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Abstract One of the challenging optimization problems is determining the mini-
mizer of a nonlinear programming problem that has binary variables. A vexing diffi-
culty is the rate the work to solve such problems increases as the number of discrete
variables increases. Any such problem with bounded discrete variables, especially bi-
nary variables, may be transformed to that of finding a global optimum of a problem
in continuous variables. However, the transformed problems usually have astronom-
ically large numbers of local minimizers, making them harder to solve than typical
global optimization problems. Despite this apparent disadvantage, we show that the
approach is not futile if we use smoothing techniques. The method we advocate first
convexifies the problem and then solves a sequence of subproblems, whose solutions
form a trajectory that leads to the solution. To illustrate how well the algorithm per-
forms we show the computational results of applying it to problems taken from the
literature and new test problems with known optimal solutions.
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1 Introduction

Nonlinear optimization problems whose variables can only take on integer quantities
or discrete values abound in the real world, yet there are few successful solution meth-
ods and even one of the simplest cases with quadratic objective function and linear
constraints is NP-hard (see, e.g., [6]). We focus our interest on problems with linear
equality constraints and binary variables. However, once the proposed algorithm has
been described it will be seen that extending the algorithm to more general cases,
such as problems with linear inequality constraints, or problems with some continu-
ous variables is trivial. Also, the binary variable requirement is not restrictive since
any problem with bounded discrete variables can easily be transformed to a problem
with binary variables.
The problem of interest can thus be stated as

Minimize f(x)
subjectto  Ax =b, (L.1)
x €{0, 1},

where f :R" — R is a twice continuously differentiable function, A is an m X n
matrix with rank m and b € R™ is a column vector. Assuming differentiability may
seem strange when x is discrete. (Often f (x) cannot be evaluated unless every x; =0
or 1.) Nonetheless for a broad class of real problems f(x) is smooth and when it is
not it is often possible to alter the original function suitably (see [26]). As noted
problems in the form of (1.1) are generally NP-hard. There is no known algorithm
that can be assured of obtaining the optimal solution to NP-hard problems for large
problems within a reasonable amount of computational effort and time. It may even
be difficult just to obtain a feasible solution to such problems. The challenge is to
discover algorithms that can generate a good approximate solution to this class of
problems for an effort that increases only slowly as a function of n.

If the requirement that x € {0, 1}" is dropped then typically the effort to find a local
minimizer of (1.1) increases only slowly with the size of the problem. It would seem
attractive if (1.1) could be replaced by a problem in continuous variables. The equiv-
alence of (1.1) and that of finding the global minimizer of a problem with continuous
variables is well known (see [14, 34]). One simple way of enforcing x € {0, 1}" is
to add the constraints 0 < x < e and xT(e — x) = 0, where ¢ is the vector of unit
elements. Clearly for x; to be feasible then x; = 0 or 1. The difficulty is that there
is a world of difference between finding a global minimizer as opposed to a local
minimizer. If there are only a few local minimizers then the task is relatively easy but
in this case it is possible that every vertex of the feasible region (and there could be
2" vertices) is a local minimizer. Typically the minimizer found by an algorithm to
find a local minimizer is entirely determined by the starting point chosen. Traditional
methods for global optimization (see [25]) perform particularly poorly on problems
with numerous local minimizers.

A number of approaches have been developed to handle mixed-integer nonlinear
programming problems via a transformation of the discrete problem into a continu-
ous problem. These approaches involve geometric, analytic and algebraic techniques,
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including the use of global or concave optimization formulations, semidefinite pro-
gramming and spectral theory (see e.g., [9, 19, 20, 30, 31]). In particular, [23, 29]
give an overview of many of these continuous approaches and interior-point meth-
ods. Perhaps the most obvious approach is to simply ignore the discrete requirement,
solve the resulting “relaxed” problem and then discretize the solution obtained by
using an intelligent rounding scheme (see [16], Chapter 7 and [22]). Such approaches
work best when the discrete variables are in some sense artificial. For example, when
optimizing a pipe layout it is known that pipes are available only in certain sizes. In
principle pipes could be of any size and the physics of the model is valid for sizes
other than those available. However, even in these circumstances there may be diffi-
cult issues in rounding since it may not be easy to retain feasibility. It is not difficult
to see that this approach can fail badly. Consider minimizing a strictly concave func-
tion subject to the variables being binary. The relaxed solution has a discrete solution
and obviously there is no need to round. Rather than being good news it illustrates
the solution found is entirely determined by the choice of the initial point used in the
continuous optimization algorithm. Given that such methods find local minimizers
the probability of determining the global minimizer is extremely small since there
may be 2" local minimizers. There are other problems in which little information can
be determined from the continuous solution. For example, in determining the opti-
mum location of substations in an electrical grid relaxing the discrete requirements
results in a substation being placed at every node that precisely matches the load. In
this case this is the global minimizer of the continuous problem but it gives almost
no information on which node to place a substation. To be feasible it is necessary to
round up to avoid violating voltage constraints. Moreover, for many nodes the loads
are identical so any scheme that rounds up some variables and rounds down others in
the hope of the solution still being feasible has trouble identifying a good choice.

There are even fewer methods that are able to solve general problems with a
large number of variables. Three commercial packages that are available are DI-
COPT (see [18]), SBB (see [5]) and BARON (see [32]). DICOPT is a package for
solving mixed-integer nonlinear programming problems based on extensions of the
outer-approximation algorithm (see [10]) for the equality relaxation strategy and then
solving a sequence of nonlinear programming and mixed-integer linear programming
problems. SBB is based on a combination of the standard branch-and-bound method
for the mixed-integer linear programming problems and standard nonlinear program-
ming solvers. BARON is a global optimization package based on the branch-and-
reduce method (see [33]). These solver packages can in principle solve large non-
linear mixed-integer programming problems. However, it will be seen that the per-
formance of these algorithms, especially on large problems, are sometimes poor and
there is a clear need for better algorithms for this class of problems. It may be that a
single algorithm that can find good solutions for most large problems is a step too far,
but it helps to add to the arsenal of solution methods new methods whose behavior
and character differ from current methodology.

Throughout this paper, we let || - || denote the 2-norm, i.e., the Euclidean norm, of
a vector, and let e denote the column vector of ones with dimension relevant to the
context. If x and y are vectors in R”, we let x < y, x < y to mean respectively that
xi <yi,x; <y foreveryie{l,2,...,n}, and Diag(x) to denote the diagonal matrix
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with the diagonal elements made up of the respective elements x;, i € {1,2,...,n}.
Also, the null space of a matrix A is defined as {x € R" : Ax = 0}. For a real-valued
function f, we say that f is a C¥ function if it is kth-order continuously differen-
tiable.

2 An exact penalty function

Rather than add nonlinear constraints we have chosen to add a penalty term

> xjl—x)), 2.1)

jeJ

with a penalty parameter y > 0, where J is the index set of the variables that are
judged to require forcing to a bound. We could have added the penalty xT (e — x), but
often the objective is nearly concave and if there are not many equality constraints
some of the variables will be forced to be 0 or 1 without any penalty term being
required. The problem then becomes

Minimize F(x)éf(x)—i—nyj(l —Xxj)
jEJ 22
subjectto  Ax =b, 22)
0<x<e.

In general, it is possible to show that under suitable assumptions, the penalty func-
tion introduced this way is “exact” in the sense that the following two problems have
the same global minimizers for a sufficiently large value of the penalty parameter y:

Minimize g(x)
subjectto Ax =D, 2.3)
xe€{0,1}"

and

Minimize g(x)+ yx (e —x)
subjectto Ax =b, 2.4
0<x<e.

An example of such a result (see for example [30]) is:

Theorem 2.1 Let g : [0,1]" — R be a C! function and consider the two prob-
lems (2.3) and (2.4) with the feasible region of (2.3) being non-empty. Then there
exists M > O such that for all y > M, problems (2.3) and (2.4) have the same global
minimizers.

Note that although this is an exact penalty function it is twice continuously differ-
entiable and the extreme ill-conditioning arising out of the need for y — oo normally
required for smooth penalty functions is avoided. Indeed, a modestly large value of
y is usually sufficient to indicate whether a variable is converging to 0 or 1.
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Since the penalty term is concave we are highly likely to introduce local mini-
mizers at almost all the feasible integer points, and just as significantly, saddle points
at interior points. It is clearly critical that any method used to solve the transformed
problem be one that can be assured of not converging to a saddle point.

The idea of using penalty methods for discrete optimization problems is not new
(see, e.g., [3]). However, it is not sufficient to introduce only the penalty terms and
hope to obtain the global minimizer by solving the resulting problem, because it is
highly likely that many undesired stationary points and local minimizers are being
introduced in the process. This flaw also applies to the process of transforming a
discrete optimization problem into a global optimization problem simply by replacing
the discrete requirements of the variables with a nonlinear constraint. The danger of
using the penalty function alone is illustrated by the following example:

Example Consider the problem min{x? : x € {0,1}}. It is clear that the global
minimizer is given by x* = 0. Suppose the problem has been transformed to
minofxfl{x2 + yx(1 — x)}, where y > 0 is the penalty parameter. If y > 2 then
the first-order KKT conditions are satisfied at 0, 1 and ﬁ Suppose in a descent
method the initial point is chosen in the interval [ﬁ, 1], then the sequence gener-
ated will not converge to 0. Thus for large values of y the probability of converging
to 0 from a random initial point is close to 0.5. A probability of 0.5 may not seem
so bad but if we now consider the n-dimensional problem min{||x|? : x € {0, 1}"},
then every vertex is a local minimizer of the continuous problem and the probability
of converging from a random initial point to the correct local minimizer is not much

better than 1/2".

In the following we assume that the feasible space is bounded, which is the case
for the problems of interest.

Definition Let x be a minimizer of (2.2) and S(x) denote the set of feasible points
for which there exists an arc emanating from x such that the tangent to the arc at x is
ZTV, f(x), where the columns of Z are a basis for the null space of the constraints
active at x. Let the volume of S(x) be denoted by S, (x). We may rank the minimizers
in terms of the size of S, (x).

If x* € R” is the global minimizer and V is the volume of the feasible space then
we can expect that

lim S,(x*)/V =0.
n—oo

It is this fact that makes it unlikely that simply applying a local search method to (2.2)
will be successful. Indeed there is little to hope that a good local minimizer would be
found. If the minima are uniformly distributed with mean M then the expected value
of f(x) for a random starting point is M. There is little reason to suppose M is close
to f(x*).

There are alternative penalty functions. Moreover, x; (1 — x;) = 0 is a complemen-
tarity condition and there is a vast literature on how to impose these conditions. In
addition to penalty functions there are other means of trying to enforce variables to
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take their discrete values. A particularly useful approach is to replace terms such as
cTx that often appear in the objective, where ¢; > 0 (x; = 1 implies a capital cost),
by the expression Y ;_; ¢;(1 — e~P%i) with g = 10 typically. This term favors set-
ting variables to O and 1 rather than 0.5 and 0.5. It may be thought that it would
always prefer all variables to be 0, but that is typically prevented by constraints. Also
rounding up ensures feasibility but rounding down does not.

3 Smoothing methods

In general, the presence of multiple local minima in an optimization problem is com-
mon and often makes the search for the global minimum very difficult. The fewer the
local minima, the more likely it is that an algorithm that finds a local minimizer will
find the global minimum. Smoothing methods refer to a class of methods that replace
the original problem by either a single or a sequence of problems whose objective is
“smoother”. In this context “smoother” may be interpreted as a function whose sec-
ond or higher order derivatives are smaller in magnitude, with a straight line being
the ultimate smooth function.

The concept of smoothing has already been exploited in nonconvex optimization
and discussed in the context of global optimization (see, e.g., [19]). There are a num-
ber of ways to smooth a function and which is best depends to a degree on what
characteristics of the original function we are trying to suppress. Smoothing methods
can be categorized into two types: local or global smoothing. Local smoothing algo-
rithms are particularly suited to problems in which noise arises during the evaluation
of a function. Unfortunately, noise may produce many local minimizers, or it may
produce a minimizer along the search direction in a linesearch method and result in
a tiny step. Local smoothing has been suggested to eliminate poor minimizers that
are part of the true problem. Under such circumstances the introduction of smoothing
alters the problem and may change the required global minimizer. To overcome this,
a sequence of problems is solved in which the degree of smoothing is reduced to zero.
While local smoothing may be useful in eliminating tiny local minimizers even when
there are large numbers of them, they are less useful at removing significant but poor
minimizers (see [25]).

We would like to transform the original problem with many local minima into
one that has fewer local minima or even just one local minimum and so obtaining a
global optimization problem that is easier to solve (see Fig. 1). Obviously we wish
to eliminate poor local minima. In the subsequent discussion, we consider modified
objective functions of the form

Fx, ) = fx) +pgx),
where f and g are real-valued C? functions on R” and > 0.
3.1 Global smoothing

The basic idea of global smoothing is to add a strictly convex function to the original
objective, i.e.,

Fx, )= f(x)+pudx),
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Fig. 1 Effect of smoothing the
original optimization problem

where @ is a strictly convex function. If @ is chosen to have a Hessian that is suffi-
ciently positive definite for all x, i.e., the eigenvalues of this Hessian are uniformly
bounded away from zero, it implies that for p large enough, F(x, ) is strictly con-
vex. Similar results or proofs of such an assertion can be found, for example, in
[1, Lemma 3.2.1].

Theorem 3.1 Suppose f :[0,1" — R is a C? function and ® : X — R is a C?
function such that the minimum eigenvalue of V>®(x) is greater than or equal to
€ for all x € X, where X C [0, 1]" and € > 0. Then there exists M > 0 such that if
w> M, then f + ud is a strictly convex function on X.

Consequently, for u sufficiently large, any local minimizer of F(x, u) is also the
unique global minimizer. Typically the minimizer of ® (x) is known or is easy to find
and hence minimizing F (x, u) for large u is also easy. This is important in smoothing
methods because the basic idea is to solve the problem for a decreasing sequence of ©
starting with a large value and ending with one that may be close to zero. The solution
x(py) of miny F(x, wg) is used as the starting point of miny F (X, tg+1)-

The idea behind global smoothing is similar to that of local smoothing, namely,
the hope is that by adding u®(x) to f(x), poor local minimizers will be eliminated.
There are, however, important differences between global and local smoothing. A key
one is that local smoothing does not guarantee that the function is unimodal for suffi-
ciently large values of the smoothing parameter. For example, if the algorithm in [24]
is applied to the function cos(x), a multiple of cos(x) is obtained. Thus, the number
of minimizers of the smoothed function has not been reduced. It is easy to appreciate
that the global smoothing approach is largely independent of the initial estimate of a
solution, since if the initial function is unimodal, the choice of initial point is irrele-
vant to the minimizer found. When p is decreased and the subsequent functions have
several minimizers, the old solution is used as the initial point. Consequently, which
minimizer is found is predetermined. Independence of the choice of initial point may
be viewed as both a strength and a weakness. What is happening is that any initial
point is being replaced by a point close to the minimizer of ®(x). An obvious con-
cern is that convergence will then be to the minimizer closest to the minimizer of
@ (x). The key to the success of this approach is to choose @ (x) to have a minimizer
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that is not close to any of the minimizers of f(x). This may not seem easy, but it is
possible for constrained problems. If it is known that the minimizers are on the edge
of the feasible region (e.g., with concave objective functions), then the “center of the
feasible region” may be viewed as being removed from all of them. An example is
the analytic center and there are certainly many other choices of generating an initial
feasible solution since the feasible region is linearly constrained.

4 Logarithmic smoothing

Consider the following relaxation of (1.1):

Minimize f(x)
subjectto Ax =b, “.1)
0<x<e.

A suitable smoothing function that we have used is given by the logarithmic smooth-
ing function:

P(x)=—) Inx; — Y In(l —x)). 4.2)
j=1 j=1

This function is clearly well-defined when 0 < x < e. If any value of x; is 0 or 1,
we have ®(x) = oo, which implies we can dispense with the bounds on x to get the
following transformed problem:

Minimize f(x) —Mg[lnxj +1In(1 — x;)] 3

subjectto Ax =b,

where 1 > 0 is the smoothing parameter. When a linesearch algorithm starts with an
initial point 0 < xo < e, then all iterates generated by the linesearch also satisfy this
property, provided care is taken in the linesearch to ensure that the maximum step
taken is within the bounds 0 < x <e.

4.1 Properties of logarithmic smoothing function

The function @ (x) is a logarithmic barrier function and is used with barrier methods
(see [11]) to eliminate inequality constraints from a problem. In fact, (4.3) is some-
times known as the barrier subproblem for (4.1). Our use of this barrier function is
not to eliminate the constraints but because a barrier function appears to be an ideal
smoothing function. Elimination of the inequality constraints is a useful bonus. It
also enables us to draw upon the extensive theoretical and practical results concern-
ing barrier methods.

A key property of the barrier term is that ®(x) is strictly convex. If u is large
enough, the function f + pu® will also be strictly convex, as follows from Theo-
rem 3.1. By Theorem 8 of [11], under the assumptions already imposed on (4.1),
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if x*(u) is a solution to (4.3), then there exists a solution x* to (4.1) such that
lim,\ 0 x*(u) = x*. The following theorem is then a consequence of the results
of [11]:

Theorem 4.1 Let x(u, y) be any local minimizer of

n
Minimize f(x) =@ Y [Inx; +In(1 —x)]+y Y _x;(1—x))
j=1 jed “4.4)
subjectto Ax =b,
O<x<e.

Then limy, o0 limy\ox; (1, y) =0o0r 1 for je J.

The general procedure of the barrier function method is to solve problem (4.3)
approximately for a sequence of decreasing values of w since [11] has shown that
the solution to (4.3), x*(u), is a continuously differentiable curve. Note that if
lim,~ o x* () = x* € {0, 1}"*, then we need not solve (4.3) for 1 very small because
the rounded solution for a modestly small value of i should be adequate.

Consider now the example given in Sect. 2 to illustrate the possible failure of the
use of a penalty function. The problem is now transformed to

Minimize x2 — plogx — plog(l —x) 4+ yx(1 —x)

. 4.5)
subjectto 0<x <1,
where p > 0 is the barrier parameter. If x*(u, ) denotes a stationary point then
x*(10,10) = 0.3588 and x*(1, 10) = 0.1072. Thus, rounding of x*(u, y) in these
cases will give the global minimizer. In fact, a trajectory of x*(u, 10) can be obtained
such that x*(u, 10) — 0 as u N\ 0.

We have in effect replaced the hard problem of a nonlinear integer optimization
problem by what at first appearance is an equally hard problem of finding a global
minimizer for a problem with continuous variables and a large number of local min-
ima. The basis for our optimism that this is not the case lies in how we can utilize
the parameters © and y and try to obtain a global minimizer, or at least a good local
minimizer of the composite objective function. Note that the term x; (1 — x;) attains
its maximum at x; = % and that the logarithmic barrier term attains its minimum at
the same point. Consequently, at this point, the gradient is given solely by f(x). In
other words, which vertex looks most attractive from the perspective of the objective
is the direction we tilt regardless of the value of p or y. Starting at a neutral point
and slowly imposing integrality is a key idea in the approach we advocate.

Also, note that provided p is sufficiently large compared to y, the problem will
have a unique and hence global solution x*(u, ), which is a continuous function of
u and y. The hope is that the global or at least a good minimizer of (1.1) is the one
connected by a continuous trajectory to x*(u, y) for u large and y small.

Even if a global minimizer is not identified, we hope to obtain a good local mini-
mizer and perhaps combine this approach with traditional methods.
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4.2 The parameters p and y

The parameter u is the standard barrier parameter. However, its initial value and how
it is adjusted is not how this is typically done when utilizing the normal barrier func-
tion approach. For example, when a good estimate of a minimizer is known then in
the normal algorithm one tries to choose a barrier parameter that is compatible with
this point. By that we mean one that is suitably small. This is not required in the ap-
proach advocated here. Indeed it would be a poor policy. Since we are trying to find
the global minimizer we do not want the iterates to converge to a local minimizer and
it is vital that the iterates move away should the initial estimate be close to a local
minimizer. The initial choice of u is made to ensure it is suitably large. By that we
mean it dominates the other terms in the objective. It is not difficult to do that since
this does not incur a significant cost if it is larger than is necessary. The overall objec-
tive is trivial to optimize when u is large. Moreover, subsequent objectives are easy
to optimize when p is reduced at a modest rate. Consequently, the additional effort
of overestimating p is small. Underestimating u increases the danger of converging
to a local minimizer. Unlike the regular barrier approach the parameter is reduced
at a modest rate and a reasonable estimate is obtained to the solution of the current
subproblem before the parameter is reduced. The basic idea is to stay close to the
“central trajectory”.

Even though there may not be a high cost to overestimating the initial value of u
it is sensible to make an attempt to estimate a reasonable value especially since this
impacts the choice of y. Generally, the initial value of  can be set as the maximum
eigenvalue of V2 f(x) and it is easy to show that such a choice of © would be suffi-
cient to make the function f + u® strictly convex. If a poor initial value is chosen
this can be deduced from the difference between the minimizer obtained and that of
the minimizer of just the barrier function. This latter minimizer is easy to determine
and may be used as the initial point for the first minimization. Another issue that
differs from the regular barrier function method is that there is no need to drive u to
near zero before terminating. Consequently, the ill-conditioning that is typical when
using barrier functions is avoided.

Estimating a suitable initial value for y is more challenging. What is important
is not just its value but its value relative to u and [VZF (x)||. The basic idea is that
we start with a strongly convex function and as pu is decreased and y is increased
the function becomes nonconvex. However, it is important that the nonconvexity of
the penalty term does not overwhelm the nonconvexity of F(x) in the early stages,
and so the initial value of y should be much smaller than the absolute value of the
minimum eigenvalue of V2 F (x). Typically, an initial value of y could be as small
as 1% of the absolute value of the minimum eigenvalue of V2F(x). It helps that it
is not necessary for y — oo. Provided a good initial value is chosen the issue of
adjusting it is not hard since it may be increased at a similar rate to that at which
is decreased. Usually, 0,,, the rate of decrease of , is set to be a value lying in the
range of [0.1, 0.9], while 6, the rate of increase of y, is set to be a value lying in the
range of [1.1, 10] with 6,6, ~ 1.

It is of interest to note what is the consequence of extreme strategies in the uncon-
strained case. If the initial values of u and y are small we will get a rounded solution
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of the local minimizer that a typical active-set algorithm would converge from the
initial point chosen. If the initial value of w is large but that of y is kept small except
in the later stages, we will obtain the rounded solution of an attempt to find the global
minimizer of F(x). While this is better than finding the rounded solution of an arbi-
trary local minimizer it is not the best we can do. However, it is clear that of these two
extremes the former is the worse. What is not known is how small the initial value of
y needs to be compared to the initial value of 1.

4.3 A simple example

To illustrate the approach, we show how it would work on the following two-variable
problem. Let

fa ) == = D? = (2 = D* = 0.1(x1 +x2 = 2).
Consider the following problem

Minimize f(x1, x2)

subjectto x; € {0,2} fori=1,2. (4.6)

Since f is separable, solving problem (4.6) is equivalent to solving two identical
problems with one variable and a global optimal solution of x} = x3 = 2 can easily
be deduced.

In our approach, we first relax problem (4.6) to

Minimize f(x1, x2)

subjectto 0<x; <2 fori=1,2. “7)

We can then transform (4.7) to the following unconstrained optimization problem by
introducing logarithmic barrier terms:

Minimize F(x1,x2) = f(x1,x2) — pl[log(xy) +log(2 — x1)
+log(xz) +log(2 — x2)]1, 4.8)

where 1 > 0 and we have also omitted the implicit bound constraints on x; and x;.
The contours of F for 4 different values of u are illustrated in Fig. 2.

Problem (4.8) can be solved for each u by applying Newton’s method to obtain a
solution to the first-order necessary conditions of optimality for (4.8), i.e.,

X1 2—x1

nw
X2

—2x;4+19— £ 4 K
VF(x1,x2) = =0.

Our approach involves solving (4.8) for a fixed i = p; > 0 to obtain an iterate xD =
(xil), xél)), and then using this iterate as the initial iterate to solve (4.8) for u = w41,
where ©; > pi+1 > 0. The initial iterate for the first y parameter, (o, is set as x© =
(1, 1), which is a point with equal Euclidean distances from the extreme points of the

region X = [0, 2] x [0, 2]. The resulting sequence of iterates forms a trajectory and
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Fig. 2 The contours for the
objective function of (4.8) as the
parameter [ varies

Fig. 3 Trajectories taken by
iterates for problem (4.8)

00

=0.75

=0.75

01 = 001

converges to one of the extreme points of X. Fig. 3 illustrates the iterates as u varies,
as well as the possible trajectories. With the choice of a large (¢ value of 100, we are
able to obtain a trajectory that converges to the optimal solution of (4.6).

Though the above example is only a two-variable problem, our approach can easily
be extended to problems with more variables. A point to note is that despite the local
minimizers being quite similar both in terms of their objective function and the size
of the corresponding sets S, the transformed function is unimodal until x is quite
small and rounding at the solution just prior to the function becoming non-unimodal
would give the global minimizer. Of course this is a simple example and it remains
to be seen whether this feature is present for more complex problems.
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5 Description of the algorithm

Since the continuous problems of interest may have many local minimizers and sad-
dle points, first-order methods are inadequate as they are only assured of converging
to points satisfying first-order optimality conditions. It is therefore imperative that
second-order methods be used in the algorithm. Any second-order method that is
assured of converging to a solution of the second-order optimality conditions must
explicitly or implicitly compute a direction of negative curvature for the reduced
Hessian matrix. A key feature of our approach is a very efficient second-order method
for solving the continuous problem.

We may solve (4.4) for a specific choice of i and y by starting at a feasible point
and generating a descent direction, if one exists, in the null space of A. Let Z be
a matrix with columns that form a basis for the null space of A. Then AZ =0 and
the rank of Z is n — m. If x¢ is any feasible point so that we have Axy = b, the
feasible region can be described as {x : x = xg + Zy, y € R"7"}. Also, if we let
¢ be the restriction of F to the feasible region, the problem becomes the following
unconstrained problem:

Minimize ¢ (y). 5.1
yeRll —m

Since the gradient of ¢ is ZTV F(x), it is straightforward to obtain a stationary point
by solving the equation ZTV F(x) = 0. This gradient is referred to as the reduced
gradient. Likewise, the reduced Hessian, i.e., the Hessian of ¢, is ZTV2F (x)Z.

For small or moderately-sized problems, a variety of methods may be used (see
e.g., [12, 15]). Here, we investigate the case where the number of variables is large.
One approach to solving the problem is to use a linesearch method, such as the
truncated-Newton method (see [8]) we are adopting, in which the descent direction
and a direction of negative curvature are computed. Instead of using the index set J
for the definition of F in our discussion, we let y be a vector of penalty parameters
with zero values for those x; such thati ¢ J, and I' = Diag(y).

The first-order optimality conditions for (4.4) (ignoring the implicit bounds on x)
may be written as

Vf—uXge+T(e—2x)+ATA=0,

Ax = b, (5.2)

where X, = Diag(x,), (xg); = % — 1_1x_,i =1,...,n, and A corresponds to the
Lagrange multiplier vector of the constraint Ax = b. Applying Newton’s method

directly, we obtain the system

H AT|[ax]| _ [-Vf+uXge—T (e—2x)— ATx 53
A O ||Aax|™ b— Ax ’ (53)

Assuming that x( satisfies Axy = b, the second equation AAx = 0 implies that
Ax = Zy for some y. Substituting this into the first equation and premultiplying both

where H = V2 f 4 p Diag(xy) — 2T and (xg)i = 5 + ——.,i=1,2,...,n.
g 2
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sides by ZT. we obtain
ZYHZy =ZV(~V [+ uXge — T (e — 2x)). (5.4)

To obtain a descent direction in this method, we first attempt to solve (5.4), or
from the definition of F(x), the equivalent reduced Hessian system

Z"V2F(x)Zy=—Z"VF(x)), (5.5)

by the conjugate gradient method, where x; is the /th iterate. Generally, Z may be a
large matrix, especially if the number of linear constraints is small. Thus, even though
V2F(x;) is likely to be a sparse matrix, ZTV2F (x;)Z may be a large dense matrix.
The virtue of the conjugate gradient method is that the explicit reduced Hessian need
not be formed. There may be specific problems where the structure of V2F and Z
does allow the matrix to be formed. Under such circumstances alternative methods
such as those based on Cholesky factorization may also be applicable. Since we are
interested in developing a method for general application we have pursued the conju-
gate gradient approach.

In the process of solving (5.5) with the conjugate gradient algorithm (see, [17]),
we may determine that ZTV2F(x;)Z is indefinite for some /. In such a case, we
obtain a negative curvature direction ¢ such that

q"Z"V?F(x))Zq < 0.

This negative curvature direction is required to ensure that the iterates do not converge
to a saddle point. Also, the objective is decreased along this direction. In practice,
the best choice for ¢ is an eigenvector corresponding to the smallest eigenvalue of
ZTV?F (x;)Z. Computing g is usually expensive but fortunately unnecessary. A good
direction of negative curvature will suffice and efficient ways of computing direc-
tions within a modified-Newton algorithm are described in [2]. The descent direction
in such modified-Newton algorithms may also be obtained using factorization meth-
ods (see, e.g., [13]). In any case, it is essential to compute both a descent direction
and a direction of negative curvature (when one exists). One possibility that may
arise is that the conjugate gradient algorithm terminates with a direction g such that
q"ZTV2F (x;)Zq = 0. In that case, we may have to use other iterative methods such
as the Lanczos method to obtain a direction of negative curvature as described in [2].
The vector g is a good initial estimate to use in such methods.

If we let p be a suitable linear combination of the negative curvature direction g
with a descent direction, the convergence of the iterates is still ensured with the search
direction Zp. The next iterate x;4; is thus defined by x; 4+ oy Zp, where «; is being
determined using a linesearch. The iterations will be performed until ZTV F(x;) is
sufficiently close to 0 and ZTV2F (x;)Z is positive semidefinite. Also, as the current
iterate x; may still be some distance away from the actual optimal solution we are
seeking, and since we do not necessarily use an exact solution of (5.5) to get the
search direction, we only need to solve (5.5) approximately. An alternative is to use
the two directions to form a differential equation (see [7]), which leads to a search
along an arc.

A summary of the new algorithm is shown below:
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Global Smoothing Algorithm: GSA

Set €r = tolerance for function evaluation,
€, = tolerance for barrier value,
M = maximum penalty value,
N = iteration limit for applying Newton’s method,
0,, = ratio for barrier parameter decrement,
0, = ratio for penalty parameter increment,
Ko = initial barrier parameter,
yo = initial penalty parameter,
r = any feasible starting point.
Sety =y, i = 1o,
while y < M or pt > €.
Set xo =r
for/=0,1,..., N,
if |ZTVF @) < erp,
Setxy =x;,/=N.
Check if xp is a direction of negative curvature,
else
Apply conjugate gradient algorithm to
[ZTV2F(x))Z)y = —ZTVF (x)).
Obtain p; as a combination of directions of descent and
negative curvature.
Perform a linesearch to determine ¢; and set
X1 =x1+oZp,
end if
end for
Setr=xy, u=0,u,y=0,y.
end while

6 Computational results

To show the behavior of GSA we give some results on problems in which problem
size can be varied. The purpose of these results is more for illustration than as conclu-
sive evidence of the efficacy of the new algorithm. Still the success achieved suggests
that the algorithm has merit. More results are given in [26] and what these results here
show is that there are problems for which GSA performs well. Moreover, the rate of
increase in computational work as problem size increases is modest. All results for
GSA were obtained from a MATLAB 6.5 implementation on an Intel Pentium IV
2.4 GHz PC with 512 MB RAM running on Windows XP Operating System.

As a preliminary illustration of the performance of GSA, we consider the follow-
ing set of test problems from [28]:

n/2

n
1
Minimize —(n — I)Zx,' - = in +2 Z XiXj 6.1)
i=1 - I<i<j<n '

subjectto x; € {0,1} fori=1,2,...,n.
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In the case when n is even, Pardalos [28] shows that the unique global minimum
of (6.1) is given by the feasible point

x*=(,...,1,0,...,0),
—— e N e
n/2 n/2
. L 2 . . .
with objective value —% jz, and there is an exponential number of discrete local

minima for (6.1). Here, a point x € {0, 1}" is a discrete local minimum if and only if
f(x) < f(y) for all points y € {0, 1}" adjacent to x, when all points are considered
to be vertices of the unit hypercube {0, 1}".

As V2 fx) = 2(eeT — I) for this set of test problems, it is possible to sim-
plify all the matrix-vector products involving V2 f(x) in GSA by taking note that
[V2 fx)]v= 2[(eTv)e — v] for any v € R”, leading to more efficient computations.
The initial « and y parameters are set as 100 and 0.1 respectively, with a p-reduction
ratio of 0.1 and y-increment ratio of 10. The analytic center of [0, 1]7, i.e., %e, is used
as the initial iterate and the tolerance is set as €, = 1073 for the termination criteria.
In all the instances tested with the number of variables ranging from 1000 to 10000,
GSA was able to obtain convergence to the global optimal solution. In particular, it
is possible to show that using the initial iterate of %e, the next iterate obtained by

GSA would be of the form (uy,...,uy,us,...,ur) where u; > % and up < %, ie.,
—_—— —— —
n/2 n/2
an immediate rounding of this iterate would have given the global optimal solution.

A plot of the computation time required versus the number of variables is shown
in Fig. 4. These results indicate that the amount of computational work in GSA does
not increase drastically with an increase in problem size for this set of test problems.
Moreover, it illustrates the ability of GSA to find the optimal solution to large prob-
lems with as much as 10000 variables within a reasonable amount of computation
time, as well as the potential to exploit possible problem structure to improve com-
putational efficiency in solving problems.

For purposes of evaluating the performance of GSA especially when we do not
know the exact optimal solutions to the test problems, we have used some of the
nonlinear mixed-integer programming solvers of GAMS,! namely DICOPT, SBB and
BARON as described earlier. MINOS was used as the common underlying nonlinear
programming solver required by all the three solvers, while CPLEX was used as the
underlying linear programming solver required by BARON. While DICOPT and SBB
solvers are able to handle nonlinear discrete optimization problems, these solvers
do not necessarily attain the global optimal solution for nonconvex problems. As
BARON is a global optimization solver that could potentially return the exact optimal
solution or relevant bounds on the optimal objective value, we have made extensive
comparisons between GSA and BARON in certain computational instances. We have
used GAMS version 22.2 that includes BARON version 7.5.

When using the GAMS solvers, other than the maximum computation time, the
maximum number of iterations and the maximum amount of workspace memory
allocated to the solvers, the other options were set to default values. We generally

1 http://www.gams.com.

@ Springer


http://www.gams.com

An algorithm for nonlinear optimization problems 273

Fig. 4 Graph of computation 30
time required (CPU seconds) for
solving instances of 25

problem (6.1)
20

Computation
time 15 —
(CPU secs)

10 H

0 T T T T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of variables

set a computation time limit of 10000 CPU seconds and the maximum number of
iterations to 500 000 for the runs. To ensure that the solvers have a reasonable amount
of memory for setting up problem instances to solve, we have configured a maximum
workspace memory of 1 GB. It turns out that less than 100 MB were actually needed
by all the GAMS solvers to set up each of the problem instances.

All the runs involving the GAMS solvers were mostly performed using the same
PC used for GSA, except where noted. It should be pointed out that GSA requires
very little additional memory other than that needed to define the problem, which is
a tiny fraction of that used by the other methods considered here.

6.1 Unconstrained binary quadratic problems

One of the simpler classes of problems in the form of (1.1) with a nonlinear objective
function is that of the unconstrained binary quadratic problem, i.e., the objective func-
tion is quadratic in the binary variables x, and both A and b are the zero matrix and the
zero vector respectively. There are many relaxation and approximation approaches
available for this class of problems, such as [4] and [21]. Despite its simplicity such
problems are still hard to solve as the numerical testing reveals. What these problems
give is another opportunity to examine performance as size increases even though
such a numerical comparison may not be sufficient to measure the efficacy of GSA
for other types of nonlinear optimization problems with binary variables. Moreover,
there exists publicly available test problems in this class of optimization problems.
The unconstrained binary quadratic problem (BQP) may be stated as follows:

Minimize xTPx+cTx

subjectto x € {0, 1}", (6.2)

where P € R and ¢ € R". By noting that xTMx = xTMTx and ¢Tx = xTCx for
any feasible x and any M € R"*", where C = Diag(c), it suffices to consider the
following “simpler” problem

Minimize xTQx

subjectto  x € {0, 1}", 3

where Q is a symmetric matrix.
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Since any unconstrained quadratic programming problem with purely integer vari-
ables from a bounded set can be transformed into (6.2), many classes of problems
would then fall under this category of BQP problems, such as the least-squares prob-
lem with bounded integer variables:

Minimize ||s — Ax||,
xeD

where s € R™, A ¢ R™*" and D is a bounded subset of Z".

A test set for BQP problems in the form of (6.3) is given in the OR-Library, which
is maintained by J.E. Beasley.” The entries of matrix Q are integers uniformly drawn
from [—100, 100], with density 10%. As the test problems were formulated as max-
imization problems, for purposes of comparison of objective values, we now maxi-
mize the objective function.

The GSA was run on all 60 problems of Beasley’s test set ranging from 50 to
2500 variables. The initial x and y parameters are set as 100 and 1 respectively, with
a p-reduction ratio of 0.5 and y-increment ratio of 2. The analytic center of [0, 11",
i.e., %e, is used as the initial iterate and the tolerance is set as €, = 0.1 for the ter-
mination criteria. For the GAMS solvers, we initially notice that DICOPT and SBB
always return the zero vector as the solution to the test problems, which could be due
to the solvers accepting a local solution in the underlying nonlinear programming
subproblems being solved. To allow these two solvers to return non-zero solutions
for comparison, we have added the cut eTx > 1 or eTx > 2 when applying DICOPT
and SBB on the test problems. The objective values obtained by the GSA and the
respective GAMS solvers, as well as the respective computation time and number
of iterations required are given in Tables 1-3. There are preprocessing procedures in
BARON that attempt to obtain a good solution before letting the solver find the opti-
mal or a better solution and the results obtained by these preprocessing procedures are
shown in the tables. Finally, the objective values of the best known solutions based
on RUTCOR'’s website® are given in the last column of the tables.

BARON found the optimal solution for all 20 problems in the test sets involving 50
to 100 binary variables, with the objective values listed in Tables 1(a), (b). Using these
optimal objective values as a basis of comparison, we conclude that GSA successfully
found 11 of these optima, with another 6 solutions obtained having less than 0.5%
deviation from the optimal objective value. The percentage deviation in the remaining
3 solutions obtained by the GSA were also close, with the worst one having 1.66%
deviation from the optimal objective value. On the other hand, DICOPT obtained
results ranging from 2.25% to 26.26% deviation from the optimal objective value
for the 50-variable test problems and from 0.56% to 13.03% for the 100-variable
test problems, while SBB obtained results ranging from 1.9% to 26.26% deviation
from the optimal objective value for the 50-variable test problems and from 0.56% to
13.03% for the 100-variable test problems. For all these instances, GSA was able to
obtain better objective values than DICOPT or SBB.

2http://mscmga.ms.ic.ac.uk/info.html.

3 http://rutcor.rutgers.edu/~pbo/families/beasley.htm.
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For the test sets with more than 100 variables, BARON was not able to complete
the runs by the computation time limit of 10000 seconds and so the runs were trun-
cated with BARON returning the best found solution. Thus, we do not have optimal
objective values as a reference for these larger test problems, except for the upper
bounds obtained by BARON or the objective values obtained from the RUTCOR
website. We were unable to obtain any solution from BARON for the 2500-variable
test problems within the computation time limit and this is also the case despite try-
ing out on another platform, which is an Intel Pentium IV 2.4 GHz server with 2 GB
RAM running on Linux Operating System.

From Tables 2 and 3, we can see that GSA again produced better solutions than
DICOPT and SBB in all the instances. For all the test problems with 250 variables,
GSA obtained objective values that have less than 2% deviation from the best-found
objective value, with the worst one being 1.55% deviation. For the test problems with
500 variables, GSA obtained objective values that are better than BARON in 7 out of
10 instances, with all the instances having less than 0.64% deviation from the best-
found objective value. For the test problems with 1000 variables, GSA obtained ob-
jective values that are better than BARON in 9 out of 10 instances, with the remaining
instance having 0.62% deviation from the best-found objective value, which is also
the worst deviation out of the 10 instances. For the test problems with 2500 vari-
ables, GSA obtained objective values ranging from 0.09% to 0.43% deviation from
the best-found objective value. A graph showing the average percentage difference
in the objective value of the solution obtained by the GSA and the GAMS solvers to
that of the best known solution for Beasley’s test problems is given in Fig. 5.

Figure 6 gives a plot of the relative average computation time required to solve
the Beasley’s test problems by DICOPT, SBB, BARON and GSA, with respect to
problem size. Since we were unable to determine the computation time needed by
BARON to complete its run for test problems of certain sizes, there were only limited
data points for BARON in the figure. It can be seen that while there is a substantial
increase in computation time required by BARON to solve larger test problems, the
increase in computation time for the other solvers and GSA has been less significant.
However, GSA has been able to maintain the quality of solutions obtained when
compared to all the three solvers for problems with increasing size as illustrated in
Fig. 5, indicating its efficiency and potential in obtaining good solutions to large
problems without incurring unreasonable computation times.
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As the number of local minima for the problems of Beasley’s test set may be
small, we also applied GSA to problems generated from the standardized test problem
generator (Subroutine QO1MKD) written by P.M. Pardalos in [28], which may have
a larger expected number of local minima. In generating the test matrices, we set
the density of the matrices to be 0.1, with all entries of the matrices being integers
bounded between —100 and 100. The seed to initialize the random number generator
was set to 1. Note that unlike Beasley’s test set, the test problems were formulated
in [28] as minimization problems.

The GSA was run on these test problems ranging from 200 to 1000 binary vari-
ables. We used the same parameters as in Beasley’s test problems, i.e., initial u and
y being 100 and 1 respectively with a p-reduction ratio of 0.5 and y -increment ratio
of 2. The analytic center of [0, 1]", i.e., %e, is also used as the initial iterate and a tol-
erance of €, = 0.1 is used for the termination criteria. The objective values obtained
by the GSA and the three GAMS solvers, as well as the respective computation time
and number of iterations required are given in Table 4. The DICOPT and SBB results
were obtained after adding the cut eTx > 1 as was done in the Beasley’s test sets.
However, we found that while DICOPT and SBB were able to return solutions to all
the test problems, BARON was unable to return any solution for test problems with
more than 700 variables. As such, we have performed all the BARON runs on the
Linux platform mentioned earlier and BARON was then able to return the solutions
reported in Table 4 for all the test problems.

From Table 4, we can see that GSA still produced better solutions than DICOPT
and SBB in all the 17 instances. GSA also obtained objective values that are better
than BARON in 13 instances. For the remaining 4 instances, other than one instance
in which GSA obtained the same objective value as BARON, the percentage devia-
tions from the best found solution with respect to objective values are all less than
0.25%. Thus the solutions obtained by GSA for the remaining instances are also com-
parable to that of BARON.

6.2 Other types of nonlinear optimization problems

The objective functions considered so far are relatively simple being purely quadratic
functions and could be solved by specific methods for such problems, such as [27].
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It may be seen that when BARON works well the preprocessor in the BARON algo-
rithm often obtains good solutions. That is unlikely to be the case for real problems
especially when continuous variables are present and appear nonlinearly. We now ap-
ply GSA to test problems with nonlinear nonquadratic objective functions. The first
one considered is a quartic function generated from the product of two quadratic func-
tions. For ease in deriving the optimal solution, we have used the following matrix Q
mentioned in Example 4 of [28] for our construction of the test problems:

15 —4 1 0 2
-4 —17 2 1 1
o=|1 2 =25 =8 1
0 1 -8 30 =5
2 1 1 =5 =20

In that example, we know that the solution to problem (6.3) with this Q matrix is
given by x* = (0,1, 1,0, 1)T with objective value —54.
We define the following (57 x 5n)-block diagonal matrix and (5n x 1)-vector:

0 0 ... 0

00 ... 0
On=|. . . .|

00 .. 0

Xy = (()C*)T(x*)T ... (x*)T)T.

Then it is easy to see that an optimal solution to problem (6.3) with Q = Q,, is given
by x = x,; with objective value —54n.
The test problems can now be defined in the general form as follows:

Minimize (xTQ,x +54n+ 1T Q,y +54n+1) 6.4)
subjectto  x,y € {0, 1}°". '

The rationale for constructing these test problems in the above form, especially in
the addition of a constant to each quadratic term in the product, is evident from the
following observation:

Proposition 6.1 An optimal solution to problem (6.4) is given by x =y = x5 with
objective value 1.

Proof From above, for any x € {0, 1}5”, xT O,x > —54n with equality achieved
when x = x;. Then we have xTQux+54n+1>1and yTQ,y+54n+ 1> 1 for any
x,y € {0, 1}°" with equality achieved when x = x,; and y = x respectively. Thus,
(T Qnx +54n + 1)(yTQuy + 54n + 1) > 1 for any x, y € {0, 1}°" with equality
achieved when x =y = x\. O

Both GSA and the GAMS solvers were applied to this set of test problems with n
ranging from 1 to 200, i.e., the number of binary variables ranges from 10 to 2000.
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More experimentation was being carried out for test problems with smaller problem
sizes as we detected a deterioration in the performance of the GAMS solvers for small
test problems. The initial ;« and y parameters of the GSA are set as 100 and 1 respec-
tively, with a p-reduction ratio of 0.5 and y-increment ratio of 2. The analytic center
of [0, 17", i.e., %e, is used as the initial iterate and the tolerance is set as €, = 0.1 for
the termination criteria. As we found that DICOPT and SBB are again returning the
zero vector as the solution, we have also imposed the cut elx +eT y > 1 for the DI-
COPT and SBB runs. The objective values obtained by the GSA and the three GAMS
solvers, as well as the respective computation time and number of iterations required
are given in Table 5.

GSA found the optimal solution for all the 14 instances and the computation time
required to reach the optimal solution is less than 30 seconds for each instance, with
almost all the instances requiring less than 10 seconds. BARON was able to find
the optimal solution to the first 3 instances, with a significant increase in computa-
tion time even for a small instance of 30 variables. The objective values obtained by
BARON for the other 11 instances with size more than 30 variables have not been
satisfactory. The lower bounds found by BARON are also poor for these larger in-
stances and are hardly helpful. DICOPT and SBB were unable to find any optimal
solution to all the instances.

In the test problems we have considered so far, the objective function involves
polynomial terms only. To show that GSA is able to handle other types of differ-
entiable objective functions, we have constructed another set of test problems that
includes a sum of exponential functions in the objective function. The objective func-
tion constructed here follows closely to that of problem (6.1). Also, the previous test
problems do not show GSA’s performance on test problems with constraints. Thus,
we have added a linear constraint in this set of test problems, which also enables an
easier argument for deriving the optimal solution.

The test problems can be defined as follows:

n n/2
o 1 .
Minimize —(n—1) E =~ E xi+2 E et
i=1 i=1 1<i<j<n
n (6.5)
. n
subject to E xi < ok

i=1
x; €{0,1} fori=1,2,...,n,

where n is even. By extending the argument in [28], we have the following result for

this set of test problems:

Proposition 6.2 x* = (1,...,1,0,...,0) is an optimal solution to problem (6.5)
——— — —

p* n—p*
with objective value

n—i—%—l—e—Z]

1
(e—D(p)+(2=n—=—e|p*+n*—n, wherep*=
n 2(e—1)

and [x] refers to the integer obtained from rounding x.
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Proof For any feasible x, i.e., any x with exactly p ones and (n — p) zeros, where
0<p=5,

f@)==@m—1p- S +pp = DeVV 4 @ —1) — p(p—1)e°

:(e—l)p2+(2—n—e)p—£+n2—n
n

for some p where 0 < p < p. By having the p ones occurring in the first n/2 variables
of x, f(x) assumes the minimum value of (e — l)p2 +2—n-— % —e)p+ n?—n
for a fixed value of p. Since this convex function in p is minimized when
Q-n—1-¢ . Q2-n—1-¢
p= 2e—1 - 2e—1)

will be an integer that minimizes this quadratic function over integral values of p
lying in [0, 5]. 0

Both the GSA and the GAMS solvers were applied to this set of test problems
with n ranging from 10 to 1000. We have 3 instances with n < 20 (n = 10, 16, 20)
to allow a better comparison of the performance and the computation time needed by
the GSA and the GAMS solvers for solving the smaller test problems.

When applying GSA to (6.5), we can first convert the linear inequality constraint
to an equality constraint by adding a non-negative slack variable s. An appropriate
global smoothing function is then given by

n n
®(x,5)=— Inx;— Y In(l —x;) —Ins, (6.6)
j=1 j=1

so that we are handling the following relaxed equality-constrained problem:

Minimize f(x)+ u®(x,s)

n
. n
subject to X;xi +s=2. 6.7)
1=
0<x<e, s >0.

The initial p parameter is set to 100 with a reduction ratio of 0.9. For n < 20,
a small initial y parameter of 0.01 is sufficient for convergence to integral solu-
tions. For larger dimensional problems, the initial y parameter is progressively in-
creased to reflect the increase in the objective as n increases. In particular, for
n =50, 100, 200, 500 and 1000, the initial y parameter is set to 5, 20, 80, 250 and
500 respectively. The increment ratio for the y parameter is set to the reciprocal of
the p-reduction ratio of 0.9, i.e., 19—0 and the tolerance is set as €, = 103 for the
termination criteria. We chose the initial iterate as ﬁe based on uniform distrib-
ution of 5 over the x and s variables. The objective values obtained by the GSA and
the three GAMS solvers, as well as the respective computation time and number of
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Fig. 7 Graph of relative 5000
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iterations required are given in Table 6. The global objective values are also included
as a basis for performance comparisons.

From Table 6, we can see that GSA outperforms or performs as well as all the
GAMS solvers in terms of the objective values obtained for all the 8 instances. In
particular, GSA found the optimal solution to the test problems for 5 of the instances.
For all the remaining instances, GSA has obtained solutions with less than 0.025%
deviation from the optimal objective values. DICOPT was unable to obtain any opti-
mal solution for all the instances and its solutions have percentage deviation from the
optimal objective values ranging from 0.79% to 8.77%. SBB was able to obtain the
optimal solution to 4 instances and for 3 of the remaining instances, SBB’s solutions
have percentage deviation from the optimal objective values ranging from 0.032% to
0.056%. However, SBB was unable to obtain any solution for the largest instance with
1000 variables. BARON was also able to obtain the optimal solution to 3 instances
and for 3 of the remaining instances, BARON’s solutions have percentage deviation
from the optimal objective values ranging from 1.18% to 8.73%. However, BARON
was unable to obtain any solution for the instances with 500 and 1000 variables. De-
spite running SBB and BARON on the Linux platform mentioned in Sect. 6.1, both
solvers were still not able to produce any feasible solution for the respective large
instances of the test set.

Figure 7 gives a plot of the relative average computation times required by GSA
and the GAMS solvers for solving test problem (6.5). Some data points for BARON
and SBB were not included for reasons discussed above. It can be seen that both GSA
and SBB do not show a significant increase in the computation time needed with
problem size, unlike BARON or DICOPT. In addition, GSA also appears to have a
smaller rate of increase in computation time with problem size when compared with
SBB.

7 Conclusions

We have described a global smoothing algorithm that enables optimization methods
for continuous problems to be applied to certain types of discrete optimization prob-
lems. We were surprised by the quality of the solutions from what is a relatively un-
sophisticated implementation and without any need to fiddle with parameters. In the
numerical experiments conducted, the performance of GSA relative to alternatives
both in terms of the quality of solution and time to solution improved dramatically as
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the size of the problem increases, reflecting the encouraging feature of the low rate
of growth in the work required by the new algorithm to solve problems as the size of
the problem increases. Moreover, the memory requirements of the algorithm are also
modest and typically add little to that required to prescribe the problem. Alternative
methods are often memory intensive.

Given the difference in character to that of other algorithms, GSA could be used in
conjunction with alternative methods by obtaining good solutions for the alternative
methods, such as by providing a good upper bound in a branch-and-bound method.
Certain improvement heuristics could also be applied to the solutions obtained by
GSA in a hybrid algorithm framework. These are possible areas of future research, as
well as the possibility of extending GSA to solve more general classes of nonlinear
discrete optimization problems.
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