FTOBSWNRAS, 7137 “773K!

Mon. Not. R. astr. Soc. (1985) 213, 773-776

An algorithm for significantly reducing the time
necessary to compute a Discrete Fourier Transform
periodogram of unequally spaced data

D. W. Kurtz Department of Astronomy, University of Cape Town, Rondebosch
7700, South Africa

Accepted 1984 November 9. Received 1984 September 19

Summary. A technique for reducing the computation time for a Discrete Fourier
Transform by a factor of 4 to 6 is presented. There is no significant loss of
accuracy. FORTRAN code which will directly replace Deeming’s FORTRAN code is
given.

1 Introduction

The Discrete Fourier Transform is a straightforward way to estimate the periodogram of
unequally spaced data (Deeming 1975). Scargle (1982) has shown that, with slight modifications,
Deeming’s technique is equivalent to least-squares fitting. I find that in practice, for large data
sets, Scargle’s modifications of Deeming’s definition of the Discrete Fourier Transform produce
differences in the periodogram which are not significant. One can, therefore, think of the
Deeming technique as equivalent to a least-squares estimate of the periodogram.

Deeming’s technique is widely used in astronomy to derive oscillation frequencies from the
light curves of pulsating stars. Readers who wish to see how widespread this use is can consult the
Deeming (1975) reference in Science Citation Index. Others who may wish to see just an example
of its use can look at my analysis of the rapidly oscillating Ap stars (Kurtz 1982) or O’Donoghue &
Warner’s (1982) analysis of the ZZ Ceti star, 1.19-2.

The Discrete Fourier Transform is defined by Deeming to be

N
Fn(v)= ) flte) exp (i2viti) (1)
k=1

where f(f) in astronomy normally represents the magnitudes or intensities measured at the times
I, 1.e. the points in the light curve of a star. Normally the real and imaginary parts of equation (1)
are computed by putting it in the form

N N
Fx(v)= ) f(te) cos Qavit)+i >, fltx) sin (27wvity). 2)
k=1 k=1
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Since astronomical stellar light curves often consist of ~10* data points, and since it is also often
necessary to calculate the Discrete Fourier Transform at ~10* frequencies in order to produce a
fully resolved periodogram, these computations involve calculating ~10° sines and cosines. Most
computers calculate trigonometric functions using one of several Tchebychev polynomials
depending on the value of the operand. The University of Cape Town SPERRY 1100/81 takes
just over 60us to calculate a sine or cosine which is probably typical of many mainframe
computers. This means that the computation of 10® sines and cosines will take over three hours of
CPU time. This is a major computing limitation.

O’Donoghue (1981; O’Donoghue & Warner 1982) has shown how substantial computing time
can be saved for large data sets by co-adding correctly phased, low-resolution Fourier transforms
of pieces of the large data set interpolated to high resolution. That technique makes it possible to
analyse data sets of any size at the expense of large amounts of storage space and considerable
bookkeeping on the part of the person doing the computations.

Whether using O’Donoghue’s modifications or not, many users of Deeming’s technique use
the FORTRAN code which he gives in the appendix of his 1975 paper. This involves the
straightforward computation of equation (2) for a number of frequencies to produce a
periodogram.

2 The algorithm

The periodograms calculated using Deeming’s technique are always calculated for equally spaced
frequencies. It is possible, therefore, to derive a recursion formula which avoids the necessity of
calculating most of the sines and cosines inherent in multiple computations of equation (2). For
equally spaced frequencies

'Vj=Vj_1+AV.

Substituting in equation (2) gives

N N
Fn(v)= ) fte) cos (vt + 2T AVE)+i D, f(t) sin (v, 1ty + 2w Avty). (4)
k=1 N

Simple trigonometric identities allow us to rearrange equation (4) to

Fy(v))= E f(tx) [cos (27wv;_1t,) cos (2mAvty) —sin (2vj_it) sin(2wAvey)]
k=1

N

+i >, f(t) [sin (27v;_1t,)cos (2mAVE) +cos (2v;_ 1) sin (2mAve)]. 5)
k=1

By using equation (5) to calculate the real and imaginary parts of the Discrete Fourier
Transform for all frequencies of interest for each f(#;), I find that the computation time is reduced
by a factor of typically 4 to 6 depending on the number of frequencies searched and the number of
data points. In the Appendix, I give FORTRAN code which can be substituted directly for Deeming’s
(1975) code.

The question of the comparative accuracy of Deeming’s code and mine is important.
Deeming’s code calculates the sines and cosines independently so they are accurate to the
error in the computer being used. For most computers this will be a binary truncation error rather
than a round-off error. My code, on the other hand, because it is recursive, accumulates error
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from frequency to frequency. The errors for the cosine should be essentially random, because of
the subtraction of two truncated products; the errors for the sine will accumulate because of the
addition of two truncated products.

I have compared the code in the Appendix with Deeming’s code for large and small data sets
and for periodograms of 2000 and 4000 frequencies. I can find no differences between the two
codes larger than %0 for the calculated amplitudes and phases. Generally the differences are
substantially less than this. I recommend that any prospective user of the code presented in this
paper should test it to his or her own satisfaction.

I also recommend that Deeming’s technique should only be used as a search technique. When a
frequency has been found in a data set, least-squares fitting should be used to find the optimum
amplitude and phase associated with that frequency. When only one frequency is present in the
data the Discrete Fourier Transform and least-squares fitting should give the same amplitudes
and phases. One gains confidence seeing that this is true and the least-squares fitting also gives
error estimates for the amplitudes and phases. When more than one frequency is present in the
data and frequencies are sequentially removed from the data to search for further frequencies, it
is imperative that the amplitudes and phases should be optimized by multivariate least-squares
fitting. The amplitudes and phases so determined are not equivalent to the amplitudes and phases
determined from sequential application of the Discrete Fourier Transform.
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Appendix

The following FORTRAN code is meant to replace the FORTRAN code given by Deeming (1975). Note
that the nesting of the po-loops has been inverted. The AMOD statements are to avoid
out-of-range errors in small machines. FF is defined here to be amplitude rather than power.
XN=N?. XNUis the array containing the frequencies. One can use this same code to calculate the
spectral window by setting F(/)=1.0 for all /. Users with data sets covering long time spans with
times recorded to high accuracy may need to define the array T and the variables X, XFO, and
XDF as double precision. The AMOD in that case will need to be replaced with DMOD. As an
example, in a machine with a 32-bit word length, floating point numbers may be represented with
1 bit for the sign, 7 bits for the exponent, 1 bit for the sign of the exponent, and 23 bits for the
mantissa. This gives slightly less than 8 decimal digits of accuracy. If times are recorded as

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny |z uo1senb Aq 2/91G6/ELL/Y/E L Z/e10Ie/SRIUW/ /WO dNno"ojwepede//:sdiy wWolj pepeojumod


http://adsabs.harvard.edu/abs/1985MNRAS.213..773K

FTOBSWNRAS, 7137 “773K!

776 D. W. Kurtz

Heliocentric Julian Dates to an accuracy of 1s, then only two decimal places are available before
the decimal point.

DO 1J=1,KD
FR(J)=0.
1 FI(J)=0.
DO31=1,N
FO=(KL—-1)*DF
X=TWOP I+T(I)
XF0=X *F0
XF0=AMOD(XF0, TWOPI)
XDF=X*DF
XDF=AMOD(XDF, TWOPI)
$(0)=SIN(XF0)
C(0)=COS(XF0)
SDF=SIN(XDF)
CDF=COS(XDF)
DO 2J=1,KD
C=C0+CDF—S0+SDF
$=50+ CDF+C0+*SDF
FR(J)=FR(J)+F(I)+C
FI(J)=FI(J)+F(I)*S
Co=C
2 S0=S
3 CONTINUE
DO 4J=1,KD
XNU(J)=(KL+J—1)*DF
FF(J)=2. *SQRT((FR(J) * FR(J)+FI(J) FI(J))/XN)
IF (FR(J). EQ. 0. )PHASE(J)=TWOP 1/4. 0
4 TF(FRQJ). NE. 0. PHASE(J)=ATAN2(-FI(J), FR(J))
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