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ABSTRACT

Motivation: Modularity analysis is a powerful tool for studying the
design of biological networks, offering potential clues for relating the
biochemical function(s) of a network with the ‘wiring’ of its
components. Relatively litle work has been done to examine
whether the modularity of a network depends on the physiological
perturbations that influence its biochemical state. Here, we present a
novel modularity analysis algorithm based on edge-betweenness
centrality, which facilitates the use of directional information and
measurable biochemical data.

1 INTRODUCTION

A common feature of large, complex biological natkgois that
they are organized into smaller sub-networks ctingi®f directly
interacting, or ‘connected,” molecular componeRscent studies
have suggested that these sub-networks correspdoidlogically
meaningful, functional units, or ‘modules’ (Hartwedt al., 1999).
In this light, one approach to understanding thesigte of
biological networks is to examine their modulariBor example,
comparative analyses of structurally similar modulacross
different species may identify mutually shared fiors, associate
a modular structure with a new function, and previdsight into
the evolution of various network structures (Shasaml Ideker,
2006). One issue that remains to be addressedeathehparticular
structures are inherent to a network or dependeritscfunctional

state._This issue cdpe addressed by incorporating experimental

and derived measures that correlate the functietate of a
biological network with the extents of interactipms ‘connection
strengths,” between the many molecular componeRgil (and
Nielsen, 2005). In recent years, analytical tecbgies have
emerged enabling parallel measurements on the owsimon
types of biochemical processes. For example, thé\ DiNcro-
array technology is now widely used to comprehesigiyprofile
the transcriptional activity of a gene network B#rnardo, et al.,

2005). Recenteports have also described the use of isotopomer

modeling and metabolomic technologies for high-tigtgut
analyses of metabolic reaction fluxes in intaciscéfischer and
Sauer, 2005).

In this application note, we describe an algorifomdata-driven
modularity analysis, with the principal aim of digssinating the
source code. A novel feature of this analysis & thincorporates
functional information_on the interactiofeetween the network’s
components. Our core algorithm extends the edgedesiness
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analysis algorithm (Newman and Girvan, 2004) to tipamn

directed graphs with non-uniform edge costs. Addai

components of our algorithm consist of well-knowshniques for
graph (Freeman, 1979) and vector space calculatiésr

algorithm is general with respect to the type ohreections
between network components, and should be appdicabl a
variety of biological networks, such as transcdpél regulatory
and protein-protein interaction networks. The isputf the
algorithm are an adjacency matrix describing théatis

connectivity of the network components and a weightrix

describing the extents of interactions betweenethesmponents.
Here, we briefly describe the application of our dularity

analysis to a metabolic network represented as ractdd,
compound graph with reaction edges, where the edgés are
supplied by metabolic profiling and flux analyslis.this analysis,
the modularity of the network quantitatively refie¢he connection
diversity, i.e. reaction engagements, between threwark

components, i.e. metabolites.

2 BACKGROUND

Vertex betweenness centrality - A network is conveniently modeled as a
graphG{V,E} consisting of a set of vertice¥)(and edgesH), where each
edge connects a pair of vertices (Cormen, et 8D1R Vertex centrality
refers to the significance of a vertex in determinihe layout of the graph.
There are three different measures of centralisetiaon degree, closeness,
or betweenness. Among these, betweenness centrabtjpeen shown to
best reflect the variation in vertex centrality argalistinguishable graphs
(Freeman, 1979). Betweenness centrality is defimedterms of a
probability. If og(v) is the number of the shortest paths (geodesios) &
vertexs to t that contains the vertex andog is the number of shortest
paths froms to t, then by (V) = 04 (v)/og is the probability that vertex
falls on a randomly selected shortest path cormgstivith t. The overall
betweenness centrality of a vertexs obtained by summing up its partial

betweenness values for all unordered pairs of oesti
{st)|stov,sztzv:
CeW)= Y bg(v) €]
sEV#ELIV

This index reflects the amount of control exertgdtgiven vertex over the
interactions between the other vertices in the akwlIn general, the
“vertex” betweenness centrality index is costly compute for large
networks. Recently, a faster algorithm has beereldped applicable for
large, but also very sparse networks, such as Ispetavorks (Brandes,
2001). We have adapted this faster algorithm teculate the “edge”
betweenness centrality index for a metabolic reactietwork based on
shortest paths.

Edge-betweenness centrality — Unlike many conventional clustering
methods, which are agglomerative, the edge-betvemsnalgorithm is a
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top-down, divisive method for grouping network campnts into modules.
Edge-betweenness centrality is the frequency cddge that places on the
shortest paths between all pairs of vertices. Agals to Equation (1), the
betweenness centrality of an edge in a networkvisngby the sum of the
edge betweenness values for all source verticesuggested by (Newman
and Girvan, 2004), the edges with highest betwesnnalues are most
likely to lie between sub-graphs, rather than iesid sub-graph.
Consequently, successively removing edges with liighest edge-
betweenness will eventually isolate sub-graphs isting of vertices that
share connections only with other vertices in gu@e sub-graph.

3 ALGORITHM
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'S were represented

ds 1noues, anu reacuods euges. cuge weignits were derived from reactior

flux data as noted in the text. Figure panels sliosvnetwork partitions
generated at a few, selected stages of the algorigihaph representation
(‘'view’) of the original network (A), view 5 (B), iew 6 (C), view 8 (D),

and view 9 (insert E). The view numbers refer tgoathm iterations.

Modules were first observed at view 5. After 9 ations (E), all edges
were removed and all nodes separafdtiprograms were implemented in
MATLAB (version 7.0.4, MathWorks, Natick, MA). Thgraph views were

drawn using the Bioinformatics toolboXote that the drawn edges do not

reflect the length adjustments supplied by the edegight matrix due to a
limitation of the visualization software. The bo#trows highlight the
highest betweenness edges removed in the subsétguation.

In its original implementation, which was developéat un-
weighted, un-directed networks, the edge-betweenrsemlysis
used the breadth-first search (BFS) algorithm (Newnmand
Girvan, 2004). Here, we extended this prior worketmable the
edge-betweenness analysis of directed, weightedoniet. The
algorithm steps are as follows:

Step 1. Shortest paths through the network are calculasiug
Dijkstra’s algorithm. Usually, the shortest paths differ for

undirected and directed graphs. The shortest patulation also
critically depends on an edge weight matrix, whatjusts the
relative distances between the network nodes (gregtices)
based on the strengths of the biochemical intemastrepresented
by the corresponding edges. For example, a weigtttixrholding
metabolic flux data is used to adjust the distareteveen a pair of
reactant and product nodes based on the activitlyeointervening
reaction. In the limiting case of an infinitesimélux, the
corresponding edge-cost is infinite, and thus uitavie to any
shortest paths, reflecting a non-active componéra metabolic
reaction network. In general, the dimensions anaterds of the
user-defined weight matrid{) will depend on the available data.
ctivity data is only partially available altogether
y, our algorithm permits the assignmehia adefault
rix with uniform edge costs. The outpaftstep 1 are: a
ath number matrixSdgma), a predecessor matrix
d a shortest distance matid({st) (see supplementary

‘he edge-betweenness centrality index is calallfde
1s previously suggested (Newman and Gir2804).
vith the highest index value is removedniing a new,
modular, graph representation of thiginal network.
and 2 are repeated iteratively until noemedges
e first iteration finds all possible dlest paths of the
etwork, calculates the edge-betweenredass/of each
uie network, and removes the highest betwess edges.
2 first partition, the algorithm iteratiomrecalculate the
paths and edge-betweenness index vallsegiently.
ps 1 and 2 are performed over a varialdeespf Ofi+m),
is the number of vertices amdis the number of edges. In
rst case, steps 1 and 2 will require, respEgt
logn) and Ofm) steps per edge removal. At completion,
Il_edges have been removed, the algorithnh hle
tnx(O(m+n?logn) + O(m)) steps.
illustration, we show the application of gigorithm to a
f liver central carbon metabolism (Figure fbr which
flux data had been previously obtainede(let al., 2003).
ntium 4 desktop with a CPU clock speed58 %Hz and
nrwviui 0.5 GB, the calculations for this examplepbgation
required 9 iterations and lasted 8 to 9 seconddicating an

T - - -
average run time of 1 sec per iteration.
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