
MATHEMATICS OF COMPUTATION
VOLUME 45. NUMBER 171
IULY 1985. PAGES 173-180

An Algorithm for Nonsmooth Convex

Minimization With Errors

By Krzysztof C. Kiwiel

Abstract. A readily implementable algorithm is given for minimizing any convex, not

necessarily differentiable, function/of several variables. At each iteration the method requires

only one approximate evaluation of /and its E-subgradient, and finds a search direction by

solving a small quadratic programming problem. The algorithm generates a minimizing

sequence of points, which converges to a solution whenever/has any minimizers.

1. Introduction. This paper presents an algorithm for minimizing a convex, but not

necessarily differentiable, function/: RN -* R. We suppose that, given x e RN and

£ > 0, we have a finite process which will find a number fr(x), satisfying

(1) /(*)-«</.(*)</(*) + «.,

and one e-subgradient gf(x) of /at x; i.e., an arbitrary element of the osubdifferen-

tial

3,/(*) = [g e RN-f(y) > f(x) +(g,y-x)-eVy^R»}

of/at x.

The above assumption is realistic in many applications (see, e.g., Shor [10]). For

instance, if/is a max-type function of the form

(2) f(x) = sup{<j>u(x):u^ U}    for all x e RN,

where each <¡>u: RN -> R is convex and U is an infinite set, then it may be impossible

to calculate/(x). However, for any positive e one can usually find in finite time an

e-solution to the maximization problem in (2); i.e., an element ue e U satisfying

^>u(x) > f(x) - e. Then one may set/f(x) = 4>u(x) and take ge(x) as any subgradi-

ent of 4>u at x. On the other hand, in some applications, calculating uf for a

prescribed e > 0 may require much less work than computing u0. This is, for

instance, the case when the maximization in (2) involves solving a linear or discrete

programming problem by the methods of Gabasov and Kirilova [3].

The algorithm presented in this paper is a descent method. At each iteration a trial

point is found by solving a small quadratic programming subproblem derived from a

piecewise linear (polyhedral) approximation to/around the current iterate. The trial

point is accepted as the next iterate only if this decreases the objective value;
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174 KRZYSZTOF C. KIWIEL

otherwise, the new subgradient information collected at the trial point enriches the

next polyhedral approximation so as to deal with the nondifferentiability of /. The

accuracy tolerance e is automatically reduced as the method proceeds. The reduction

is, on the one hand, slow enough to save work by allowing inexact evaluations of /

far from a solution, and, on the other hand, sufficiently fast to ensure that the

method generates a minimizing sequence of points. Moreover, this sequence con-

verges to a solution whenever/attains its infimum.

Our algorithm is an extension of the aggregate subgradient method due to Kiwiel

[5], who modified a descent method of Lemarechal [7] ([5] and [7] require exact

evaluations). Vasilyev [2, Section 3.7] proposed a comparable method by extending

the Wolfe conjugate subgradient method [11], which is less efficient than that of

Lemarechal [7]. We hope that our algorithm is superior to that of [2], since it is

simpler, does not use resets which slow down convergence, and has much stronger

convergence properties.

Some other methods, e.g., [1] and [9], reduce e in a preassigned way, depending

only on the number of iterations performed. This, of course, may be inefficient. The

e-subgradient method of Polyak [9] is nonmonotone in objective values, while the

descent method of Auslender [1] requires continuous differentiability off.

It will be seen that there is great freedom of choice in how the algorithm can be

run. Since any description of specific computational techniques would take up too

much space, numerical results [4] will appear elsewhere.

We may add that it would be difficult to extend the algorithm to the nonconvex

case, as was done by Kiwiel [6] for exact evaluations. Convexity is essential for

avoiding line searches, which would be impossible in the nonconvex case because the

noisy function/, is not semismooth (see Mifflin [8]).

The method is derived and stated in Section 2. In Section 3 we establish its global

convergence. Computational modifications are discussed in Section 4. Finally, we

have a conclusion section.

We shall use the following notation. RN denotes TV-dimensional Euclidean space

with the usual inner product ( • , • ) and associated norm | ■ |. All vectors are row

vectors. We will denote by "conv" the convex hull.

2. The Method. The algorithm to be described will generate a sequence of points

x1, x2,... of RN and search directions d1, d2,... in RN and stepsizes t\, t\,... in

{0,1}, related by xk + 1 = xk + tkdk for k = 1, 2,..., where x1 is a given starting

point. The sequence {x*} is intended to converge to the required solution. The

method will also calculate trial points yk + 1 = xk + dk and accuracy tolerances

ek > 0, for k = 1, 2,..., and e*-subgradients gk = gct(yk), for all k > 1, where

V1 = x1 and e1 > 0 is given.

With each trial pointy7 we associate the following linearization off:

(3) fJ(x)=fF,(yJ)+(g>,x-yj)-2e>    for all x g R»,

which satisfies

(4) f(x)>fj(x)    for all x,
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since g> e de,f(y') and f(y')> fti(yJ) - e'. Thus, at the kth iteration of the

method, the polyhedral function

(5) fk(x) = max{fJ(x):j = l,...,k}

would incorporate all the past subgradient information about /. Hence, one could

try to find a descent direction for/at xk by solving the subproblem

(6) minimize/A(xA + d) over all d e RN.

However, such a cutting plane approach (see [2]) has the following drawbacks. First,

subproblem (6) may have no finite solutions. Second, and more importantly, using

subproblem (6) would lead to difficulties with storage and computation after a large

number of iterations, since/* has k linear pieces at the kth iteration. These two

drawbacks can be eliminated by using the ideas of Lemarechal [7] and Kiwiel [5],

respectively, as follows.

At the kth iteration we shall have a nonempty set Jk' c {!,...,k) and the

linearizations/,/ g Jk, given by the (TV + 1 )-vectors (g;, fk) in the form

fj(x)=fk+{g\x-xk)    for all x,

where/* = fj(xk) for/ g /*. To save storage and work per iterations, Jk will be a

small subset of {!,.. .,k), e.g., Jk' = (k). Of course, replacing {1,... ,k) by Jk in

(5) could yield a poor model of/. Therefore, the dropped past subgradient informa-

tion will be compensated for by using the aggregate linearization

fk~1(x)=fpk+{pk-\x-xk)    for all x,

generated at the (k - l)st iteration by the aggregate subgradient (pk~x, fk), satisfy-

ing

(7) (P*~l*f,k) G conv{(g',//): 1 <; < k),

so that we have

fk~1(x) ^conv{ fj(x): 1 </</<}    for all jc,

f(x)>fk~1(x)    for all x.

Observe that the aggregate subgradient (pk~l, fk) generates a linearization of/in a

manner similar to any ordinary "augmented" subgradient (gJ, fk). It will be

updated recursively so as to accumulate information about nondifferentiabilities of

/. The available linearizations will define the A: th lower polyhedral approximation

off:

fk(x) = maz{fk-1(x),fj(x):jeJk}    for all x.

Since we want dk to be a descent direction for/at xk, we shall find it to

(8) minimize fk(xk + d) + {\d\2 over all d g Rn,

where the penalty term \d\2/2 will tend to keep yk + l = xk + dk in the region where

/*(•) is close tof(-), and will ensure that dk exists. Moreover,

vk =fk(xk + dk) -[/„*(**)+ e*]

yields an estimate of f(xk + dk) - f(xk), which will be used for testing whether

yk + l is better thanx*.
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Having motivated the search-direction-finding subproblems, we may now state the

method, commenting on its rules as follows.

Algorithm 2.1.

Step 0 (Initialization). Select a starting point x1 g Rn, an initial accuracy toler-

ance g1 > 0, and a stopping parameter es > 0. Choose two line search parameters mL

and mR satisfying 0 < m, < mR < 1. Set y1 = x\ Jl = {!}, p° = g1 = g^^y1),

fp = fi = fAy1)- Set the counters k = 1,1 = 0, and A:(0) = 1.

Step 1 (Direction finding). Find the solution (dk, vk) G RN X R to the following

kth quadratic programming subproblem:

minimize \\d\2 + v over all (d, v) g Rn x R satisfying

-a* + (gJ, d) < d for; g /*, -ak + ( p^1, d) < v,

where

(10) a* = /,(**) + e -//    and   a*-/.(**) +e-/„*

for £ = e*. Calculate Lagrange multipliers A*,/ g /*, and AAp of (9) and set

di) (/>//)= E*M*y>//) + x*(V-1,/;),

(12) áA=/f(xA)+ £-//.

Step 2 (Accuracy updating). If £ > -(wR - mL)vk/5, set ea = c/2 and go to Step

1 ; otherwise, proceed.

Step 3 (Stopping criterion). If vk > -es, terminate; otherwise, proceed.

Step 4 (Trialpoint testing). Set_yA + 1 = xA + dk. If

(13) fAyk+l) < f.«(xk) + mLvk - 2ek,

then set tk = 1 (serious step), set k(l + 1) = k + 1, and increase / by 1; otherwise

(i.e., if (13) is violated), set tk = 0. Set xA + 1 = xA + tkdk.

Step 5 (Linearization updating). Set eA + 1 = eA. Choose a (possibly empty) set

jk c JAandset/A + 1 = Jk U {k + 1). Compute gA + 1 = g¿^(yk + 1) and

(14) fkk:í=fMyk+1)+(gk+\xk+1-yk+-í)-2ek+\

fjk + l = // + (g7, xk + l - xA)    for/ g JA,

(15) fk+1=fk + (pk,xk+1-xk).

Increase kby 1 and go to Step 1.

A few comments on the algorithm are in order.

As in [5], the kth subproblem dual is to find values of the multipliers Xk,j g Jk,

and \k to

.  .   .     1
minimize — E \jg' + \pPk-1 + £ -VÍ + VÍ'

(16) JGJ" i^Jk

subject to \j > 0 for; e/(,Àp>0,   E A, + A/> = 1-
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Any solution of (16) is a Lagrange multiplier vector for (9) and yields the unique

solution (dk, vk) of (9) as follows:

(17) dk = -pk,

(18) vk = -[\Pk\2 +   £ X*«* + XX) = -{In' + àk),

where pk and àA are given by (11)—(12). Moreover, any Lagrange multipliers of (9)

also solve (16). In particular, we always have

(19) \)>0   forjeJk,       \kp>0, £X* + X*=1.

ysy*

Thus, one may equivalently solve the dual subproblem (16) in Step 1.

Our rules for aggregating the past subgradient information may be explained as

follows. First, by combining (7), (11), (15) and (19) with the fact that a convex

combination of convex combinations is again a convex combination, one can show

(see [5] for details) that

( pk, fk) g conv{ ( gJ, // ): 1 < j < k}    for each k,

so that

fk(x) =fk + (pk,x-xk)e conv{/(x): 1 </< k)    for all x,

and, hence, by (4),

f(x)>fk + {pk,x-xk)

(20) = /e(xA) +£ + (/, X - XA> - [/E(XA) + £ - //]

>/(xA) +(pk, x - xA) - <5A    for all x.

This shows that pk is an àA-subgradient of / at xA. (We may add that gJ is an

aA-subgradient of/at xA.) Second, it is easy to deduce from (17)-(18) that (dk, vk)

solves the reduced subproblem

minimize j\d\2 + v over all (d, v) G RN+l

satisfying -ak + ( pk, d) < v,

which corresponds to replacing/* by fk in (8). Thus, in a sense, (pk, fk) embodies

all the past subgradient information which determined dk.

To justify the stopping criterion, we note that (20), (18) and the Cauchy-Schwarz

inequality imply

(21) /(x)»/(xA)-|i/j1/2|x-*A'l + (/    for all x,

so that the algorithm's rules yield

/(xA) </(x) + eY2\x - xA| -1- £s.    for all x

and /f*(xA) < /(xA) + ea, with £A < es/5, upon termination at Step 3; in particular,

xA is optimal if es = 0.

Our rules for increasing the accuracy of objective evaluations stem from the

criteria of Step 4, which is always entered with vk < 0 and

(22) 5ea< -{mR- mL)vk.
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Criterion (13) ensures that the sequence {/(xA)} is nonincreasing, since

(23) /(xA+1) </>(.y*+1) + ek </F*(xA) - ek + mLvk ^ f(xk) +mLvk

if tk > 0. Thus each serious step leads to a significant decrease in the objective value.

On the other hand, if (13) does not hold, then xA + 1 = xA and

-akt\ + (gA + \ dk)=fA.vk + l) ~fAxk) - 3eA > mLvk - 5eA

if ea + ' = £A, and, hence, by (22),

(24) -akkX\+(gk+1,dk)>mRvk.

Since mRvk > vk and It+le Jk+1, we deduce from (24) that (dk, vk) cannot solve

the (k + l)st subproblem (9). Thus each null step results in a significant modifica-

tion of the next search-direction-finding subproblem.

If one chooses Jk = 0, i.e., Jk = {k) for all k, then only two past subgradients

are used for each search direction finding. Of course, using more than two subgradi-

ents will increase the speed of convergence, but at the cost of increased storage and

work per iteration. This flexibility may be exploited in particular applications. In

fact, at any iteration one may calculate more than one £-subgradient, especially for

functions of the form (2), and use such additional subgradient information for the

next search direction finding. Our global convergence analysis covers such modifica-

tions.

We end this section by commenting on the relationship of our method with other

existing algorithms. For e1 = 0, i.e., e* = 0 for all k. Algorithm 2.1 reduces to the

aggregate subgradient method of Kiwiel [5], while if, in addition, Jk = {1,... ,k} for

all k, then we obtain the descent method of Lemarechal [7] (see [5]). The method of

Vasilyev [2] uses subproblems of the form (9) or, equivalently, (16), but neglects the

linearization errors ak and ak by setting them all to zero. This unnecessary distortion

of polyhedral approximations to / necessitates periodic restarts of the method from

the current point, after which no significant progress occurs until the method

accumulates new subgradient information.

3. Convergence. In this section we establish global convergence of the method.

Theorem 3.1. Suppose that Algorithm 2.1 generates a sequence {xA} with the

stopping parameter es set to zero. Then:

(i) If the method terminates at the kth iteration, then xk minimizes f.

(ii) // the method cycles infinitely many times between Steps 1 and 2 at the kth

iteration, then xk minimizes f.

(iii) //{xA} is infinite, then f(xk)i'mf{f(x): x G RN). Moreover, {xk} converges

to a minimum point of f if f attains its infimum.

Proof, (i) The first assertion was proved in Section 2.

(ii) If the method cycles infinitely between Steps 1 and 2, then e and vk converge

to zero, because e is halved at Step 2, mR - m¡ > 0, and -vk = \pk\2 + «A > 0,

since <5A ̂ 0 from (20). Hence, (21) yields that xA minimizes/.

(iii) Suppose that {xA} is infinite. We shall now show that if x is an accumulation

point of {xA}, then x minimizes/. First, suppose that {xA(/)}/e¿ -» x for some

infinite set L c {1,2,...}. Then we may let K = {k(l + 1) - 1: lei) (so that
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x   -* x and t,; = 1 for all k G K) to deduce from (23) and the continuity of / [2,

p.43] that f(xk)i f(x) and y* -» 0. Passing to the limit in (21) with k g K, we

obtain /(x) > f(x) for all x g ä^, as desired. Second, suppose that there are only

finitely many serious steps; i.e., xA = x for all large k. If we have ea J.0, then part (ii)

above shows that x minimizes /. Suppose, for contradiction purposes, that we have

constant ek' = e > 0 for all large k. Let wk denote the optimal value of subproblem

(16), for any k, so that

(25a) wk = \\pk\2 + äk,      ■

(25b)    wk < mm{\\pgk +(1 - ju)/?*"1!2 + pak +(1 - p)ak: 0 < /* < 1}

from (10)-(12), (19) and the fact that k g Jk. Since gk + 1 g dj(yk+l) withyA + 1 =

x + dk for large k, the local boundedness of 3f/(-) [2, p. 78] implies that {gA} will

be bounded if {<^A} is. Moreover, we have aA + 1 = <5A, since xA + 1 = xA and ea = e,

for large k. Therefore, one may proceed as in the proof of Theorem 3.5 in [5] to

deduce from (25), (17), (18) and (24) the existence of a constant C < + oo such that

0 < wA + 1 < IVa■ -(1 - mR)\wkf/%C2

with fixed mR g (0,1), for all large k. This implies wk J.0, and, hence, vk -> 0 from

(18), (25a) and the nonnegativity of äk. But then £ > -(mR - mL)vk/5 for large k,

which contradicts the rules of Step 2. Thus x must minimize/, if it exists. In view of

this result, one may use relations (20) and (23) to complete the proof as in Section 3

of [5] by deducing that {xA} converges if/(xA) > f(x) for some fixed x ^ RN and

all A:.

We omit the proof of the following result, since it may be derived from the proof

of Lemma 3.9 in [5] by using relation (22).

Proposition 3.2. If the method generates an infinite sequence {xA}, then either

/(xA)l-oo or vk -» 0 and ek -* 0 as k -» oo.

Corollary 3.3. /// is bounded from below and the stopping parameter es is positive,

then the method will terminate in a finite number of iterations, producing an approxi-

mately optimal point.

4. Modifications. In this section we briefly discuss possible computational modifi-

cations of the method.

In Algorithm 2.1 each decrease of e requires a new calculation of/E(xA) and dk.

To save this work, one may additionally decrease e on entering Step 4, e.g., by

replacing e with ke if e is close to -(mR — mL)vk/5, where k g (0,1) is a parameter.

It can be verified that such modifications do not impair the preceding convergence

results.

Suppose that relation (1) is replaced by

f(x) -£</f(x) </(x),

which may be justified when/is of the form (2). Then one may delete the factor 2 in

(3), (13) and (14) and the " + e" from (10) and (12), thus increasing the accuracy of

the polyhedral model off. In this case Step 2 may use the test e > -(mR — mL)vk/3

instead of the previous one. The preceding convergence results remain valid.
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5. Conclusions. We have presented a readily implementable method for minimiz-

ing nonsmooth convex functions. It may be viewed as an extension of [5] to the case

when objective and subgradient evaluations are subject to controllable errors.

Relaxed accuracy requirements on evaluations allow one to save work at the initial

stages of calculations, while their automatic tightening at later iterations ensures

global convergence with no additional assumptions on the objective function that are

typically required by other methods [1], [2], [9].

The method can be extended to constrained problems [4]. Preliminary computa-

tional experience [4] indicates that the algorithm is promising. However, much more

work remains to be done before all its possible implementations are fully explored.

We hope to pursue this subject in the near future.
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