
J. Austral. Math. Soc. 21 (Series B) (1980), 345-356

AN ALGORITHM FOR SOLVING THE RESTRICTED LEAST SQUARES
PROBLEM

DAVID CLARK

(Received 10 November 1978)

(Revised 31 January 1979)

Abstract

This paper presents an algorithm to solve the least squares problem when the
parameters are restricted to be non-negative. The algorithm is based on the
branch and bound method which has been suggested for this problem, and
shares with it the property that an unrestricted least squares subproblem is
solved at each step. However, improvements have been made to the branching
rules by making use of the convexity of the problem, and the Kuhn-Tucker
conditions are used to test for optimality. The resulting algorithm becomes
essentially iterative in nature, and linearity of the number of subproblems
solved can be shown under assumptions which have always been observed in
practice.

1. Introduction

1.1. THE PROBLEM. The problem considered here is the restricted least squares
problem:

Minimize L(k) = (y - Xk)T (y - Xk),
subject to k > 0, (P)

where J i s a n m x « matrix, yeRm, keR". The problem P can be solved by con-
verting it into a linear programming problem [3]. Another approach, suggested by
Waterman [4], is to solve-a sequence of up to 2" unrestricted problems. Beale [2]
considers it as an example of his optimum subset selection algorithm using partial
enumeration. Armstrong and Frome [1] place it in a branch and bound frame-
work and give an improved pruning rule.

The problem, however, is a very special one in that provided X is of full rank,
the minimization is of a strictly convex function over a convex set, so that the
solution is unique. Advantage is taken of the special properties of the problem to

345

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

346 David Clark [2]

develop an algorithm which is essentially iterative, and which displays an apparent
linear increase in the number of subproblems solved as the dimension of X
increases.

The remainder of the paper follows the development of the algorithm which
starts from the branch and bound approach. The rest of Section 1 defines notation
and introduces the branch and bound method. In Section 2, the Armstrong and
Frome algorithm is presented and an improved pruning rule given. Then the
Kuhn-Tucker conditions for optimality are established. A rule is given to find a
better feasible solution should a feasible solution be found to be sub-optimal. The
complexity of the algorithm is considered in Section 3 and, under certain assump-
tions (always satisfied experimentally), linearity of subproblems solved against
problem dimension is proved. The experimental results are presented in Section 4.
In Section 5, the extension of the algorithm to similar problems is discussed,
including the modifications necessary if the Kuhn-Tucker conditions are not
readily available. Section 6 contains the concluding remarks.

1.2. NOTATION. The following notation will be used in the paper:
J' represents an index set J' ^ N= {1,2,...,«}.
P* represents the problem:

Minimize L(X),
subject to lj = 0, jeJ'.

V represents the optimal solution to Pl.
(Note that the index set J' defines P' and hence kl.)
ft' represents a feasible solution to both P and P\ that is, fil ^Oand ^ = 0 ,

jeJ'.
(Note that p' will not necessarily be optimal for P or /".)
When the term "feasible" is used, it will refer to feasibility for P, that is, X is

feasible if k ^ 0.

1.3. BRANCH AND BOUND. The branch and bound method builds up a search
tree (each node being a problem, P') by increasing the number of variables set to
zero as a branch is descended. Thus, if PJ is a descendant of P', JJ D / The root
of the tree is the problem Pl where J1 — 0. An example of a search tree is given
in Fig. 1.

The main considerations of a branch and bound algorithm are:
(i) Choosing which node to branch on next,
(ii) choosing which descendant of this node to consider (solve) next, and

(iii) making use of any special properties of the problem to detect early
fathoming of a branch, that is, recognizing when no descendants of a node
will yield a better solution.

All of the above considerations are dealt with in the new algorithm.

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

I(
,I

J3
45

6)

2(
,2

34
56

)

3(
,3

45
6)

13
(1

3,
)

F
ig

. 1
. A

 s
ol

ut
io

n
tr

ee
 f

or
 t

he
 s

am
pl

e
pr

ob
le

m
.

A
t

ea
ch

 n
od

e
th

e
nu

m
be

rs
 i

nd
ic

at
e

w
hi

ch
 v

ar
ia

bl
es

 w
er

e
us

ed
 i

n
th

e
su

bp
ro

bl
em

,
th

os
e

af
te

r
th

e
co

m
m

a
be

in
g

op
ti

on
al

.
A

 -

in
di

ca
te

s
th

at
 t

he
 v

ar
ia

bl
e

is
 n

eg
at

iv
e

an
d

an
 *

 in
di

ca
te

s
th

e
so

lu
tio

n
is

 f
ea

si
bl

e
(t

ha
t

is
, X

 >
 0

).
 T

he
 w

ho
le

 t
re

e
is

ge
ne

ra
te

d
by

 t
he

 A
rm

st
ro

ng
-F

ro
m

e
al

go
ri

th
m

.
T

he
 t

hi
ck

en
ed

 l
in

es
 r

ep
re

se
nt

 t
he

 t
re

e
ge

ne
ra

te
d

us
in

g
th

e
im

pr
ov

ed
 p

ru
ni

ng
 r

ul
e

of
 T

he
or

em
 1

.

f 3

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

348 David Clark [4]

2. The new algorithm

2.1. THE ARMSTRONG AND FROME ALGORITHM. Armstrong and Frome's node
choice is to branch on the node most recently solved until a feasible k' is found,
and thereafter to branch on the node, PJ, with the smallest L(>f). Their choice of
the next variable to be set to zero is the most negative free variable if one exists,
otherwise the free variable with the largest numerical value. Their pruning rule
states that if a node differs from its parent node in that a variable which was
negative in the parent node's optimal solution has been set to zero (for example,
nodes 2, 8, 18, and 26, 30, 32 in Figure 1), and either the optimal solution of the
node is feasible (for example, nodes 4, 6, 10) or has an L(k) greater than or equal
to the best existing feasible solution (nodes 6, 7), then no further branches from
the present node need be considered. In the example of Fig. 1 (data in Table 1,
results in Table 2), 32 of the possible 64 nodes were solved.

TABLE 1

Data for the sample problem

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

X2
4.70
3.10
8.34
4.62
1.03
3.26
2.27
7.27
5.93
0.47

7.89
3.46
6.68
2.69
6.22
5.64
5.34
3.64
6.65
0.45

7.93
5.35
1.75
9.20
6.25
9.10
5.15
6.65
8.65
1.63

Xs
3.47
2.97
8.68
5.39
4.75
6.53
7.27
7.77
9.77
1.90

x6
8.35
7.11
8.90
1.60
3.61
4.70
3.16
3.78
0.92
8.66

Y

6.94
5.77
8.04
5.12
7.82
13.26
13.47
12.49
11.06
14.40

6 6

Column 1 contains 1.00 because the model is: Y=Xt + £ A, A1,, not y = X XtX,.

2.2. IMPROVED PRUNING RULE. The first improvement to the above algorithm is
the new fathoming criterion "at node P\ it is only necessary to branch on variables
Xj for which A) < 0".

LEMMA 1. Given p' > 0. Let f ' = {j | pi) = 0} define P' and hence kl. Then there
exists some descendant, Pr, ofP> (that is, Jr 2 J')for which kr^0 and L(kr) < L(fi').

PROOF. If k' 5= 0, k' = k'; otherwise let k be such that

4- = min \J± | X) <ol.

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

[5] An algorithm for the least squares problem 349

TABLE 2

Solutions obtained on sample program using Armstrong/Frome algorithm

Node

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

A.

-7.27
0
0
0
0
0
0

10.22
13.31
7.52
8.10

11.96
11.49
9.73

15.84
12.34
10.67
4.43
3.57

11.42
11.00
8.29

16.34
12.39
10.11
16.37
12.38
11.90
12.78
10.83
9.69
4.05

h

-1.89
-1.52

0
0

-1.45
0.04
0.05
0
0
0
0
0
0
0
0
0
0

-1.25
-1.29
-0.29
-0.28
-0.90
-0.24
-0.26
-0.93
-0.22
-0.20
-0.20
-0.21
-0.88
-0.85
-1.34

h

-1.34
-1.05
-0.95

0
0
0

-0.02
-0.58

0
0

-0.70
-0.35
-0.34
-0.63
-0.17
-0.26
-0.55

0
0
0
0
0
0
0
0

-0.08
-0.26
-0.25
-0.17
-0.47
-0.57
-0.76

u
0.92
0.44
0.49
0.25
0.18
0.81
0.82

-0.20
-0.53

0
0
0
0
0

-0.51
-0.20
-0.23
-0.07

0
0
0
0

-0.55
-0.24
-0.37
-0.52

0
0

-0.20
-0.28

0
0

2.91
2.23
1.21
0.84
1.78
0
0
0.59
0.22
0.33
0.69
0
0
0.54
0
0
0.56
1.44
1.49
0
0
0.90
0
0
1.00
0
0
0
0
1.14
1.10
1.93

1.70
1.08
0.84
0.62
0.84
0.80
0.81
0.04

-0.30
0.08
0.21

-0.09
0
0

-0.40
0
0
0.50
0.56

-0.08
0
0

-0.42
0
0

-0.41
-0.09

0
0
0
0
0.73

32.09
36.42

102.00
127.18
66.72

184.66
184.65
86.07
93.51

103.49
87.04

102.86
103.45
89.47
94.45

100.99
86.11
64.25
64.39

103.42
103.91
78.00
92.22
99.92
68.90
92.01

100.75
101.36
98.82
61.56
66.50
45.04

Let Ji+1 =J> u {k} define and Let

Then, from the convexity of L and the optimality of A' and A' + 1 ,

If i.i+l 2s 0, k' = A/+1. Otherwise, the process is repeated and, at each step,

until eventually k Ss 0,

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

350 David Clark [6]

The improved pruning rule now follows.

THEOREM I. At any node P', it is only necessary to branch on variables kj for which
k) < 0 in order to find kr, a best feasible solution descendant from k'.

PROOF. Let Jl = {; | k) < 0}.

Let k" be the best feasible descendant of k' and assume it could not be reached
through a branch in which some k}, jeJL, was set to zero, that is,

A.rj>0 for all j e A .

Then there will exist ft' ^ 0, which is a convex linear combination of kr and k',
which is feasible for P1. As L(A') < L(r), it follows that L(n') < L(kr).

So, by Lemma 1, there exists ks, a descendant of k', for which ks ^ 0 and
L(ks) ^L(/t') < Z-(A')- Moreover, the method used in the proof of Lemma 1 only
ever set k) < 0 to zero in P'+1. Hence a best feasible solution descendant from k'
can be found by branching on only negative-valued variables at any node.

In the example given in Fig. 1, the tree generated using the pruning rule is
shown by the thickened lines. The number of subproblems solved has been reduced
from 32 to 11. However, tests done using this rule showed that the number of sub-
problems solved still rose exponentially with problem dimension. The main cause
of the exponential rise in the work done appears to be the need to check all branches
until the fathoming criteria are satisfied, to ensure the optimum has been found,
although in each case tried the actual optimum was found early in the calculation.

2.3. OPTIMALITY CONDITIONS. Once a feasible solution has been found, the Kuhn-
Tucker conditions can be used to test its optimality.

THEOREM 2. If kT ̂ 0 solves P", and XTXkr-Xry ^ 0, then kr solves P.
(Note that X is the full data matrix, not that part of it used in solving P'. Of

necessity, XjXrk
r—Xjyr = 0, where X, is obtained from X by deleting those

columns corresponding to indices in Jr.)

PROOF. For the general problem:

Minimize /(x),
subject to g(x) ^ 0,

where g(x) =(^,(x), ...,0m(x))T, the Kuhn-Tucker necessary conditions for
optimality are:

0) g(x) > 0,
(ii) there exists u Ss 0 such that V/(x) = Vg(x)u, and

(iii) uTg(x)=0.

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

[7] An algorithm for the least squares problem 351

Moreover, where the objective function is convex and the constraints are linear,
as in P, the conditions are also sufficient. Here, we have

Vg(A)=/and,
VL(X)=2(XTXX-XJy).

Let ur = VZ,(r)5s0; then

Also, as Ar solves Pr,
M' = VL(A'), = 0 for i

but
Ar = 0 forieJ ' ;

hence
u'TAr = O.

So (Ar, ur) is the Kuhn-Tucker point for P. Hence Ar solves P.

2.4. SELECTION OF THE NEXT NODE. If the above test for optimality fails, it can
still be used to determine the next node to branch on, and which branching
variable should be chosen at that node.

THEOREM 3. If Xr^0 solves Pr, ur = VZ.(A'), u\ < 0 for some keJr, and
Jr+1 = {j | Ar = 0, i # k}, then there is some descendant, Xs, ofXr+ x which is feasible
and for which L(XS) < L(Xr).

PROOF. Using the well-known convex function property

we have

But L(Xr+1) < LiXT), as either Pr+1 is less restricted than Pr (Jr+l c /-), or else, if
AJ = 0 for some i$J", then Xr also solves Pr', where Jr' = J ru{i}, and again
/ + 1 c / . Thus

0 > upT(Ar+1-Ar) = ur TAr + 1 =u'kX'k
+l.

Hence

AJ+1>0.
Hence there exists ff+l ^ 0, which is a convex linear combination of Xr+1 and

Ar and so Z.(|T+1) < £(Ar), and which is feasible for i"+ 1 . The proof now follows
from Lemma 1.

One point worth noting is the definition of Jr+l above. It could not be defined
as {jlJeJ'J^k} as it may be that Ar = 0, for some i$Jr, and, if Ar+1<0, then
no convex linear combination, ff+l, of Ap and Ar+1 can have / i r + 1^0.

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

352 David Clark [8]

1(T23456)

5(1455)

4*(456)
6*(156)

Fig. 2. The solution tree for the sample problem using the new algorithm. The numbers in
parentheses represent the variables used in the solution, those with a —, being negative. An *

indicates that the solution is feasible (that is, X > 0).

TABLE 3

Solutions obtained on sample problem using new algorithm

Node

1
2
3
4
5
6

-7.27
0
0
0

13.31
7.52

-1.89
-1.52

0
0
0
0

h
-1.34
-1.05
-0.95

0
0
0

u
0.92
0.44
0.49
0.25

-0.53
0

/Is
2.91
2.23
1.21
0.84
0.22
0.33

1.70
1.08
0.84
0.62

-0.30
0.08

L(X)

32.09
36.42

102.00
127.18
93.51

103.49

Figure 2 shows that portion of the tree generated using Theorems 2 and 3 for
the test problem of Fig. 1. The nodes generated are given in Table 3. The first
four nodes correspond to nodes 1 to 4 of the earlier tree, and nodes 5 and 6 corre-
spond to nodes 9 and 10 respectively.

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

[9] An algorithm for the least squares problem 353

It should be mentioned here that the example was chosen for its illustrative
properties rather than its typicality. In over 90% of the test problems solved, the
first feasible solution found was the optimum, and in the majority of the rest the
algorithm jumped directly to the optimum node.

2.5. THE ALGORITHM SUMMARIZED.

1. Solve the unrestricted problem P1 with Jl = 0. If k ^ 0, stop; otherwise, set
i «- 1 and go to 2.

2. Set i*-i+\. Use some heuristic to select k from the set {7'Uy~'<0} and let
j> = / ' - 1 u {k}. Solve P'. If k' J: 0, go to 3; otherwise go to 2.

3. Use theorem 2 to test kl for optimality. If the test succeeds, stop; otherwise,
go to 4.

4. Use some heuristic to choose k from the set {j\uj<Q}, where u" =VL(A');
set i«- i+ l , and let Jl = {j\kifl =0,j¥= k}. Solve Pl. If A1' ^ 0, go to 3;
otherwise, go to 5.

5. Set i *- i+1. Choose k according to the method used in the proof of Lemma 1.
Let J' =J'~1 u {k}. Solve P'. If k 5= 0, go to 3; otherwise, go to 5.

The heuristics used in steps 2 and 4 were to choose the most negative variable
in each case (but see Section 4 for a fuller discussion).

3. Complexity

It appears difficult to determine any absolute complexity bounds for the
algorithm, but if the assumption is made that, at any feasible kr which fails the
optimality test of Theorem 2, it does so for only one variable, then linear bounds
can be derived.

THEOREM 4. If kr Js 0 solves Pr, ur = VL(kr), and u\ 2* Ofor ieJr-{k}, then N, the
number of subproblems solved, is at most 2n.

PROOF. Let
Jr+i=J'-{i} for all ie.T-{Jfc}.

Then, by an argument similar to that used in proving Theorem 3,

kr,+i<0 for all ieJr-{k}.

Now for any ks ̂ 0 such that L(ks) < L(kr), assume that k'k = 0.
Let

J' = {j\ksj>0,jeJ'}.

Then there will exist a convex linear combination, ff ^ 0, of k', ks and kr+i, ieJ',
which is feasible for P' and for which L{jf) < L(kr), which contradicts the

M
https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

354 David Clark [10]

optimality of Ar. Hence for each subsequent feasible solution, As, found after kr,
A£>0.

Now this applies at each step, so that after each feasible solution is found by
the algorithm, one more variable must remain strictly positive. Thus, if a,- is the
number held to zero in the rth feasible solution found, then a,- < n+1 —/, and also
there will be at most n feasible solutions found.

Let/; be the number of subproblems solved between the (/ - l)st (exclusive) and
ith (inclusive) feasible subproblems, and F the total number of feasible solutions
found. Evidently, for / > \,ft =otj — ocf_1+2, and if a0 is defined as 1, the formula
is also correct for/x.

Thus

F

= Z ai-a,_1+2

= 2F+<xF-<x0

Although there are no a priori grounds for supposing that the above assumptions
are always true, no case has yet been found in which the assumption did not hold.
Indeed, the example of Fig. 1, with N = n, was the only instance of Njn ^ 1 (see
Table 4).

4. Results

The algorithm was tested against data generated using a random number
generator. For each problem size, ten sets of data were solved. Due to lack of
consistency of execution times, N, the number of subproblems solved, was taken
as the measure of algorithm efficiency. (As an indication, however, solving problems
with 40 variables and 50 rows of data took 5 to 10 seconds on a Univac 1110/42.)
Armstrong and Frome claimed competitiveness for their algorithm, and as it was
the progenitor of the new algorithm, it was used for comparison purposes. The
results, given in Table 4, display the linearity predicted in Section 3.

Of the several heuristics tested for choosing the variable to be set to zero at
step 2 of the algorithm, choosing the most negative and choosing the negative
variable which had differed least from A1 proved best. The former was chosen for
its simplicity. No choice ever had to be made at step 4, but choosing the most
negative ux is suggested.

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

[Ill An algorithm for the least squares

TABLE 4

Experimental results. Number of subproblems solved

355

Dimension Armstrong/Frome Armstrong/Frome New algorithm
of X algorithm improved New algorithm modified

n m Mean Worst Mean Worst Mean Worst Mean Worst

6
10
15
20
30
40

10
15
20
30
40
50

10.0
168.2

4097.8
—
—
—

32
566

11886
—
—
—

4.4
34.6

668.6
—
—
—

11
96

1947
—
—
—

3.3
5.4

10.0
11.9
16.6
24.4

6
8
13
14
19
28

4.9
8.8
18.0
21.8
31.2
46.8

13
14
24
26
36
54

5. Extension to other problems

The features of the restricted least squares problem which make it suitable for
the algorithm as given are:

(i) the strict convexity of the objective function;
(ii) the special nature of the constraints; and
(iii) the ease with which each subproblem Pl can be solved.
Any problem which has the above properties is suitable for solving by the

algorithm. One question which arises in other applications is the optimality test
if the Kuhn-Tucker conditions are not readily available, as this test is central to
the algorithm. If this is the case, Theorem 2 can be replaced by one which requires
solving no more than n—\ additional subproblems to test the optimality of a
feasible solution to a subproblem.

THEOREM 5. Let kr Ss 0 solve Pr. Define Jr+i =Jr-{i}for all ieJr. If kr,+i < Qfor
all ieJr, then kr solves P.

PROOF. Assume the above conditions hold and further assume there exists k'
such that L(k')<L(kr). Now, for ieJr, l\ Js 0, and for some ieJr,).\ > 0. But,
for ieJr, X[+i < 0. Hence there is a convex linear combination, ks, of).' and
kr+i for all ieJr for which ?.\ = 0 for all ieJ", so that ks is feasible for Pr.

Now 1(AS)< convex linear combination (L(A'), L(kr+i) for all ieJr). Since
L(k')>L(kr), L(kr+1)^L(kr) and the contribution of k' to ks is non-zero, it
follows that L(ks) < L(kr), which contradicts the assumption that kr solves Pr.
Hence k' solves P.

The only modifications to the algorithm necessary are to replace Theorem 2
with Theorem 5 in step 3, and to omit step 4.

Under the assumptions of Theorem 4 (the complexity theorem), it is easy to

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

356 David Clark [12]

show that the number of subproblems solved is not more than %n(n+1). However,
testing the modified algorithm on the same test data as used before indicated that
in practice this algorithm also behaves linearly (see Table 4).

6. Conclusion

The algorithm presented here appears to be a considerable improvement on
existing algorithms of branch and bound type for this problem, without sacrificing
any of the advantages of these algorithms, for example, ease of use in an interactive
mode, wide availability of least squares regression routines, and simple modification
to account for variable bounds.

The reason would appear to be that in this problem, as so often in branch and
bound, the optimum solution is found quickly and then much time is spent in the
subsequent searching necessary to verify it. Thus the biggest advantage of this
approach is in the use of optimality conditions to improve bounding. Incor-
porating this into the general framework of branch and bound has resulted in a
very efficient algorithm.

Acknowledgements

The author is indebted to Dr. M. R. Osborne and Dr. R. B. Stanton for helpful
discussions on the algorithm and for advice on the presentation of the paper. The
author also wishes to thank the referees for suggestions which have improved the
presentation of the paper.

References

[1] R. D. Armstrong and E. L. Frome, "A branch-and-bound solution of a restricted least squares
problem", Technometrics 18 (1976), 447-450.

[2] E. M. L. Beale, "Selecting an optimum subset", Chapter 22 of Integer and non-linear pro-
gramming (ed. J. Abadie) (Amsterdam: North Holland Publishing Co., 1970).

[3] G. G. Judge and T. Takayama, "Inequality restrictions in regression analysis", J- Amer.
Statist. Assoc. 61 (1966), 166-181.

[4] M. S. Waterman, "A restricted least squares problem", Technometrics 16 (1974), 135-136.

Computing Research Group
Australian National University
Canberra
A.C.T. 2600

https://doi.org/10.1017/S0334270000002435 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002435

