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Let G=(V,E) be an oriented graph whose edges are labelled by the elements of a group Γ
and let A⊆V . An A-path is a path whose ends are both in A. The weight of a path P in
G is the sum of the group values on forward oriented arcs minus the sum of the backward
oriented arcs in P . (If Γ is not abelian, we sum the labels in their order along the path.)
We give an efficient algorithm for finding a maximum collection of vertex-disjoint A-paths
each of non-zero weight. When A=V this problem is equivalent to the maximum matching
problem.

1. Introduction

Let Γ be a group; we will use additive notation for groups, although
they need not be abelian. A Γ -labelled graph is a graph G in which each
edge e = uv ∈ E(G) is assigned weights ωG(e,u), ωG(e,v) ∈ Γ where
ωG(e,u) = −ωG(e,v). Let G be a Γ -labelled graph and let A ⊆ V (G). An
A-path is a path, with at least one edge, whose ends are both in A. Now,
if P = (v0,e1,v1,e2,v2, . . . ,ek,vk) is a path in G, then the weight of P , de-
noted ωG(P ), is defined to be

∑k
i=1 ωG(ei,vi).

We are interested in the maximum number of vertex-disjoint A-paths
each of non-zero weight, which we denote by ν(G,A). Chudnovsky et al. [1]
gave a min-max theorem for ν(G,A); they also discuss motivation for the
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non-zero A-paths problem. In particular, they show that Mader’s S-path
problem [4] is a special case. The only previously known algorithm for
Mader’s S-path problem was obtained by Lovász via a reduction to lin-
ear matroid matching [2]. We present an algorithm for finding a maximum
collection of vertex-disjoint non-zero A-paths that runs in time O(|V (G)|6).
In our complexity calculations, group operations (such as addition and com-
parison) are treated as elementary operations. Our algorithm is similar to
an algorithm of Lovász and Plummer [3, p. 376] for finding a maximum
matching. Lovász and Plummer cleverly abstract an algorithm from what
would otherwise appear to be a nonconstructive proof of the Edmonds–
Gallai Structure Theorem (see [3]). Using a similar approach, we obtain an
algorithm from our proof of Theorem 1.3, which is a structure theorem for
non-zero A-paths. Theorem 1.3 is closely related to a structure theorem of
Sebő and Szegő [5] for Mader’s S-path problem; our results were, however,
obtained independently.

Let E0(G,A) denote the set of all edges e=uv∈E whose ends are both in
A and that have ωG(e,v)=0; note that deleting such edges does not affect ν.
Let def(G,A) = |A| − 2ν(G,A); we call this the deficiency. Let odd(G,A)
denote the number of components H of G−E0(G,A) with |V (H)∩A| odd.
Finally let X,A′ ⊆ V (G) such that A∪X ⊆A′. It is straightforward to see
that

def(G,A) ≥ def(G,A′) − |A′ − A|
≥ def(G − X,A′ − X) − |A′ − A| − |X|
≥ odd(G − X,A′ − X) − |A′ − A| − |X|.

Let x ∈ V and let δ ∈ Γ . We will construct a new Γ -labelled graph G′
from G by changing the labels as follows. For each edge e=uv in G we define

ωG′(e, u) =

⎧⎨
⎩

ωG(e, u) + δ, if u = x
−δ + ωG(e, u), if v = x
ωG(e, u), otherwise.

We say that G′ is obtained from G by shifting by δ at x. Note that, if x �∈A,
then this shift does not change the weight of any A-path (even when Γ is
non-abelian). If G′ is a Γ -labelled graph obtained by a sequence of shifting
operations on vertices not in A, then we say that G and G′ are A-equivalent.
The main theorem in [1] is:

Theorem 1.1. Let Γ be a group, let G be a Γ -labelled graph, and let
A⊆V (G). Then there exists a Γ -labelled graph G′ that is A-equivalent to G
and there exist sets X,A′⊆V (G) with A∪X⊆A′ such that

def(G,A) = odd(G′ − X,A′ − X) − |A′ − A| − |X|.



PACKING NON-ZERO A-PATHS 147

Our structure theorem provides a canonical choice for A′ and X in The-
orem 1.1. Before stating the structure theorem we need some definitions; we
start by clarifying our notation.

A path is a sequence P = (v0,e1,v1,e2,v2, . . . ,ek,vk) where v0, . . . ,vk are
distinct vertices of G and ei has ends vi−1 and vi for each i∈{1, . . . ,k}. Thus
P is ordered in that it has distinguished start (v0) and end (vk). The path
(vk,ek,vk−1, . . . ,v1,e1,v0) is denoted by P̄ . We allow paths consisting of a
single vertex; we refer to such paths as trivial. We denote by E(P ) and V (P )
the set of edges and vertices of P , respectively.

An A-collection is a set Π of vertex disjoint paths such that:

1. each vertex in A is either the start or the end of a path in Π,
2. the start of each path P ∈Π is in A, and
3. if P ∈Π is non-trivial and has its end in A, then ωG(P ) �=0.

A path P ∈Π is loose if it is trivial or its end is not in A; thus each path in Π
is either an A-path or it is loose (not both). The value of an A-collection Π,
denoted valA(Π) or val(Π), is the number of A-paths that it contains. The
A-collection is optimal if val(Π) = ν(G,A); note that there are optimal A-
collections. Let P(G,A) denote the set of all A-collections and let P∗(G,A)
denote the set of all optimal A-collections.

Given an A-collection Π, let BA(Π) (or B(Π)) denote the set of pairs
(v,ωG(P )) where v is the end of a loose path P ∈ Π. Note that |B(Π)| =
|A| − 2valA(Π). Now let R(G,A) = ∪(B(Π) : Π ∈ P∗(G,A)); the pairs in
R(G,A) are called reachable pairs.

For each vertex v∈V (G), we let Γ (G,A,v)= {α∈Γ : (v,α)∈R(G,A)}.
Now we let

D1(G,A) = {v ∈ V (G) : |Γ (G,A, v)| = 1},
D2(G,A) = {v ∈ V (G) : |Γ (G,A, v)| ≥ 2}, and
D(G,A) = D1(G,A) ∪ D2(G,A);

D(G,A) is the set of reachable vertices. Note that D1(G,A) and D2(G,A)
are not affected by shifting on a vertex v �∈A.

For X⊆V (G), we let NG(X) denote the set of vertices in V (G)−X that
are adjacent to a vertex in X. To make use of the coming structure theorem,
we need the following easy lemma.

Lemma 1.2. Let G be a Γ -labelled graph and let A ⊆ V (G). Then there
exists a Γ -labelled graph G′ that is A-equivalent to G and such that:

(1) for each v∈D1(G′,A), Γ (G′,A,v)={0}, and
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(2) for each u ∈ NG′(D(G′,A))−A, there exists uv = e ∈ E(G′) such that
ωG′(e,v)∈Γ (G′,A,v).

Proof. Suppose that v ∈ D1(G,A) and that Γ (G,A,v) = {α}. If v ∈ A,
then α = 0. On the other hand, if v �∈ A and G′ is obtained from G by
shifting by −α at v, then Γ (G′,A,v) = {0} and Γ (G′,A,y) = Γ (G,A,y) for
all y∈V (G)−{v}.

Now suppose that uv=e∈E(G) where u �∈A∪D(G,A) and v∈D(G,A).
Let α∈ Γ (G,A,v) and let G′ be the Γ -labelled graph obtained from G by
shifting by ωG(e,v)−α at u. Then ωG′(e,v)=α and Γ (G′,A,y)=Γ (G,A,y)
for all y∈V (G).

We can now state our structure theorem.

Theorem 1.3. Let Γ be a group, let G be a Γ -labelled graph, and let
A ⊆ V (G). Now let A′ = A ∪ NG(D(G,A)) ∪ D1(G,A) and let X =
NG−E0(G,A′)(D(G,A)). If (G,A) satisfies:

(1) for each v∈D1(G,A), Γ (G,A,v)={0}, and
(2) for each u ∈ NG(D(G,A))−A, there exists uv = e ∈ E(G) such that

ωG(e,v)∈Γ (G,A,v),

then def(G,A)=odd(G−X,A′−X)−|A′−A|−|X|.

2. Proof of the structure theorem

In this section we outline a proof of the structure theorem; this outline is
intended to motivate the main steps in the algorithm. Throughout the rest
of the paper we let Γ be a group, we let G be a group labelled graph, and
we let A⊆V (G).

It is an easy but important observation that the sets D1(G,A), D2(G,A),
and Γ (G,A,v) are determined by R(G,A). This allows us to prove Theo-
rem 1.3 inductively by changing G and A in ways that do not effect R(G,A).
We begin with two easy observations:

2.1. If u∈A−D(G,A), then ν(G−u,A−{u})=ν(G,A)−1 and R(G,A)⊆
R(G−u,A−{u}).
2.2. If u∈V (G)−A and Γ (G,A,u)⊆{0}, then ν(G,A∪{u})=ν(G,A) and
R(G,A)⊆R(G,A∪{u}).

In the next two results we provide additional hypotheses to 2.1 and 2.2 so
that the above inclusions hold with equality. We will not prove these lemmas
now since they follow immediately from more general results (Lemmas 4.3
and 4.4) proved later.
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Lemma 2.3. Let u ∈ A−D(G,A). If there exists uv = e ∈ E(G) and α ∈
Γ (G,A,v) such that ωG(e,u) �=−α, then ν(G−u,A−{u})=ν(G,A)−1 and
R(G,A)=R(G−u,A−{u}).
Lemma 2.4. Let u∈V (G)−A where Γ (G,A,u)⊆{0}. If there exists uv=
e∈E(G) and α∈Γ (G,A,v) such that ωG(e,u) =−α, then ν(G,A∪{u}) =
ν(G,A) and R(G,A)=R(G,A∪{u}).

With the main ingredients in place, we can begin the proof of the struc-
ture theorem. Suppose that:
(1) for each v∈D1(G,A), Γ (G,A,v)={0}, and
(2) for each u ∈ NG(D(G,A))−A, there exists uv = e ∈ E(G) such that

ωG(e,v)∈Γ (G,A,v).
Now let A′=A∪NG(D(G,A))∪D1(G,A) and X =NG−E0(G,A′)(D(G,A)).

Lemma 2.5. ν(G,A)=ν(G−X,A′−X)+|X| and R(G,A)=R(G−X,A′−X).
Hence def(G,A)=def(G−X,A′−X)−|A′−A|−|X|.
Proof. Let A′′=A∪NG(D(G,A)). First we consider u∈A′′−A. By (2), there
exists uv = e∈E(G) such that ωG(e,v) ∈ Γ (G,A,v). Then, by Lemma 2.4,
ν(G,A ∪ {u}) = ν(G,A) and R(G,A) = R(G,A ∪ {u}). Hence D(G,A) =
D(G,A∪{u}) and A′′=A∪NG(D(G,A))=A∪NG(D(G,A∪{u})). Inductively
we conclude that ν(G,A′′)=ν(G,A) and R(G,A′′)=R(G,A).

Now consider u∈D1(G,A)−A=A′−A′′. By (1), we have Γ (G,A,u)={0}
and, hence, Γ (G,A′′,u) = {0}. Thus there exists Π ∈ P∗(G,A′′) such that
(u,0) ∈ B(Π). Let P ∈ Π be the path ending at u, let v be the vertex
preceding u on P , let Pv be the initial subpath of P ending at v, and let
e = uv. Note that ωG(Pv)−ωG(e,v) = ωG(P ) = 0. Thus ωG(Pv) = ωG(e,v).
Let Πv = (Π − {P}) ∪ {Pv}. Now Πv is an optimal A′′-collection with
(v,ωG(Pv))∈B(Πv). Therefore ωG(e,v)∈Γ (G,A,v). Hence, by Lemma 2.4,
ν(G,A′′∪{u})=ν(G,A′′)=ν(G,A) and R(G,A′′∪{u})=R(G,A′′)=R(G,A).
Inductively this proves that ν(G,A)=ν(G,A′) and R(G,A)=R(G,A′).

Note that X ⊆ A′. Now consider u ∈ X. By the definition of X, there
exists uv = e ∈ E(G)−E0(G,A′) where v ∈ D(G,A′). We claim that there
exists α ∈ Γ (G,A′,v) such that ωG(e,v) �= α; for this it suffices to consider
v∈D1(G,A). In this case Γ (G,A′,v)={0} and, since u,v∈A′, ωG(e,v) �=0,
as required. Therefore, by Lemma 2.3, ν(G − u,A′ − {u}) = ν(G,A′) − 1
and R(G,A′) = R(G− u,A′ − {u}). Inductively it follows that ν(G,A) =
ν(G−X,A′−X)+ |X| and R(G,A)=R(G−X,A′−X), as required.

We need one more definition. A critical pair (G,A) consists of a Γ -
labelled graph G and a set A⊆V (G) such that G is connected, D1(G,A)=A,
D2(G,A)=V (G)−A, and E0(G,A)=∅.
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Now let A1 =A′−X and G1 =G−X. The next lemma follows from the
definition of G1 and A1.

Lemma 2.6. For each component H of G1 − E0(G1,A1), either def(H,
V (H)∩A1)=0 or (H,V (H)∩A1) is critical.

Proof. Let G2 = G1 −E0(G1,A1). By Lemma 2.5, R(G1,A1) = R(G,A)
and, hence, R(G2,A1) = R(G,A). Moreover R(G2,A1) is the union of the
sets R(H,A1 ∩ V (H)) taken over all components H of G2. Note that, if
uv=e∈E(G) with u∈V (G)−D(G,A) and v∈D(G,A), then either u∈X or
e∈E0(G,A′). Thus, if H is a component of G2, then either V (H)⊆D(G2,A1)
or V (H)∩D(G2,A1)=∅. If V (H)∩D(G2,A1)=∅, then def(H,V (H)∩A1)=0.
Thus we may assume that V (H)⊆D(G2,A1). Since H is a component of G2,
D1(H,V (H)∩A1)=D1(G2,A1)∩V (H) and D2(H,V (H)∩A1)=D2(G2,A1)∩
V (H). By the definition of A′, a vertex v∈D(G2,A1) is in D1(G2,A1) if and
only if v∈A1. Hence (H,V (H)∩A1) is critical, as required.

The final lemma was proved in [1]; we prove a more general lemma later
(see 4.5).

Lemma 2.7. If (G,A) is a critical pair, then def(G,A)=1 and, hence, |A|
is odd.

It follows from Lemmas 2.6 and 2.7 that def(G1,A1) = odd(G1,A1).
Therefore

def(G,A) = odd(G − X,A′ − X) − |A′ − A| − |X|.
This completes the proof of the structure theorem.

3. The exchange property

Chudnovsky et al. [1] proved that {B(Π) : Π ∈ P∗(G,A)} is the set of
bases of a matroid. The following lemma extends that result by providing
an exchange property on all A-collections. The proof is essentially the same
as the proof given in [1]. (For sets A and B, we let AΔB=(A−B)∪(B−A).)

Lemma 3.1. Let Π1,Π2 ∈ P(G,A) and let p1 ∈ B(Π1) − B(Π2). Then
there exists Π ′

1 ∈ P(G,A) and p2 ∈ B(Π1) ∪ B(Π2) such that B(Π ′
1) =

B(Π1)Δ{p1,p2}. Moreover, given Π1, Π2, and p1, we can find Π ′
1 and p2 in

O(|V (G)|2) time.

Proof. Let B = {B(Π) : Π ∈P(G,A)}. Suppose, by way of contradiction,
that there exist
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3.1.1. Π1,Π2 ∈ P(G,A) and p1 = (u,α) ∈ B(Π1) − B(Π2) such that
B(Π1)Δ{p1,p2} �∈B for each p2∈B(Π1)∪B(Π2).

Given an A-collection Π, we let E(Π) denote the union of the edge sets
(E(P ) : P ∈Π).

3.1.2. We choose Π1, Π2, and p1 = (u,α) satisfying 3.1.1 with |E(Π1)∪
E(Π2)| as small as possible.

We use the following claim repeatedly.

3.1.3. There do not exist Π ′
1∈P(G,A) and p2∈V (G)×Γ such that B(Π ′

1)=
B(Π1)Δ{p1,p2} and |E(Π ′

1)∪E(Π2)|< |E(Π1)∪E(Π2)|.
Proof of claim. Suppose otherwise. By 3.1.1, p2 �∈B(Π1)∪B(Π2). However,
|E(Π ′

1)−E(Π2)| < |E(Π1)−E(Π2)|. So, by 3.1.2, Π ′
1, Π2, and p2 do not

satisfy 3.1.1. That is, there exists an element p3 ∈ B(Π2) − B(Π ′
1) such

that B(Π ′
1)Δ{p2,p3} ∈B. However, B(Π1)Δ{p1,p3}= B(Π ′

1)Δ{p2,p3} ∈B,
contradicting 3.1.1.

Let p1 = (u,α) and let P = (v0,e1,v1, . . . ,ek,vk) be the path in Π1 end-
ing at u; thus P is loose. By possibly reversing the order, we may as-
sume that there is a path P ′ = (v′0,e′1,v′1, . . . ,e′l,v

′
l) in Π2 that starts at v0.

Suppose that P is not contained in P ′. Now let Π ′
1 be the A-collection

obtained from Π1 by replacing P with the trivial path (v0). Note that
B(Π ′

1) = B(Π1)Δ{p1,(v0,0)} and |E(Π ′
1)∪E(Π2)|< |E(Π1)∪E(Π2)|, con-

tradicting 3.1.3. Hence P is contained in P ′.
Suppose that P ′ is disjoint from each path in Π1 − {P} and let

Π ′
1 be obtained from Π1 by replacing P with P ′. Note that B(Π ′

1) =
B(Π1)Δ{p1,(v′l,ωG(P ′))} and (v′l,ωG(P ′)) ∈ B(Π2), contradicting 3.1.1.
Therefore there is some vertex that is both on P ′ and on a path in Π1 other
than P ; let v′i be the first such vertex on P ′ and let Q=(u0,f1,u1, . . . ,fm,um)
be the path of Π1 containing v′i. Suppose that uj =v′i.

For a walk W = (x0,f1,x1, . . . ,fp,xp) and 0 ≤ a ≤ b ≤ p we denote the
walks (xa,fa+1,xa+1, . . . ,fb,xb) and (xb,fb,xb−1, . . . ,fa+1,xa) by W [xa,xb]
and W [xb,xa] respectively.

We consider two cases.

Case 1. Q is a loose path.
Let P1 be the A-path obtained by concatenating P ′[v′0, . . . ,v′i] with

Q[uj, . . . ,u0] and let P2 be the path obtained by concatenating P ′[v′0, . . . ,v′i]
with Q[uj, . . . ,um].

Case 1.1. ωG(P1) �=0.
Let Π ′

1 =(Π1−{P,Q})∪P1. Note that B(Π ′
1)=B(Π1)−{p1,(um,ωG(Q))}

and (um,ωG(Q))∈B(Π1), contradicting 3.1.1.
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Case 1.2. ωG(P1)=0.
Thus ω(P ′[v′0,v′i]) = ω(Q[u0,uj ]) and, hence, ω(P2) = ω(Q). Now let Π ′

1

be the A-collection obtained from Π1 by replacing P and Q with P2 and the
trivial path (u0). Note that B(Π ′

1) = (B(Π1)−{p1})∪{(u0,0)}. Moreover,
since ωG(P1) = 0, P1 �= P ′. Thus there is an edge of Q[u0,uj ] that is not
in E(Π2). So, |E(Π ′

1)∪E(Π2)|< |E(Π1)∪E(Π2)|, contradicting 3.1.3.

Case 2. Q is an A-path.
Let P1 and P2 be the A-paths in G[E(P ′)∪E(Q)] that both start at v0

and that end with u0 and um respectively. Note that ω(P1)+ω(Q)−ω(P2)=0
and ω(Q) �=0, so either ω(P1) �=0 or ω(P2) �=0. Moreover, either P ′ is loose
(and hence different from P1 and P2) or ω(P ′) �= 0. Thus either ω(P1) �= 0
and P2 �= P ′ or ω(P2) �= 0 and P1 �= P ′. By possibly swapping P1 and P2

and reversing Q, we may assume that ω(P2) �= 0 and P1 �= P ′. Let Π ′
1 be

the A-collection obtained from Π1 by replacing P and Q with P2 and the
trivial path (u0). Note that B(Π ′

1) = (B(Π1)−{p1})∪{(u0,0)}. Moreover,
since P1 �= P ′ there is an edge of Q[u0,uj ] that is not in E(Π ′

1)∪E(Π2).
Thus |E(Π ′

1) ∪E(Π2)| < |E(Π1) ∪ E(Π2)|, contradicting 3.1.3. This final
contradiction completes the proof.

The above proof can easily be made algorithmic with the stated running
time.

We now prove a useful application of the exchange property.

Lemma 3.2. Let Π1,Π2∈P(G,A) and let B1⊆BA(Π1). Then there exists
Π3∈P(G,A) such that either:

(1) val(Π3)=val(Π1) and B1⊆B(Π3) and B(Π3)−B1⊆B(Π2), or
(2) val(Π3)=val(Π1)+1 and |B(Π3)∩B1|≥|B1|−1.

Moreover, we can find such Π3 in O(|V (G)|3) time.

Proof. We assume that:

3.2.1. Among all Π ′
1∈P(G,A) with B1⊆B(Π ′

1) and val(Π ′
1)=val(Π1) we

choose Π ′
1 minimizing |B(Π ′

1)−B(Π2)|.

We may assume that there exists p1 ∈ B(Π ′
1) − (B1 ∪ B(Π2)), since

otherwise Π3 := Π ′
1 satisfies (1). By the exchange property, there exists

Π3∈P(G,A) and p2∈B(Π ′
1)∪B(Π2) such that B(Π3)=B(Π ′

1)Δ{p1,p2}.
Case 1. p2∈B(Π ′

1).
Thus val(Π3)=val(Π ′

1)+1 and |B(Π3)∩B1|≥|B1|−1, satisfying (2).
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Case 2. p2∈B(Π2)−B(Π ′
1).

Thus val(Π3) = val(Π ′
1), B1 ⊆B(Π3), and |B(Π3)−B(Π2)|< |B(Π ′

1)−
B(Π2)|, contradicting 3.2.1.

That completes the proof; this proof can clearly be made algorithmic
with the stated running time.

The following two lemmas are consequences of Lemma 3.2.

Lemma 3.3. Let Π1,Π2∈P(G,A) with val(Π2)=val(Π1)+1, let uv = e∈
E(G), let (u,α) and p be distinct elements of B(Π1), and let (v,β)∈B(Π2)
where α+ωG(e,v)−β �=0. Then there exists Π3∈P(G,A) such that val(Π3)=
val(Π2) and either (u,α)∈B(Π3) or p∈B(Π3). Moreover, we can find such
Π3 in O(|V (G)|3) time.

Proof. By Lemma 3.2 with B1 ={p,(u,α)}, we get one of the following two
cases.

Case 1. There exists Π ∈ P(G,A) such that val(Π) = val(Π1) and B1 ⊆
B(Π) and B(Π)−B1⊆B(Π2).

Since |B(Π)|=2val(Π)=2val(Π2)+2= |B(Π2)|+ |B1| and B(Π)−B1⊆
B(Π2), we have B(Π2) ⊆ B(Π). Thus p,(u,α),(v,β) ∈ B(Π). Let Pu and
Pv be the loose paths in Π ending at u and v respectively. Now let P =
(Pu,e, P̄v), where P̄v denotes the reverse of the path Pv . Note that P is an
A-path and ωG(P )=α+ωG(e,v)−β �=0. Now let Π3 =(Π−{Pu,Pv})∪{P}.
Note that valA(Π3)=val(Π2) and p∈B(Π3), as required.

Case 2. There exists Π3∈P(G,A) such that val(Π3)=val(Π2) and |B(Π3)∩
B1|≥|B1|−1.

Thus either (u,α)∈B(Π3) or p∈B(Π3), as required.
This proof is clearly constructive with the stated running time.

The next lemma is a direct consequence of Lemma 3.2; we omit the easy
proof.

Lemma 3.4. Let Π1,Π2∈P(G,A) with val(Π2)=val(Π1), let p1∈B(Π1),
and let p2 and p3 be distinct elements of B(Π2). Then there exists Π3 ∈
P(G,A) such that either:

(1) val(Π3)=val(Π1), p1∈B(Π3), and either p2∈B(Π3) or p3∈B(Π3), or
(2) val(Π3)=val(Π1)+1.

Moreover, we can find such Π3 in O(|V (G)|3) time.
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4. Key lemmas

In this section we prove constructive analogues of some of the lemmas in
Section 2.

Throughout this section we let G be a Γ -labelled graph, A⊆V (G), and
P⊆P(G,A). We use the following definitions:

ν(P, A) = max(valA(Π) : Π ∈ P),
def(P, A) = |A| − 2ν(P, A),

P∗ = {Π ∈ P : valA(Π) = ν(P, A)}, and
R(P, A) = ∪(BA(Π) : Π ∈ P∗).

Now, for each v∈V (G), we let

Γ (P, A, v) = {γ ∈ Γ : (v, γ) ∈ R(P, A)}.

In addition, we define:

D1(P, A) = {v ∈ V (G) : |Γ (P, A, v)| = 1},
D2(P, A) = {v ∈ V (G) : |Γ (P, A, v)| > 1}, and
D(P, A) = D1(P, A) ∪ D2(P, A).

We begin with some easy observations relating to 2.1 and 2.2:

4.1. Let u ∈ A−D(P,A). If there exists Π ∈ P(G−u,A−{u}) such that
valA−{u}(Π) = ν(P,A), then there exists Π ′ ∈ P(G,A) such that (u,0) ∈
R(P∪{Π ′},A).

4.2. Let u∈V (G)−A with Γ (P,A,u)⊆{0}. If there exists Π∈P(G,A∪{u})
such that valA∪{u}(Π)=ν(P,A)+1, then there exists Π ′∈P(G,A) such that
either valA(Π ′)>ν(P,A) or valA(Π ′)=ν(P,A) and there exists α∈Γ −{0}
such that (u,α)∈R(P ∪{Π ′},A).

The next result generalizes Lemma 2.3.

Lemma 4.3. Let u ∈ A − D(P,A), uv = e ∈ E(G), and α ∈ Γ (P,A,v)
such that ωG(e,u) �= −α. If Π ∈ P(G − u,A − {u}) with valA−{u}(Π) =
ν(P,A)−1 and p∈BA−{u}(Π)−R(P,A), then there exists Π ′∈P(G,A) such
that valA(Π ′) = ν(P,A) and either (u,α+ωG(e,u)) ∈ B(Π ′) or p ∈ B(Π ′).
Moreover, if |P|≤2|V (G)|, then we can find such Π ′ in O(|V (G)|3) time.
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Proof. Let Π1 be the A-collection obtained by adding the trivial path (u)
to Π. Note that valA(Π1)=ν(P,A)−1 and p,(u,0)∈BA(Π1). Let Π2∈P∗
with (v,α)∈BA(Π2). Now valA(Π2)=valA(Π1)+1. Therefore, by Lemma 3.3,
we find Π ′∈P(G,A) with valA(Π ′)=ν(P,A) and either (u,0)∈BA(Π ′) or
p∈BA(Π ′). Now Π ′ satisfies the lemma.

This proof is clearly constructive with the stated running time.

The next result generalizes Lemma 2.4.

Lemma 4.4. Let u∈V (G)−A with Γ (P,A,u)⊆{0}, let uv=e∈E(G) with
ωG(e,v) ∈Γ (P,A,v). If Π ∈P(G,A∪{u}) with valA∪{u}(Π) = ν(P,A) and
p ∈ BA∪{u}(Π)−R(P,A), then there exists Π ′ ∈ P(G,A) such that either
valA(Π ′)>ν(P,A) or valA(Π ′)=ν(P,A) and either p∈B(Π ′) or there exists
(u,α)∈B(Π ′) with α �=0. Moreover, if |P|≤2|V (G)|, then we can find such
Π ′ in O(|V (G)|3) time.

Proof. Note that, if v ∈ A, then, since ωG(e,v) ∈ Γ (P,A,v), we have
ωG(e,v) = 0. On the other hand, if v �∈ A, then, by possibly shifting, we
may assume that ωG(e,v) = 0. Let p = (w,δ). We break the proof into the
following cases.

Case 1. There exists Π1∈P(G,A∪{u}) with valA∪{u}(Π1)=ν(P,A) and p∈
BA∪{u}(Π1), such that u is not the start of the loose path in Π1 containing w.

There is a path P ∈Π1 whose start or end is u. Suppose that P is a loose
path with respect to A∪{u}; thus u is the start of P and P does not contain w.
Then Π ′ :=Π1−{P} satisfies the lemma. Therefore we may assume that P
is an A∪{u}-path; furthermore, by possibly reversing P , we may assume
that u is the end of P . Let α = ωG(P ). Since P is an A∪{u}-path in Π1,
we have α �= 0. Now note that Π1 ∈ P(G,A), valA(Π1) = ν(P,A)− 1, and
p,(u,α)∈BA(Π1). Let Π2 ∈P∗ with (v,0)∈BA(Π2). Applying Lemma 3.3
to Π1 and Π2 we find Π ′ ∈ P(G,A) with valA(Π ′) = ν(P,A) and either
p∈BA(Π ′) or (u,α)∈BA(Π ′), as required by the lemma.

Case 2. There exists Π1∈P(G,A∪{u}) with valA∪{u}(Π)=ν(P,A)+1.
There is a path P ∈ Π1 whose start or end is u. If P is a loose path,

then Π ′ :=Π1−{P} satisfies the lemma. Therefore we may assume that P
is an A∪{u}-path; furthermore, by possibly reversing P , we may assume
that u is the end of P . Let α=ωG(P ). Since P is an A∪{u}-path in Π1, we
have α �= 0. Now note that Π1 is an A-collection, valA(Π1) = ν(P,A), and
(u,α)∈BA(Π1). Thus Π ′ :=Π1 satisfies the lemma.

Case 3. There exists Π1 ∈P(G,A∪{u}) with valA∪{u}(Π1) = ν(P,A) and
there exists (z,β)∈BA∪{u}(Π1)−{(w,δ)} with zu=f ∈E(G).
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Let P ∈ Π1 be the path ending at w. We may assume that u is the
start of P , since otherwise we reduce to Case 1. Let Pz ∈ Π1 be the path
ending at z, let Pu =(Pz,f,u), and let Pw =(Pz,f,P ). Let α=ωG(Pu). Note
that ωG(Pw)=α+δ, so either α �=0 or ωG(Pw)=δ. Suppose that α �=0. Let
Π ′=(Π1−{P,Pz})∪{Pu}. Note that valA(Π ′)=ν(P,A) and (u,α)∈BA(Π ′),
as required. Now suppose that ωG(Pw)= δ. Let Π ′ =(Π1−{P,Pz})∪{Pw}.
Note that valA(Π ′)=ν(P,A) and (w,δ)∈BA(Π ′), as required.

Case 4. There exists Π2 ∈ P(G,A ∪ {u}) such that valA∪{u}(Π2) =
ν(P,A) and (z,β),(v,0) ∈ BA∪{u}(Π2) where zu = f ∈ E(G) and (z,β) �∈
{(w,δ),(v,0)}.

Note that, since (v,0) ∈ R(P,A), we have (v,0) �= (w,δ). Recall that
Π∈P(G,A∪{u}), valA∪{u}(Π)=ν(P,A), and (w,δ)∈BA∪{u}(Π). Applying
Lemma 3.4 to Π1 := Π and Π2, we find Π3 ∈ P(G,A) such that either
valA∪{u}(Π3)>ν(P,A), or valA∪{u}(Π3)= ν(P,A) and either (v,0),(w,δ)∈
BA∪{u}(Π3) or (z,β),(w,δ) ∈ BA∪{u}(Π3). The case that valA∪{u}(Π3) >
ν(P,A) reduces to Case 2 and the case that valA∪{u}(Π3) = ν(P,A) and
either (v,0),(w,δ) ∈ BA∪{u}(Π3) or (z,β),(w,δ) ∈ BA∪{u}(Π3) reduces to
Case 3.

Case 5. There exists Π2∈P(G,A∪{u}) such that valA∪{u}(Π2)=ν(P,A)
and (u,0),(v,0)∈BA∪{u}(Π2).

Note that, since (v,0) ∈ R(P,A), we have (v,0) �= (w,δ). Recall that
Π ∈ P(G,A ∪ {u}), valA∪{u}(Π) = ν(P,A), and (w,δ) ∈ BA∪{u}(Π). Ap-
plying Lemma 3.4 to Π1 := Π and Π2, we find Π3 ∈ P(G,A) such
that either valA∪{u}(Π3) > ν(P,A), or valA∪{u}(Π3) = ν(P,A) and either
(u,0),(w,δ) ∈ BA∪{u}(Π3) or (v,0),(w,δ) ∈ BA∪{u}(Π3). The case that
valA∪{u}(Π3) > ν(P,A) reduces to Case 2; the case that valA∪{u}(Π3) =
ν(P,A) and (v,0),(w,δ)∈BA∪{u}(Π3) reduces to Case 3; and the case that
valA∪{u}(Π3)=ν(P,A) and (u,0),(w,δ)∈BA∪{u}(Π3) reduces to Case 1.

Let Πv ∈P∗ with (v,0)∈BA(Πv). We may assume that there is a path
P ∈Πv that contains u, since otherwise Π2 :=Πv ∪{(u)} meets the criteria
of Case 5.

Case 6. P is a loose path with respect to A.

For any y∈V (P ), we let Py denote the initial segment of P ending at y.
We may assume that ωG(Pu) = 0, since otherwise Π ′ := (Πv −{P})∪{Pu}
satisfies the lemma. Now we may assume that v is the end of P , since
otherwise Π2 :=(Πv−{P})∪{Pu} meets the criteria of Case 5. Now let z be
the vertex preceding u on P and let P ′ be the subpath of P starting at u
and ending at v. Let β =ωG(Pz). We may assume that (z,β) �=(w,δ), since
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otherwise Π ′ := (Πv −{P})∪{Pz} satisfies the lemma. Finally, we see that
Π2 :=(Πv−{P})∪{Pz ,P

′} meets the criteria of Case 4.

Case 7. P is an A-path.
For any y∈V (P ), we let Py denote the initial segment of P ending at y.

Note that, by possibly reversing the direction of P , we may assume that
ωG(Pu) �=0; let α=ωG(Pu). Let z be the vertex on P immediately following u,
let P ′ denote the subpath of P̄ that ends at z, and let β=ωG(P ′). We may
assume that (z,β)=(w,δ), since otherwise Π2 :=(Πv−{P})∪{Pu,P ′} meets
the criteria of Case 4. Let Q∈Πv be the path ending at v. Let P ′′=(Q,e,P̄u).
Note that P ′′ is an A-path and that ωG(P ′′)=ωG(Q)+ωG(e,u)−ωG(Pu)=
−α �=0. Therefore Π ′ :=(Πv−{P,Q})∪{P ′,P ′′} satisfies the lemma.

That completes the proof; this proof can easily be made algorithmic with
the stated running time.

We say that (G,A) is P-critical if G is connected, E0(G,A) = ∅,
D1(P,A) = A, and D2(P,A) = V (G) − A. The next result generalizes
Lemma 2.7.

Lemma 4.5. If (G,A) is P-critical and def(P,A) > 1, then there exists
Π∈P(G,A) such that valA(G)=νA(P)+1. Moreover, if |P|≤2|V (G)|, then
we can find such Π ′ in O(|V (G)|4) time.

Proof. We start by considering an easy case.

Case 1. There exists Π1∈P(G,A) with valA(Π1)=νA(P) and there exists
(u,α),(v,β)∈BA(Π1) where uv=e∈E(G).

We break this into two further subcases.

Case 1.1. α+ωG(e,v)−β �=0.
Let Pu,Pv ∈ Π1 be the paths ending at u and v respectively and let

P =(Pu,e, P̄v). Note that P is an A-path and that ωG(P )=α+ωG(e,v)−β �=0.
Thus Π :=(Π1−{Pu,Pv})∪{P} satisfies the lemma.

Case 1.2. α+ωG(e,v)−β=0.
Note that, since (G,A) is P-critical, either u �∈A or v �∈A. By possibly

swapping u and v, we may assume that v �∈ A. Then, since (G,A) is P-
critical, there exists β′∈Γ (P,A,v)−{β}. Let Π2∈P∗ with (v,β′)∈BA(Π2).
Applying Lemma 3.4 to Π2 and Π1, we find Π3∈P(G,A) such that either
valA(Π3) > νA(P) or valA(Π3) = νA(P) and either (u,α),(v,β′) ∈ BA(Π3)
or (v,β),(v,β′) ∈ BA(Π3). If valA(Π3) > νA(P), then Π := Π3 satisfies the
lemma. Also, note that BA(Π3) cannot contain both (v,β) and (v,β′). There-
fore we may assume that (u,α),(v,β′)∈BA(Π3). Now, since β �=β′, we have
α+ωG(e,v)−β′ �=α+ωG(e,v)−β=0. Therefore Π1 :=Π3 satisfies the criterion
for Case 1.1.
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(∗) Among all triples (Π1,(v1,α1),(v2,α2)) where Π1∈P(G,A), valA(Π1)=
νA(P), and (v1,α1),(v2,α2) ∈ BA(Π1) we choose the triple such that the
distance between v1 and v2 in G is minimum.

In view of Case 1, we may assume that v1 is not adjacent to v2. Let P
be a shortest (v1,v2)-path and let u be an internal vertex of P . Since (G,A)
is P-critical, there exists β ∈Γ (P,A,u). Let Π2 ∈P∗ with (u,β)∈BA(Π2).
Applying Lemma 3.4 to Π2 and Π1, we find Π3 ∈ P(G,A) such that ei-
ther valA(Π3) > νA(P) or valA(Π3) = νA(P) and (u,β),(vi,αi) ∈ BA(Π3)
for some i ∈ {1,2}. If valA(Π3) > νA(P), then Π := Π3 satisfies the
lemma. Thus, by symmetry, we may assume that valA(Π3) = νA(P) and
(u,β),(v1,α1)∈BA(Π3). However, since v1 is closer to u than it is to v2, we
have a contradiction to (∗).

That completes the proof; this proof can easily be made algorithmic with
the stated running time.

5. The algorithm

Throughout the algorithm we maintain a set P ⊆P(G,A). We are primar-
ily interested in the sets D1(P,A) and D2(P,A). Therefore, by removing
unnecessary A-collections from P, we keep

|P| ≤ |D1(P, A)| + 2|D2(P, A)| ≤ 2|V (G)|.
If P1,P2⊆P(G,A), then we say that P2 is richer than P1, with respect to A,
if either νA(P2)>νA(P1) or νA(P2)=νA(P1) and |D1(P2,A)|+2|D2(P2,A)|>
|D1(P1,A)|+2|D2(P1,A)|.

By possibly shifting (as we did in Lemma 1.2), we may assume that
(G,A) satisfies:

(1) for each v∈D1(P,A), Γ (P,A,v)={0}, and
(2) for each u ∈ NG(D(P,A)) −A, there exists uv = e ∈ E(G) such that

ωG(e,v)∈Γ (G,A,v).

Now let A′=A∪NG(D(G,A))∪D1(G,A) and X =NG−E0(G,A′)(D(G,A)).

Optimality condition. If def(P,A)=odd(G−X,A′−X)−|A′−A|−|X|,
then the A-collections in P∗ are optimal.

Proof. Note that def(P,A)≥def(G,A)≥odd(G−X,A′−X)−|A′−A|−|X|.
Thus, if def(P,A) = odd(G−X,A′ −X)−|A′ −A|− |X|, then def(P,A) =
def(G,A) and, hence, each A-collection in P∗ is optimal.

In each iteration of the algorithm, if def(P,A) �=odd(G−X,A′−X)−|A′−
A|−|X|, then we find an A-collection Π such that P∪{Π} is richer than P.
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Hence in at most O(|V (G)|2) iterations we will find an optimal A-collection.
It remains to show how we find the promised A-collection Π.

We omit the elementary proof of the next lemma.

Lemma 5.1. Let A1,X1 ⊆ V (G) such that A∪X1 ⊆A1 ⊆A′ and X1 ⊆X.
Then, in O(|V (G)|3) time, we can construct P1 ⊂P(G−X1,A1−X1) such
that either νA1(P1)>νA(P)−|X1| or νA1(P1)=νA(P)−|X1| and R(P,A)⊆
R(P1,A1).

Lemma 5.2. Let A′′⊆A′ with A⊆A′′. Suppose that Π ′∈P(G,A′′) where
either

(i) νA′′(P ′)>νA(P) or
(ii) νA′′(P ′) = νA(P) and there exists (v,β) ∈ BA′′(Π ′) −R(P,A) where

v �∈D2(P,A).

Then, in O(|V (G)|4) time, we can find Π ∈ P(G,A) such that P ∪{Π} is
richer than P.

Proof. The proof is inductive on |A′′−A|. If A′′=A, then Π :=Π ′ satisfies the
lemma. Thus we may assume that there exists a∈A′′−A. Let A1 =A′′−{a}.
By Lemma 5.1, we can construct P1⊂P(G,A1) such that either νA1(P1)>
νA(P) or νA1(P1) = νA(P) and R(P,A) ⊆ R(P1,A1). Inductively, we may
assume that νA1(P1) = νA(P), D1(P1,A1) = D1(P,A), and D2(P1,A1) =
D2(P,A). Now, by Lemma 4.4, we can construct Π ′′ ∈P(G,A1) such that
P1∪{Π ′′} is richer than P1 with respect to A1.

The next lemma is proved similarly; we leave the details to the reader.

Lemma 5.3. Let X ′⊆X. Suppose that Π ′∈P(G−X ′,A′−X ′) where either

(i) νA′−X′(P ′)>νA(P) or
(ii) νA′−X′(P ′)=νA(P) and there exists (v,β)∈BA′−X′(Π ′)−R(P,A) where

v �∈D2(P,A).

Then, in O(|V (G)|4) time, we can find Π ∈ P(G,A) such that P ∪{Π} is
richer than P.

Let G1 =G−X and let A1 =A′−X. Now, by Lemma 5.1, we can construct
P1 ⊂ P(G1,A1) such that either νA1(P1) > νA(P) or νA1(P1) = νA(P) and
R(P,A)⊆R(P1,A1). By Lemma 5.3, we may assume that νA1(P1)=νA(P),
D1(P1,A1) = D1(P,A), and D2(P1,A1) = D2(P,A). Now let G2 = G1 −
E0(G1,A1). Note that no A1-collection in G1 uses an edge in E0(G1,A1),
so P1 ⊆ P(G2,A1). Note that, if we can find Π ′ ∈ P(G2,A1) such that
valA1(Π

′) > νA1(P1), then, by Lemma 5.3, we can construct Π ∈ P(G,A)
such that P∪{Π} is richer than P.
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Let H be a component of G2, let AH =A1∩V (H). For each Π∈P(G2,A1),
we let Π|H denote the restriction of Π to H and let Π −H denote the
restriction of Π to G2−H. Let Π1,Π2 ∈P∗

1 . Suppose that valAH
(Π1|H) >

valAH
(Π2|H). Now let Π ′ = (Π2 −H)∪ (Π1|H). Note that Π ′ ∈ P(G2,A1)

and that valA1(Π
′)> νA1(P1), as required. Therefore we may assume that,

for all Π1,Π2∈P∗
1 , we have valAH

(Π1|H)>valAH
(Π2|H). Let PH ={Π|H :

Π∈P∗
1}.

Lemma 5.4. For each component H of G2, either def(H,AH) = 0 or
(H,AH) is PH-critical.

Proof. Note that, if uv = e ∈ E(G) with u ∈ V (G) − D(P,A) and v ∈
D(P,A), then either u∈X or e∈E0(G,A′). Moreover, D(P1,A1)=D(P,A).
Thus, if H is a component of G2, then either V (H)⊆D(P1,A1) or V (H)∩
D(P1,A1)=∅. If V (H)∩D(P1,A1)=∅, then def(PH ,AH)=0. Thus we may
assume that V (H)⊆D(P1,A1). Note that, since H is a component of G2,
D1(PH ,AH)=D1(P1,A1)∩V (H) and D2(PH ,AH)=D2(P1,A1)∩V (H). By
the definition of A′, a vertex v ∈ D(P1,A1) is in D1(P1,A1) if and only if
v∈A1. Hence H is PH-critical, as required.

Suppose that (H,AH) is PH -critical and that def(PH ,AH) > 1. Then,
by Lemma 4.5, we can construct Π1 ∈ P(H,AH ) such that valAH

(Π1) >
ν(PH ,AH). Now let Π2 ∈ P∗

1 and let Π ′ = Π1 ∪ (Π2 −H). Note that Π ′ ∈
P(G2,A1) and that valA1(Π

′) > νA1(P1), as required. Therefore we may
assume that: For each component H of G2, we have def(PH ,AH)≤1. Thus
def(G1,A1)=odd(G1,A1). So, we have:

def(P, A) = def(G − X,A′ − X) − |A′ − A| − |X|
= odd(G − X,A′ − X) − |A′ − A| − |X|,

as required. This completes the description and proof of the algorithm.
Let n= |V (G)|. The algorithm, as stated, requires O(n6) time. The com-

plexity in Lemma 3.2 can be improved from O(n3) to O(n2), by combining
the proofs of Lemma 3.2 and 3.1. This reduces the overall complexity of our
algorithm from O(n6) to O(n5).
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