f Pt)\\ > max {8,(f, - F,(a*
i
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= max , - F,(a*)) + 0

= | | / - F(a*)11 + max{-

- F,{a* + pt))}

^ t - P
2K,},

by assumption Al where K-, are appropriately chosen
constants.

Let K* = max \K,\ for \\a - a*\\ < R.

(2.5)

Then | | / - F(a* + pOII > h* + P8 - P
2K*.

Choosing 0 < P < 8/K*, we have

\\f-F(a*+Pt)\\>h*.

This completes the proof, as t is an arbitrary vector of
unit norm.

Remark Cheney (1966, p. 81) has given an example
which shows that the inequality (2.5) cannot be proved
without assuming that the Haar condition holds.

Lemma 2.4 Let the equations (2.2) be ordered so that
the first (p + 1) form the optimal reference defining h>,
and let A be the A-vector for the reference scaled so that

S |A,| = 1.

Also let K be a positive constant. Then

(i) \\8a'\\ < 2Khi

(ii) If IA,.| > 0 and X,(f, - F,(p})) > 0,1 = 1,2,..., p+1
and m = min |A,|, then

Proof

(i) We have

VF,(aJ).8aJ =/,- F,(aJ) - h'6,,
where 8, = ± 1, / = 1, 2, . . ., p + 1, and
6; = sgn (A,) if |A,| > 0. Further, we can arrange
that the matrix formed by the first p rows VF, is
nonsingular, and so
| |S^ | | < AT max |/- - Fi(aJ) - h'd^ < 2Kh'.

(ii) If |A,| > 0 and A,(/. - F,{pt)) > 0,1 = 1,2,...,
P+l,

then
1 = 1

whence h' < m min \f, — F,(aJ)\ + (1 — m)h>,
i

so that h' — h> >

This gives

— min | / — Fi(a>)\).
i

m

Lemma 2.5 Let = \f, — F^a')]

- Y (I// - F,(oO| - hi).

\f,-F,
where W > 0 is a constant independent of /.
Proof By assumption Al of Section 1, we have

/ / - •

y <

where
Let

and let

Then

l/i

Wt{y) is bounded in a finite region R.

giiy)=fi-Fi{aJ)-Yy

W be chosen so that

\W,(y)\< W, 0

: — Fj(aJ + y8a')\ < |g,(

and it only remains to show
0 < y < 1.

Now each equation of the set
an equality in the form, either

( 0 / • — F-(ai) — V!F'-(ai)8ai =

< y

y)M
that

(2.2)

= hf-

;)Sa;,

< 1.

-W\\8ai\\2y\

\gi(y)\ < tf,(y) ii

can be written as

-4>»
or

(ii) / • - f ,(a0 - VF,(aJ)8a' = - k' + </>„

where 0 < <f>, < fiJ.

We will only consider equations of type (i), as type (ii)
can be treated in a similar manner. Then we have

gi(y) =fi~ F,{ai)
and we distinguish two possibilities:

(1) / - F,(aJ) > 0.
In this case

> Oin 0 < y < 1.

Also <7,-(y) — g,(y) = y<j>; > 0 in 0 < y, and so

\gi(y)\ < ?/(y). 0 < y < 1.

(2) /• - F,(at) < 0.

Here, g,(y) = 0 at y = y* < 1, and we have

?,-(y) — g-,{y) = 2(1 - y)\fi — F^a')] + y<f>,
> O i n 0 < y < 1,

and

> 0 in 0 < y < 1.
Thus again

\gi(y)\ < ? M 0 < y < l.

This completes the proof of the lemma.

Theorem 2.1
Assume that the iteration is confined to a bounded

region R. Then

\h' - ^|->-0as7->. co.

Proof Let q^y) and W be defined as in Lemma 2.5, and
let Qiiy) = q,{y) + Y

2W\\8aJ\\2,

so that 2,(y) > 0 in 0 < y < 1.
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Then 2,(y) satisfies

(0 fi,(O) = |/ , - F,(a%
(ii) max 2,(y) < m a x 2/(P)> f°r sufficiently small y>0,

< i

(iii) e,(y) > l/i ~ W + Y8a% 0 < y < 1,

where Lemma 2.5 has been used in (iii).

Let Q = min max g,(y).

Then

^ > g > min max \f, - F,(ai + y8a*)\

and Watson

Otherwise

hi - 'hi

Thus Q is an upper bound for hj+1. Now the curves
Qt(y), i = 1, 2, . . ., n, all intersect at the point y = 1,
or are coincident. Also, for at least one i = s,

\fs - W)l = to.
Thus Q is determined by either

(a) Q =
» dy

= 0.

This gives
hi

2W\\8ai

or

(*) Q = QsW,

whichever gives the smaller value of y (see Fig. 1).

case (a )

y-Q x (Y)

* • Y

case (b>

Fig. 1

If
hi - ft'

2 < 1, then

( ^ - hi)1

4W\\8ai\\2

(/z> - hi)1

Q = hi -

where ^° > ^y, y > 0, and so

{hi - hi)1 < l6K2W(h0)2(hJ - hi+l).

2fV\\8ai
> 1, giving

hi -hi J< —=— , and y = 1, so that

^7 — p
Q = to + W\\8ai\\2 < ^ + — ^ — '

and so
to-hi<2ito-to+l).

Thus, in either case, \to — to\ -> 0 as j -+ oo, by
Corollary 2 to Lemma 2.2.
Corollary 1 At a limit point of the iteration, hJ = hJ.
Corollary 2 If the conditions of Lemma 2.2 are ful-
filled, then a limit point of the sequence a> is a stationary
point of

max \fi -Fi(a)\.
i

Theorem 2.2 If the Haar condition is satisfied on the
matrix M in the region R, then the sequence a1 converges
as j -> oo.
Proof If A is the A-vector for the optimal reference
defining h>, then all elements A, are nonzero. In this
case, convergence of the \hJ — hJ'\ to zero implies that
fory sufficiently large

\i(fi — Fiipi)) > 0, i = 1, 2, . . ., p + 1,

where assumption A3 of Section 1 has been used.
Thus, from Lemma 2.4 we have

Further, in case (a) of Theorem 2.1,

n r, (hi-hi)2

4W\\8a /112
< to- AWK1

and this implies

mr

which contradicts the convergence of the sequence hJ.
Thus, for sufficiently large j , we must have Q = Qs(\)

in Theorem 2.1, and this gives

(

The convergence of the sequence a' is thus a conse-
quence of the convergence of the hi in this case. Note
that the Haar condition ensures that m is bounded
away from zero in R.

3. Application of the algorithm
As an example of the application of the algorithm

described in the previous section, we consider the solu-
tion to the differential equation

yV) _|_ yyU) = 0 (3.1)

subject to the boundary conditions

y(0) = /D(0) = 0, /'>(*) ->- k as x -> oo, (3.2)

where A; is a constant.
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The boundary conditions are best dealt with by
assuming that they are satisfied by <f>, and so we have

This is the original equation of Blasius, and arises in
the consideration of the flow of a fluid which streams
past a plate placed edgeways in it (see, e.g., Davis, 1960).

We assume a trial solution containing free parameters
and minimise the maximum residual on a discrete set of
points. The form of solution is particularly important
(polynomials, for example, give large residuals), and we
use a form suggested by Mason (1965), where y is
approximated by

<£ = A + Bx + i(i(x), A, B constants. (3.3) where C and r are constants and P(x) is a polynomial.

A + m = o,
B + 0")(O) = 0,
B+

The last condition suggests a ip(x) of the form

Table 1

Successive iterates, r — 4

h'

0 000 445
0-017 738
0 058 304
0013 659
0 005 463
0 003 450
0 001 343
0 000 366
0000 019
0 000 004 2
0 000 004 2

0
0
0-
0-
1
1
0-
1
0-
1
1

yJ

008
1
4
7

9

9

hi

0-420
0-379
0-286
0156
0018
0 003
0 001
0 000
0 000
0 000
0 000

+i

536
975
574
503
038
004 4
004 2

Table 2

Successive iterates, r = 8

0 000
0 003
0 027
0 034
0 008
0 001
0 000
0 000
0 000
0 000

y

341
053
909
045
308
111
252
009
000
000

57
89
85

0
0
1
1
0
1
1
1
1
1

yJ

•07
•7
•1

•9

1-
0-
0-
0-

227
409
129
036

0012
0-
0-
0-
0-
0-

002
000
000
000
000

+i

375
056
275
011
000 91
000 85

Table 3

Maximum residuals for various values of r

r

1
2
3
4
5
6
7
8
9
10
11

MAXIMUM RESIDUAL

0012
0 000
0 000
0 000
0 000
0 000
0 000
0 000
0 000
0 000
0 000

6
118
017
004
001
001
000
000
000
000
000

1
4
2
7
06
901
850
834
828
826

Table 5

Comparison of coefficients, r = 4

a2

a4
«5
a6

«7

«8
a9

Oil

o.

0-205
0 057
0015
0 003
0-000
0 000
0 000

-0 000
0 000

-0 000
0 000

& w.

459
292
490
430
695
089
041
012
006
001
000

87
53
48
83
72
01
65
17
06
06
12

MASON

0-290
0114
0 043
0013
0-003
0 000
0 000
0-000
0 000
0 000
0-000

567
587
815
736
869
889
204
042
011
002
000

60
94
29
44
42
98
75
57
98
55
63

Table 4

Computed solution values

\

1
3
4
8
11

0-

0130
0
0-
0
0-

131
131
131
131

75

910
641
641
641
641

7
4
6
7
7

l

0-512
0-515
0-515
0-515
0-515

•5

448
030
031
031
031

4
5
2
5
5

2-25

1093
1098
1098
1098
1098

292
369
370
371
371

3

1-788
1-795
1-795
1-795
1-795

004
565
567
568
568

3-75

2-524
2-534
2-534
2-534
2-534

424
712
716
717
717

4-25

3-021
3033
3033
3-033
3033

671
496
499
501
501

5

3-769
3-783
3-783
3-783
3-783

888
228
232
234
234
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In fact, the conditions (3.2) are satisfied if we set

k _ k
" x — •• • ' -,x2 + . . .)r' ~~ ra,'

Osborne and Watson

axx

That is,

axx
v- (3-4)

Solutions were obtained, for k = 1, on 31 equispaced
points in the range 0 < x < 5. P(x) was taken to have
degree 11 (i.e. there were 11 unknowns), and a range of
integral values of r from 1 to 11 was considered.

In Table 1 we tabulate successive values of h, h and y
for the solution with r = 4. It was found to be sufficient
to evaluate y to one decimal place, except where this
gave the value zero, when a more precise value was
computed.

Incidence of a small y occurs here (though certainly
not always) when the starting point is far from the
solution. Approaching the solution, we see that y tends
to 1, and takes this value when convergence is finally
obtained. This feature is exhibited again in Table 2 for
the case r = 8.

It is interesting to note that different values of r give
a large range of maximum residual. This is shown in

Table 3. Computed solutions for some of those values
of r, over a range of values of x, are given in Table 4.
The solutions for r = 11 are correct to about one figure
in the last decimal place.

Finally, in Table 5, we list the coefficients obtained in
the case r = 4 along with those obtained by Mason for
the same value of r, by collocation methods.

4. Conclusion
The algorithm described is applicable to a large range

of nonlinear approximation problems. In particular,
problems with linear constraints are easily handled.
Nonlinearly constrained problems are best tackled by
adjusting the form of solution to satisfy these constraints,
but failing this, it may be possible to make progress by
linearising the outstanding constraints.

Convergence is obtained provided the Haar condition
is satisfied on the matrix M. However, it may happen
that the values of y' become very small, and in this case
steps towards the solution are small, and progress can
become intolerably slow. Consequently, the initial
approximation is often critical, expecially when a large
number of unknowns is involved. Despite these draw-
backs, the method has been used in a variety of nonlinear
approximation problems with considerable success.
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