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Abstract

A general algorithm is developed for online optimization of accelerator per-
formance,i.e., online tuning, using the performance measure as the objective
function. This method, named robust conjugate direction search (RCDS),
combines the conjugate direction set approach of Powell’s method with a
robust line optimizer which considers the random noise in bracketing the
minimum and uses parabolic fit of data points that uniformly sample the
bracketed zone. It is much more robust against noise than traditional al-
gorithms and is therefore suitable for online application. Simulation and
experimental studies have been carried out to demonstrate the strength of
the new algorithm.
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1. Introduction

Accelerators are complex systems that often consist of hundreds of active
components such as magnets and rf cavities. Each component may have one
or more parameters,i.e., knobs that can be adjusted. Tuning an accelerator
is the process of finding a set of parameter values to achieve optimal per-
formance. The machine usually has various diagnostic instrumentation to
monitor the performance of its sub-systems. For example, beam position
monitors (BPMs) are used to measure the beam orbit and a spectrum an-
alyzer or turn-by-turn BPMs are used to measure the betatron tunes for a
circular machine. If the targets of the diagnostics, such as the ideal orbit
or the ideal tunes, are known and there is a deterministic approach to turn
the knobs to reach the target, then the task of tuning the sub-systems is
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straightforward and easy. Response matrices that relate knobs to readings
of the diagnostics are often used to calculate the required correction steps.
Beam orbit correction and tune correction are examples that fall in this cat-
egory.

There are other cases when the target of a subsystem is not directly
monitored but can be measured indirectly. For example, the optics of a
synchrotron or a storage ring is not measured directly but can be inferred
from the orbit response matrix (i.e., the differential orbit shifts with respect
to individual orbit correctors) or readings of turn-by-turn BPMs for a beam
under betatron motion. Fitting the orbit response matrix to calibrate the
optics model has been an effective way for optics correction [1, 2].

However, in many cases the diagnostics cannot provide sufficient infor-
mation to guide the move of the knobs toward the target. One example is
the steering of the beam in a transport line prior to injection into a storage
ring. The BPMs in the transport line do not measure the effect of the last
few steering magnets very well because the distances between these magnets
and the downstream BPMs are small. Therefore the launching angle and po-
sition of the injected beam are not very well determined with the transport
line BPMs. A similar example is the optics matching of the injected beam.
There can also be cases where the necessary diagnostics do not exist at all.
This is especially possible for new projects in the commissioning phase.

In other cases the ideal target of a subsystem itself may be unknown or
not very well known, or there does not exist an effective way to relate the
knobs to the target. An important example is the optimization of the nonlin-
ear dynamics of storage rings. Harmonic sextupoles are often used in third
generation light source storage rings as free knobs to improve the dynamic
aperture and momentum aperture. Ultimately the goal of nonlinear dynam-
ics optimization is to achieve high injection efficiency and high beam lifetime.
But there is no direct way to determine the desired parameter adjustment
for the harmonic sextupoles. Normally it is desired to set the harmonic sex-
tupoles so that the lattice works as it does in the ideal model. The calibration
errors of the sextupole magnets and the nonlinear components in the other
magnets can cause discrepancies between the model and the real machine.

Although there have been a few proposed approaches for beam-based
nonlinear dynamics calibration [4, 5], the fact that the nonlinear motion de-
tected by BPMs is usually weak and is plagued by the nonlinear response of
the BPMs themselves makes it very challenging to achieve the goal. Further-
more, because the ideal model does not contain all the nonlinear effects that



real machine may have (such as the higher order fringe field effects), the real
optimal setting may be different from that predicted by the model.

The nonlinear dynamics optimization challenge for the proposed ultimate
storage rings (USRs) [7, 8] would be especially severe since they have small
dynamic apertures and many strong linear and nonlinear magnets. The cal-
ibration errors of the sextupole magnets and the nonlinear errors from the
dipole and quadrupole magnets could make a significant difference between
the model and the real machine. The ability of achieving the design dynamic
aperture and momentum aperture may very well determine the feasibility of
the USRs.

When there is no direct method to predict the desired changes to the
knobs, we usually tune the machine manually by turning the knobs and
observing their impact on the machine performance, as measured by output
power, injection efficiency, beam lifetime, or luminosity, etc, depending on
the application. A usual approach is to tune one knob at a time for a few
iterations until a good parameter set is obtained. This is basically to solve
a multi-variable, usually nonlinear, optimization problem with iterative 1-
dimensional parameter scans. The manual tuning approach can be effective
in some cases, but it is generally not ideal. First, an automated routine could
be more efficient in setting the knobs and evaluating the performance (which
is basically an online function evaluation). Second, it is not applicable when
the number of knobs or the number of required iterations are high. Third,
the 1-dimensional scan algorithm may not be very efficient.

Automatic optimization code has been developed for accelerator con-
trol before [6], employing the Nelder-Mead simplex method and iterative
1-dimensional scans. However, these traditional optimization algorithms may
not work well for online applications because here the function evaluation is
noisy. It is therefore desirable to develop an efficient, robust algorithm for
the purpose of online optimization. In this study we propose an efficient
algorithm that can effectively overcome the noise issue. We demonstrate its
strength by comparing performance with several other algorithms in simula-
tion and apply this new algorithm experimentally to realistic problems.

A discussion of considerations for online optimization is given in section
2. The new algorithm is introduced in section 3 and is compared to other
algorithms in simulation in section 4. Experimental results at the SPEAR3
storage ring are showed in section 5.



2. Considerations of online optimization algorithms

Optimization is usually to maximize or minimize the value of a func-
tion. Since any maximization problem can be turned into an equivalent
minimization problem by putting a minus sign to the definition of the ob-
jective function, in the following we consider only the minimization problem
for convenience of discussion.

Two basic requirements for an online optimization algorithm are high
efficiency and robustness. High efficiency means that it is able to find the
optimum with as few function evaluations as possible. Since each function
evaluation takes time and the total machine time available for online opti-
mization is usually limited, high efficiency is necessary for relatively large
scale problems.

Robustness in this context means the algorithm can find the optimum
despite noise in measured function values (and occasional function value
outliers) and that the algorithm behaves properly under machine failures.
Most traditional algorithms assume the objective function is smooth and use
the comparison of function values of different solutions to decide the next
step. When noise is introduced, the comparison result may be misleading
and the algorithm may fail. Therefore an online algorithm needs to be aware
of the noise and take action more cautiously. For some machines or measure-
ments, outliers in the function values are possible as they may be caused by
temporary malfunction of a component or an occasional mismatch between
sub-systems. A robust algorithm should filter out outliers or the course of
the optimization process could be altered. Machine failures are situations
when the machine is not working properly as required by the experiment
and hence produce meaningless function values, for example, when the injec-
tor is down and fails to send beam to the transport line during an injection
efficiency measurement. During machine failures a robust algorithm should
not proceed. The algorithm should be able to dump the present status and
resume the optimization process later. Another aspect of robustness of the
algorithm is that it must know the valid boundary of the parameters and
avoid suggesting unrealistic solutions.

Traditionally optimization algorithms can be divided into two groups,
gradient-based algorithms and non-gradient-based algorithms, depending on
if they calculate and take advantage of the gradient of the function in pa-
rameter space. In this study we consider only non-gradient-based methods.
This is because the gradient calculations built upon numerical differences



(including those algorithms that do not explicitly calculate the gradient) is
sensitive to noise and may not be useful.

One candidate algorithm is an iterative parameter scan that basically au-
tomates the manual approach as described in the previous section. At each
iteration parameters are scanned within a specific range while the other pa-
rameters are fixed at the previous best values. After the scan this parameter
is set to the value that corresponds to the new minimum. Although this
method can sometimes be effective, it is potentially inefficient if there exists
a long, narrow valley in the parameter space that is not oriented along or
near any parameter direction, in which case each parameter scan will make
only a small gain along the valley [9].

Another candidate is Powell’s conjugate direction method [9, 10], which
is an iterative line search algorithm that updates the search direction set to
make an efficient search. It also employs bracketing and an advanced line
optimizer (golden section or quadratic interpolation).

A third candidate we considered is the well known Nelder-Mead simplex
method [9, 11]. The simplex method manipulates a non-degenerate geometric
body with N +1 vertices in the N-variable parameter space, called a simplex,
through a series of operations according to function values on the vertices.
The operations include reflection, expansion and contraction. This method
is known to be easy to use and robust for smooth functions.

Finally, multi-objective genetic algorithms (MOGA) recently have been
widely used in the accelerator community, mostly for optimizing accelerator
designs [12]. Genetic algorithms are powerful for simulation because the time-
consuming evaluation of new solutions can be done in parallel. However, they
may not be promising candidates for online optimization since usually it takes
many function evaluations for genetic algorithms to work. Nonetheless we
include a genetic algorithm, NSGA-II [15], in this study for comparison.

After exploring the candidate algorithms for noisy problems in simulation,
we came to realize that an effective and efficient method can be reached
by combining the conjugate direction search of Powell’s method with a line
optimizer that is robust against random noise and outliers. In the following
section we describe this new method and compare its performance to the
other candidate methods.



3. The Robust Conjugate Direction Search (RCDS) algorithm

The goal of our optimization algorithm is to minimize a multi-variable
function f(x) where x is an N-dimensional vector that represents a solution.
Each element of x is a parameter which for online applications must have
a valid range. Since the scales of the parameters can be very different and
a general algorithm should not be affected by the parameter scales for a
particular problem, it is ideal to normalize the parameter space. We choose
to normalize each parameter to the range [0, 1] so that the parameter space
can be represented as an N-dimensional unit cube.

The iterative search along conjugate directions is generally more efficient
than searching along individual parameter directions [10]. By definition two
vectors u and v are conjugate if they satisfy the condition u-H - -v = 0
with the Hessian matrix H defined as the matrix of second order derivatives
of the objective function f(x), i.e., H;; = 0%f/0x;0x;. Successive search
on a conjugate direction set is efficient since the previous result would not
be spoiled by a new line search. Each search direction is orthogonal to the
others in terms of their impact to the objective function.

In our algorithm we adopt the same routine as used in Powell’s method
to build up and update the conjugate direction set as detailed in Ref. [9].
Basically after each iteration, the direction that has the largest decrease of
the objective function is replaced with the direction between the best so-
lutions before and after the iteration, provided that the direction is still
effective (which is to be tested with an extrapolation). Powell’s method usu-
ally suggests the initial direction set to be unit vectors of the parameter
space. Consequently it takes the algorithm some time to build up the con-
jugate direction set. Because efficiency is important for online optimization,
we recommend providing an initial estimate for the conjugate direction set
whenever possible, which may be obtained through a model. For example,
one may calculate the Hessian matrix with the model and use the eigen-
vectors of the Hessian matrix as the initial conjugate direction set. It is also
possible to use a fixed conjugate direction set without updating.

The main modification we made to Powell’s method was in the line op-
timizer, which is now made aware of the rms noise level o, of the measure-
ment. The line optimizer is a one-dimensional optimization algorithm aimed
at minimizing g(a) = f(Xo+ au), where X is the present solution and u rep-
resents the search direction. Similar to Powell’s method we first bracket the
minimum, i.e., find a zone [ay, ;] in which a local minimum of g(«) exists.



We determine the lower and upper bounds of the zone by starting from the
present solution (i.e., @ = 0), going along one direction until the minimum,
which is updated as the search goes, is less than the function value of the
last solution by more than 30 and setting the bound. The initial step size
is given externally. The step size then grows by a factor of 1.618 (the golden
section) for each additional step (following Ref. [9]). If a solution larger than
the minimum by 30 is not found before the search enters the invalid range
(in which case the function value should return NaN; i.e., not a number), the
last valid solution is set as the bound. The bound in the other direction is
similarly found.

The next task of the robust line optimizer is to determine the minimum
within the bracket [y, ay]. To efficiently recover information from noisy data,
we adopt an approach to uniformly sample within the bounded zone and fit
the data to a parabolic curve. Typically we take six data points, including
the two end points of the zone. The solutions found during bracketing are
saved and reused for fitting. If any of the previous solutions is close to a
proposed sample point (say, within 10% of the zone size), the evaluation of
the latter can be skipped. Often times only 2 or 3 more extra evaluations
are required. After the parabolic fit, we look for outliers by examining the
errors, i.e., the differences between the actual function values (i.e., measured
data) and fitted values. An outlier is defined as a data point whose error is
significantly larger than the average error of the centroid of the data sets. If
an outlier is identified, it is removed and the remaining data points are re-
fitted. The minimum of the line search is then calculated from the parabolic
curve.

An illustration of the bracketing and fitting procedures is shown in Figure
1, using a line search from the vertical emittance minimization problem to
be discussed in section 4.1 as an example. Starting from the initial point
a = 0 toward the positive direction, the upper bound is found with one step.
It then searches in the opposite direction and finds the lower bound with
three steps, each step with a larger step size. Two new points are added to
uniformly sample the bracketed zone and are used for fitting. Finally the
new minimum is found from the fitted parabolic curve.

Our line optimization algorithm is different from that of the original Pow-
ell’s method in several aspects. First, the bracketing approach guarantees the
bounds are robust against noise. We use golden section extrapolation to look
for the bounds instead of a three-point parabolic extrapolation since the lat-
ter may be unreliable for noisy data. We also make sure the bounds are
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Figure 1: Illustration of bracketing and quadratic fitting of the line optimizer.

above the noise level so that they truly bracket the minimum. Second, by
uniformly sampling the bracket and making a parabolic fit, we not only im-
prove the accuracy of the solution by gaining a statistical advantage from
multiple data points, but also obtain a reliable minimum within the bracket
by global sampling. This is unlike the iterative golden section search or three-
point parabolic interpolation methods, for which a single noisy data point
may lead the search to the wrong section of the bracket and hence a false
minimum. Third, our algorithm also handles occasional outliers properly.
These differences give our optimization method the power to steer through
noisy data and find the optimum with high precision, as will be demonstrated
in the next sections.

The termination condition for the iterative algorithm may be either ex-
ceeding a pre-specified total number of evaluations, exceeding a total time
limit or when the solution stays within the vicinity of the previous itera-
tion for a specified number of times. Or the algorithm can be terminated
manually. It is worth noting that monitoring the progress during online op-
timization is important. Printing out and logging the trial solutions and
algorithm decisions provide useful guidance for fine tuning the optimization
routine parameters.

Our new algorithm may be referred to as the robust conjugate direction
search (RCDS) method.



4. Simulation studies

To test the robustness against noise and the convergence rate of the RCDS
method, we applied it to two realistic accelerator optimization problems in
simulation and compared its performance to other methods, including the
Nelder-Mead simplex method, the original Powell’s method and NSGA-II.
We also include an algorithm that uses our robust line optimizer for iterative
parameter scans (referred to as IMAT), which is basically the same as RCDS
except that the direction set is fixed as unit vectors in the parameter space.

The two problems are minimization of the vertical emittance of the SPEAR3
ring with skew quadrupole magnets and optimization of the SPEAR3 Booster-
to-SPEAR (BTS) transport line optics.

4.1. Minimization of vertical emittance for SPEARS

The vertical emittance of a storage ring comes from the vertical disper-
sion inside dipole magnets and linear betatron coupling between horizontal
and vertical planes. Both contributing factors can be corrected with skew
quadrupoles. In SPEARS3 there are 13 free skew quadrupoles for vertical
emittance control. Usually the skew quadrupole setting for vertical emit-
tance correction is obtained by fitting the orbit response matrix data [1],
in particular, the off-diagonal elements. Since beam loss is dominated by
Touschek scattering for most third generation light sources, the beam loss
rate provides an indirect way to minimizing vertical emittance. We have
tested this approach in experiments (see section 5) and also simulated the
optimization process.

In the simulation, errors are seeded on 42 skew quadrupoles (including
the 13 that are used for correction) in the lattice. The vertical emittance is
computed with the code Accelerator Toolbox [13] which implements Ohmi’s
procedure [14]. The loss rate is then calculated, assuming the gas scattering
lifetime is 40 hours and the Touschek lifetime for a 500 mA beam is 10 hours
for a coupling ratio (i.e., the vertical to horizontal emittance ratio) of 0.2%.
The coupling ratio for the error seed when the 13 correcting skew quadrupoles
are turned off is 0.9%.

Since in experiment the loss rate is measured by monitoring the beam
current drop in a fixed time interval, the noise in the loss rate data is mostly
from the uncertainty in the beam current measurement. This is simulated
by assuming a gaussian random noise with o; = 0.03 mA. We also add a
1% random noise to the beam current in the lifetime calculation to simulate



the beam current variation between successive top-off injections. We keep
a record of the coupling ratio for each evaluated solution, which does not
have the random noise in the loss rate data and is thus a true measure of the
quality of the solution. Apparently longer intervals in loss rate measurement
leads to less noise. We chose an interval of 6 seconds, which corresponds to
a 0.06 mA /min rms uncertainty in the loss rate. The loss rate for a 500 mA
beam with all 13 correcting skew quads turned off is 0.6 mA /min.

The skew quadrupole parameter (normalized focusing gradient) range in
the simulation is set to —0.3 ~ 0.3 m~2, while the magnet length is 20 cm.
For the simplex method, the initial simplex has a vertex that corresponds
to all skew quadrupoles set to zero. The other vertices are each off in one
parameter, by 10% of the range of the parameter. The starting point for
Powell’s method is for all skew quadrupoles set to zero. The NSGA-II method
is applied here to optimize only one objective.

Figure 2 shows the performances of the simplex method and Powell’s
method. We plot the history of the objective function value of the best
solution during each optimization run. Because of the noise in function
values, the course of each run is different. Three runs with random noise
and a run without random noise are shown for each method. It is clear
the performance of the simplex method degrades significantly when noise is
introduced to the objective functions. This is understandable because the
algorithm stops to work as planned as soon as the size of the simplex shrinks
to the point when the comparison results of the function values on the vertices
are altered by the random noise.

Powell’s method turns out to be more sensitive to noise than the simplex
method. With the noise level given by the 6-second beam loss time inter-
val, the algorithm fails to make any meaningful reduction of the objective
function. The noise-free run also does not converge to a solution as good
as the simplex method. This is probably because the objective function is
evaluated with numerical noise. For Powell’s method we also show data for a
run with a 60-second interval which indicate that the algorithm works better
with reduced noise level.

We then applied the multi-objective genetic algorithm NSGA-IT [15] to
the problem. The population of solutions was 100 seeds and the algorithm
was run for 60 generations. The results are shown in Figure 3, for noise levels
corresponding to a 6-second interval, 10-second interval and no random noise
in the data. Although the objective functions (left plot) reach the same level
at the end of about 6000 evaluations, the coupling ratio (right plot) indicates
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Figure 2: The objective function (loss rate with reversed sign) of the best solution to-date
during optimization for the simplex method (left) and Powell’s method (right)

the algorithm performs better with lower noise. In fact, the solutions favored
by noise become elite seeds and dominate the population. For example, the
average error in the objective function for the 6-second case is -0.028 mA /min
in the second generation and -0.080 mA /min in the 20th. The optimization
results become more distorted as noise level gets higher. It is also seen that
NSGA-II converges very slowly, with or without noise in the data.
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Figure 3: The objective function (left) and the coupling ratio (right) of the best solution
to-date during optimization for the NSGA-IT method.

Figure 4 shows the performance for our RCDS method. The robustness
of the RCDS method against noise is compelling. All three runs with random
noise converge to solutions with the same level of objective function value
found by the noise-free run. It is worth noting that the real difference is
even smaller when noise is removed from the objective functions, as shown in
the coupling ratio plots (Figure 4 right). The simulation runs converged to
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nearly the same solution. Differences between the skew quadrupole strengths
of the final solutions are small, less than 2% of the strengths themselves. The
initial conjugate direction set is obtained from the Jacobian matrix of the
orbit response matrix with respect to the skew quadrupole parameters. If
the initial directions are the unit vectors, the convergence would take longer,
similar to Powell’s method in the noise-free case (Figure 2 right).
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Figure 4: The objective function (left) and the coupling ratio (right) of the best solution
to-date during optimization for the RCDS method.

The best performances for all algorithms are compared in Figure 5, which
shows the coupling ratio of the best solution during the runs. The coupling
ratio is without noise but the loss rate evaluation during optimization include
random noise level for the 6-second interval case. The two algorithms that
employ our line optimizer, RCDS and IMAT, are robust against noise, but the
latter converges more slowly because the search directions are not pair-wise
conjugate.

4.2. Optimization of injection optics match in simulation

As a second example, we use the optimization of the SPEAR3 Booster-
to-SPEAR (BTS) transport line optics to demonstrate the performance of
the algorithms. The phase space distribution of the injected beam at the
injection point (i.e., the septum magnet) should match the acceptance of
the storage ring for the injection efficiency to be maximized. The horizontal
phase space configuration for the SPEARS3 at the injection point is illustrated
in Figure 6. The ellipse represents the acceptance of the storage ring and
the vertical line at x = —10 mm represents the septum wall. Only particles
that are injected into the acceptance and are to the left side of the septum
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Figure 5: The coupling ratio of the best solution to-date during optimization for several
methods, all with loss rate noise for a 6-second interval.

line will survive. The acceptance and the position of the septum wall in this
simulation are only representative for SPEAR3. To leave room for injection
efficiency improvement by the optimization algorithms, we intentionally re-
duced the horizontal dynamic aperture to 12.5 mm in the simulation. The
vertical acceptance is not shown but is considered in the simulation to have
a vertical dynamic aperture of 3 mm. The dots represent injected particles,
which are generated randomly according to the optics functions at the end
of the transport line and the emittances of the Booster ring. The chromatic
contribution to the phase space distribution due the momentum spread and
dispersion functions are also accounted for. The injection efficiency is cal-
culated by counting the number of surviving particles among 1000 particles.
Because of the finiteness of the total particles, the injection efficiency has a
random noise level of 1.6%. The left plot in Figure 6 shows the situation for
the initial, present BTS optics with a simulated injection efficiency of 61.7%.

In the simulation we use the last six quadrupole magnets to adjust the op-
tics functions at the end of the transport line. The range for each parameter
(quadrupole gradient) is constrained around the initial value by 4+0.2 m~2.
The injection efficiency with a reversed sign is used as the objective function.
All five algorithms are again applied to this problem. The size of the initial
simplex is 20% of the range for the simplex method. For the NSGA-II al-

13



gorithm (MOGA) the population size is 100 and it runs for 60 generations.
Only 1000 evaluations are shown since there is very little improvement af-
terward. The initial conjugate direction set for the RCDS method is derived
from the Jacobian matrix of the six o-matrix elements (i.e., 02, 0., 02
and likewise for the y-plane) with respect to the quadrupole parameters, as
calculated from the initial optics model.

Figure 7 shows the best-to-date injection efficiency during the optimiza-
tion runs for various algorithms. Once again the RCDS method converges
fast and is robust against noise. The 1-dimensional scan with the robust line
optimizer (IMAT) converges slower. Powell’s method is more sensitive to
random noise and the simplex method becomes sensitive to noise when the
simplex is small. The genetic algorithm is inefficient and does not converge
to the best solution since the population gradually becomes dominated by
solutions favored by noise. The best solution of BTS optics found by the
RCDS method has an injection efficiency of 85.0%, as illustrated in Figure 6
(right plot).

1.5 T T T T 1.5

xp (mrad)
xp (mrad)
o

15 -15 15

X (mm)

Figure 6: The horizontal injection optics match at the septum for the initial transport line
optics (left) and the optics found by RCDS (right).

5. Experimental applications of the RCDS method

We have applied the RCDS method experimentally at the SPEAR3 stor-
age ring to demonstrate online accelerator optimization. The applications
include the minimization of the vertical emittance with skew quadrupoles, as
described in sub-section 4.1. In the experiment the stored beam current is
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Figure 7: The history of the best injection efficiency during optimization for the various
algorithms.

maintained at a maximum of 500 mA with top-off injection every 5 minutes.
The parameter range for the skew quadrupole currents is between —20 A and
20 A with the initial strengths for all 13 magnets set to zero. The initial loss
rate is 0.43 mA /min, corresponding to a coupling ratio of about 1%. The
loss rate is evaluated by computing the beam current loss in 6 seconds. The
corresponding rms noise of the loss rate as measured by the standard devia-
tion of 100 evaluations is 0.04 mA /min. The loss rate evaluation code waits
until injection is over if there is not enough time before the next injection.

Figure 8 shows the objective function for the trial solutions during the
run. With 200 evaluations, the loss rate reaches 1.75 mA/min. The best
solution corresponds to a minimum beam lifetime of 4.60 hours at 500 mA
beam current. For comparison, an earlier solution found by fitting orbit
response matrix has a loss rate of 1.50 mA /min and a lifetime of 5.25 hours
at 500 mA. According to the loss rate, the average vertical beam size is
reduced by about 15% by the RCDS method relative to the orbit response
matrix method. The two solutions are close in the parameter space, with an
average difference of 1.7 A for the skew quadrupoles.

Another application is the optimization of the injection kicker bump
match. SPEARS3 has three injection kickers that make a closed bump for
the stored beam during injection. In the top-off injection mode the kicker
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Figure 8: History of all evaluated solutions and the best-to-date solution during the loss
rate optimization experiment with the RCDS algorithm.

bump should be accurately matched to eliminate perturbation to the stored
beam. The parameters to be adjusted are the voltage, pulse delay and pulse
width for kicker 1 and 3 while the kicker 2 parameters are fixed. Two skew
quadrupoles that are within the bump are also adjusted to minimize the
perturbation to the vertical plane. There are a total of 8 parameters.

To test the algorithm, we first deliberately put in errors to these 8 pa-
rameters to cause betatron oscillations in both the horizontal and vertical
planes. The oscillation amplitudes are measured with a turn-by-turn BPM.
The objective function is the sum of the horizontal and vertical rms orbit
deviation from the first 100 turns after the kick. When the RCDS algorithm
is used, it quickly brings the perturbations down to a minimum, as shown
in Figure 9. The horizontal oscillation amplitude is reduced from 0.3 mm to
0.03 mm within 40 evaluations.

We have also applied the RCDS method to optimize the launching an-
gles and positions of the injected beam to SPEAR3 with two horizontal and
two vertical steering magnets, using injection efficiency as the objective func-
tion. The algorithm demonstrated robust performance, usually bringing the
injection efficiency to a maximum value within about 20 evaluations.
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Figure 9: History of all evaluated solutions and the best-to-date solution during the kicker
bump matching optimization experiment with the RCDS algorithm.

6. Conclusions

In this paper we discussed the need of an automated online optimiza-
tion algorithm and the general requirements for such an algorithm. Exe-
cution efficiency and robustness in the presence of noise are the two most
important challenges. Using realistic accelerator optimization problems, we
demonstrated with simulation that traditional methods, such as the simplex
method, Powell’s method and genetic algorithms are sensitive to noise in
function values. The genetic algorithms tend to be inefficient for online ap-
plication since the convergence is slow and it may fail to converge to the
optimum because the population will be dominated by solutions favored by
noise. The traditional 1-dimensional scan may be inefficient since the suc-
cessive line scans may partially cancel the gains previously made.

We developed a method called the robust conjugate direction search
(RCDS) method. The new method combines the conjugate direction set
approach of Powell’s method with a new robust line optimizer which con-
siders the random noise in bracketing the minimum and uses parabolic fit
of data points that uniformly sample the bracketed zone. In simulation this
algorithm demonstrated high efficiency and strong robustness against noise.

The RCDS method was then successfully applied to online optimization
experiments at the SPEAR3 storage ring. The applications include min-
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imization of the vertical emittance, optimization of injection kicker bump
matching and optimization of injection beam steering.

We should point out that this method is applicable to automatic tuning of
complex systems other than accelerators. It may also be used for design opti-
mizations which evaluate the objective functions with numerical simulation.
In the latter case the line optimizer may be partially parallelized.
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