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ABSTRACT 
Motivation: Modularity analysis is a powerful tool for studying the 
design of biological networks, offering potential clues for relating the 
biochemical function(s) of a network with the ‘wiring’ of its 
components. Relatively little work has been done to examine 
whether the modularity of a network depends on the physiological 
perturbations that influence its biochemical state. Here, we present a 
novel modularity analysis algorithm based on edge-betweenness 
centrality, which facilitates the use of directional information and 
measurable biochemical data. 

1 INTRODUCTION  
A common feature of large, complex biological networks is that 
they are organized into smaller sub-networks consisting of directly 
interacting, or ‘connected,’ molecular components. Recent studies 
have suggested that these sub-networks correspond to biologically 
meaningful, functional units, or ‘modules’ (Hartwell, et al., 1999). 
In this light, one approach to understanding the design of 
biological networks is to examine their modularity. For example, 
comparative analyses of structurally similar modules across 
different species may identify mutually shared functions, associate 
a modular structure with a new function, and provide insight into 
the evolution of various network structures (Sharan and Ideker, 
2006). One issue that remains to be addressed is whether particular 
structures are inherent to a network or dependent on its functional 
state. This issue can be addressed by incorporating experimental 
and derived measures that correlate the functional state of a 
biological network with the extents of interactions, or ‘connection 
strengths,’ between the many molecular components (Patil and 
Nielsen, 2005). In recent years, analytical technologies have 
emerged enabling parallel measurements on the most common 
types of biochemical processes. For example, the DNA micro-
array technology is now widely used to comprehensively profile 
the transcriptional activity of a gene network (di Bernardo, et al., 
2005). Recent reports have also described the use of isotopomer 
modeling and metabolomic technologies for high-throughput 
analyses of metabolic reaction fluxes in intact cells (Fischer and 
Sauer, 2005). 

In this application note, we describe an algorithm for data-driven 
modularity analysis, with the principal aim of disseminating the 
source code. A novel feature of this analysis is that it incorporates 
functional information on the interactions between the network’s 
components. Our core algorithm extends the edge betweenness 
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analysis algorithm (Newman and Girvan, 2004) to partition 
directed graphs with non-uniform edge costs. Additional 
components of our algorithm consist of well-known techniques for 
graph (Freeman, 1979) and vector space calculations. Our 
algorithm is general with respect to the type of connections 
between network components, and should be applicable to a 
variety of biological networks, such as transcriptional regulatory 
and protein-protein interaction networks. The inputs of the 
algorithm are an adjacency matrix describing the ‘static’ 
connectivity of the network components and a weight matrix 
describing the extents of interactions between these components. 
Here, we briefly describe the application of our modularity 
analysis to a metabolic network represented as a directed, 
compound graph with reaction edges, where the edge costs are 
supplied by metabolic profiling and flux analysis. In this analysis, 
the modularity of the network quantitatively reflects the connection 
diversity, i.e. reaction engagements, between the network 
components, i.e. metabolites. 

2 BACKGROUND 
Vertex betweenness centrality - A network is conveniently modeled as a 
graph G{V,E} consisting of a set of vertices (V) and edges (E), where each 
edge connects a pair of vertices (Cormen, et al., 2001). Vertex centrality 
refers to the significance of a vertex in determining the layout of the graph. 
There are three different measures of centrality based on degree, closeness, 
or betweenness. Among these, betweenness centrality has been shown to 
best reflect the variation in vertex centrality among distinguishable graphs 
(Freeman, 1979). Betweenness centrality is defined in terms of a 
probability. If σst(v) is the number of the shortest paths (geodesics) from a 
vertex s to t that contains the vertex v, and σst is the number of shortest 
paths from s to t, then ststst vvb σσ )()( =  is the probability that vertex v 
falls on a randomly selected shortest path connecting s with t. The overall 
betweenness centrality of a vertex v is obtained by summing up its partial 
betweenness values for all unordered pairs of vertices 
( ){ }vtsVtsts ≠≠∈ ,,, : 
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This index reflects the amount of control exerted by a given vertex over the 
interactions between the other vertices in the network. In general, the 
“vertex” betweenness centrality index is costly to compute for large 
networks. Recently, a faster algorithm has been developed applicable for 
large, but also very sparse networks, such as social networks (Brandes, 
2001). We have adapted this faster algorithm to calculate the “edge” 
betweenness centrality index for a metabolic reaction network based on 
shortest paths. 

Edge-betweenness centrality – Unlike many conventional clustering 
methods, which are agglomerative, the edge-betweenness algorithm is a 
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top-down, divisive method for grouping network components into modules. 
Edge-betweenness centrality is the frequency of an edge that places on the 
shortest paths between all pairs of vertices. Analogous to Equation (1), the 
betweenness centrality of an edge in a network is given by the sum of the 
edge betweenness values for all source vertices. As suggested by (Newman 
and Girvan, 2004), the edges with highest betweenness values are most 
likely to lie between sub-graphs, rather than inside a sub-graph. 
Consequently, successively removing edges with the highest edge-
betweenness will eventually isolate sub-graphs consisting of vertices that 
share connections only with other vertices in the same sub-graph. 

3 ALGORITHM 

 

Fig. 1.    Modularity analysis of central carbon metabolism in the fasted rat 
liver (22 internal metabolites, 50 reactions). Metabolites were represented 
as nodes, and reactions as edges. Edge weights were derived from reaction 
flux data as noted in the text. Figure panels show the network partitions 
generated at a few, selected stages of the algorithm: graph representation 
(‘view’) of the original network (A), view 5 (B), view 6 (C), view 8 (D), 
and view 9 (insert E). The view numbers refer to algorithm iterations. 
Modules were first observed at view 5. After 9 iterations (E), all edges 
were removed and all nodes separated. All programs were implemented in 
MATLAB (version 7.0.4, MathWorks, Natick, MA). The graph views were 
drawn using the Bioinformatics toolbox. Note that the drawn edges do not 
reflect the length adjustments supplied by the edge-weight matrix due to a 
limitation of the visualization software. The bold arrows highlight the 
highest betweenness edges removed in the subsequent iteration. 

In its original implementation, which was developed for un-
weighted, un-directed networks, the edge-betweenness analysis 
used the breadth-first search (BFS) algorithm (Newman and 
Girvan, 2004). Here, we extended this prior work to enable the 
edge-betweenness analysis of directed, weighted networks. The 
algorithm steps are as follows: 

Step 1. Shortest paths through the network are calculated using 
Dijkstra’s algorithm. Usually, the shortest paths differ for 

undirected and directed graphs. The shortest path calculation also 
critically depends on an edge weight matrix, which adjusts the 
relative distances between the network nodes (graph vertices) 
based on the strengths of the biochemical interactions represented 
by the corresponding edges. For example, a weight matrix holding 
metabolic flux data is used to adjust the distance between a pair of 
reactant and product nodes based on the activity of the intervening 
reaction. In the limiting case of an infinitesimal flux, the 
corresponding edge-cost is infinite, and thus unavailable to any 
shortest paths, reflecting a non-active component of a metabolic 
reaction network. In general, the dimensions and contents of the 
user-defined weight matrix (W) will depend on the available data. 
In case activity data is only partially available or altogether 
unavailable, our algorithm permits the assignment of a default 
weight matrix with uniform edge costs. The outputs of step 1 are: a 
shortest path number matrix (Ssigma), a predecessor matrix 
(Ppred), and a shortest distance matrix (Ddist) (see supplementary 
material). 

Step 2. The edge-betweenness centrality index is calculated for 
all edges as previously suggested (Newman and Girvan, 2004). 
The edge with the highest index value is removed, forming a new, 
potentially modular, graph representation of the original network. 

Steps 1 and 2 are repeated iteratively until no more edges 
remain. The first iteration finds all possible shortest paths of the 
complete network, calculates the edge-betweenness values of each 
edge in the network, and removes the highest betweenness edges. 
After the first partition, the algorithm iterations recalculate the 
shortest paths and edge-betweenness index values subsequently. 
Both steps 1 and 2 are performed over a variable space of O(n+m), 
where n is the number of vertices and m is the number of edges. In 
the worst case, steps 1 and 2 will require, respectively, 
O(nm+n2logn) and O(nm) steps per edge removal. At completion, 
when all edges have been removed, the algorithm will have 
executed m×(O(nm+n2logn) + O(nm)) steps. 

As an illustration, we show the application of the algorithm to a 
model of liver central carbon metabolism (Figure 1), for which 
detailed flux data had been previously obtained (Lee, et al., 2003). 
On a Pentium 4 desktop with a CPU clock speed of 2.53 GHz and 
RAM of 0.5 GB, the calculations for this example application 
required 9 iterations and lasted 8 to 9 seconds, indicating an 
average run time of 1 sec per iteration.  
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