

An algorithm for the asynchronous write-all problem based on
process collision
Citation for published version (APA):
Groote, J. F., Hesselink, W. H., Mauw, S., & Vermeulen, R. (1999). An algorithm for the asynchronous write-all
problem based on process collision. (Computing science reports; Vol. 9915). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/5b2448fa-b0db-4abe-8f1e-71eb966e90f5

An algorithm for the asynchronous Write-All problem based
on process collision

by

J.F. Groote, W.H. Hesselink, S. Mauw and R. Vermeulen

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. P.A.J. Hilbers

Reports are available at:
http://www.win.tue.nVwinlcs

Computing Science Reports 99/15
Eindhoven, September 1999

99115

I

An algorithm for the asynchronous Write-All problem based
on process collision *

Jan Friso Groote,,2, Wim H. Hesselink3, Sjouke Mauw,,2, and Rogier Vermeulen'
1 Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands.

2 CWI, P.O. Box 94079, NL-I090 GB Amsterdam, The Netherlands.
3 University of Groningen, P.O. Box 800, NL-9700 AV Groningen The Netherlands.

Email: jfg«lcvi,nl, wim«lcs.rug.nl, sjoukeCwin.tue.nl, rogierv«lvin.tue.nl

Abstract

The problem of using P processes to write a given value to all positions of a shared array of
size N is called the Write-All problem. We present and analyze an algorithm with work load
O(N· plog(~»), where x = Nl/log(P), OUf algorithm is a generalization of the naive two
processor algorithm where the two processes each start at one side of the array and walk towards
each other until they collide.

Keywords: write-all problem, wait-free, distributed algorithms, work load, PRAM, dynamic load
balancing.

1 Introduction

The Write-All problem is defined as follows. Use P processes (or processors) to write a given value
to all positions of a shared array of size N. Without loss of generality, we shall assume that the array
is an integer array and that 1 is the value to be written to all its positions.

If the processes are reliable and run equally fast, it is easy to come up with straightforward, optimal
solutions for this problem. The situation is quite different, however, if processes-can be faulty or run
at widely varying speeds while at least one process remains active. Kedem et al. [9] have shown that
under these circumstances an N + f/(P log N) lowerbound exists on the amount of work processes
must carry out when processes can fail. This means that even when all processes run fully in parallel
and no process is actually failing, at least f/(Iog N) time is required to set the array.

The original motivation for the Write-All problem comes from [6]. Here it was shown that any
program on a P process synchronous PRAM (Parallel Random Access Machine) can be executed on
any unreliable PRAM with as overhead the complexity of any algorithm solving the Write-All problem.
In [8] an overview is given of the algorithms and PRAM simulations that have been developed so-far.

Om motivation is quite different. It comes from the design of wait-free or asynchronous algorithms
[3, 4, 5], t.o obtain fast, reliable programs for general purpose parallel computers with typically a few
dozen processes that run under widely varying loads.

A common problem on such machines is to carry out a task, consisting of N independent subtasks,
with P processes, as quickly as possible. Such tasks are for instance copying an array, searching an
unordered table, and applying a function to all elements of a matrix. We encountered this problem

• Corresponding author: Dr. S. Mauw, Department of Mathematics and Computing Science, Eindhoven University
of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands, Tel. +31 40 2472908, (seer. 2474124), Fax
+:31 40 2463992, E-mail sjouke@win.tue.nl

1

when we had to find a parallel solution to refresh a hashtable by copying all valid elements to a new
array [3].

If we abstract from the nature of the subtasks, the problem of executing N independent tasks is
adequately characterized by the Write-All problem.

In this paper we present a rather straightforward algorithm to solve the Write-All problem on an
asynchronous PRAM, i.e. a machine on which the processes can be stopped and restarted at will, This
means that it is also suitable for all other fault models as mentioned in Kanellakis and Shvartsman,
page 13 [8]. Using different terminology we can say that our algorithm is wait-free, which means t.hat
one process will be able to finish the whole task, within a predetermined amount of steps, independent

. , ohhe 'actions (opfailures)'of-other-processes; ""
For a shared array of size N and P processes, our algorithm has to carry out O(N plag(';' I) ,

amount of work where x = N '0, P . The complexity of parallel algorithms is generally characterized by
the total amount of steps that all processes must execute, which is called the work of the algorithm,
instead of the execution time, which under ideal circumstances, can be obtained by dividing the work
by the number of available processes. Note that when t~e number of processes is given, which is

, generally the case, the amount of work becomes O(N). Furthermore, it should be noted that the
worst case behaviour leading to this upperhound can only be achieved under a rare lock step scenario
of the processes. So, we expect average complexity to be much better, which has been confirmed hy
experiment.

There are a number of existing solutions to the Write-All problem (see [8] for an excellent overview).
We compare our algorithm to the algorithms X, X', AW, A W T and Y that are all suitable for
asynchronous PRAMs, ignoring the solutions suitable for more restricted fault models. From different
perspectives our algorithm improves upon all of these.

Algorithm X is the first asynchronous algorithm for the Write-All problem [2]. It is designed for
the situation where P ::: N and has work O(N plag(~I). In [8] a generalisation of X, called X' is
presented for the case P ::; N which has the same lowerbound for the amount of work. For N = P
the algorithm presented here performs as well as X'. For P < N our algorithm is an improvement
over X'.

In [1] two particularly clever algorithms are proposed, called A Wand A WT Both have good work
estimates, but, as stated in [8], are not very practical.

Algorithm A W requires work O(P' + Nlog Pl. When P ::; .IN this reduces to O(N log N) which
is particularly good. However, this bound can only be achieved assuming that a set of permutations of
1 ... P with a specific property is given, which requires exponential time to calculate. Such a set can be
gene:t;atec.l,;;t~ randoID"but then~the resull-'only;.holds with high probability. In order to overcome this
problem algorithm Y has been proposed [7]. Algorithm Y is conjectured to have (non probabilistic)
work upperbound O(N log N), which is confirmed by experiments, but which is unproven.

Algorithm AWT needs work O(qP N') where E = logq 10gqC for some constant q that can be freely
chosen, and a constant c which according to the proof in [8] can be chosen to be 2. As log" log q'

goes to 0 when q goes to infinity, algorithm AWT has superior complexity. However, the constant
amount of work that must be done in the preprocessing phase (which is independent of Nand P)
is exponential in q (see [1]). In order to outperform algorithm X' for any II' and' P, it must be the
case that E < log(~). From this it follows that q must be larger than 80. Therefore, to ourperform
our algorithm, q must be chosen even larger. In the setting for which we developed our algorithm,
we generally have P < .IN (and thus x ::: 2), so one must choose E < log ~ to make algorithm AWT
perform better than Our algorithm. This means that q needs to be larger than 10'- This is the reason
why we expect that our algorithm performs much better under practical circumstances.

The present paper has the following structure. In Section 2 we present the algorithm. In Section 3
we prove its correctness and show space and time bounds. Section 4 contains some considerations on
using a non-uniform tree as the shared data structure. Finally, Section 5 is reserved for conclusions

2

and further considerations.

Acknowledgements. We thank Dragan Bosnacki, Andre Engels, Peter Hilbers, Jan Jongejan,
.lohan Lukkien, and Alex Shvartsman for comments, ideas and references.

2 A collision based algorithm

2.1 Basic case

Although the asynchronous Write-All problem in its general setting is far from trivial, the case that
there are only two processes (P = 2), allows for a very intuitive and optimal solution. This algorithm
"olves the problem for any value of N in O(N) steps. One process starts at the left of the array
and walks to the right, in the meanwhile setting the values of the array elements encountered to l.
The other process does the same from right to left. If the two processes collide, the whole array is
processed and the processes can stop. In the worst case, one element of the array is processed twice.
We will call this algorithm the Basic Collision algorithm.

In [2J an extension of this algorithm is described, which works with three processes. It is called
algorithm T. Two processes have the same behaviour as described above, but the third process behaves
differently. It starts in the middle of the array and fills the array alternately to the left and to the
right. If the first two processes collide, it means that the whole array is processed. If e.g. the first and
the third process collide, it means that the left part of the array is processed. Therefore they move to
the segment of the array that is not processed yet. The first process starts at the left of this segment,
the third process starts again in the middle of this segment, and the second process is still busy filling
the segment from the right. This procedure repeats until the array is completely processed. This
algorithm is also optimal and has a work load O(N). Algorithm T does not appear to be generizable
to larger numbers of processes.

2.2 Generalized case

Our algorithm generalizes the Basic Collision algorithm in a different way. We will call it the Gen
eralized Collision algorithm. It is best explained by looking at a simple example with four processes
(P = 4). We choose N = 25 in our example.

The processes operate in pairs. Every pair of processes executes the Basic Collision algorithm
on successive segments of the array. Each segment has length 5, so there are 5 segments. The four
processes start at the locations indicated in Figure 1. The arrows indicate the direction in which each
process traverses the segment .

• • • • • • • • • • • •••• • •••• • ••••

Figure 1: Initial configuration

Every time that a segment of the array has been processed by a pair, operation continues at the
uext segment. The first process of a pair to finish a segment can directly continue with the next
~egment, without having to wait for the other process. In this way, the pairs walk towards each other
through the array in steps of length 5 until they collide. A typical path of the four processes in our
example is shown in Figure 2. This figure shows just one possible path, in which all processes roughly
operate at the same speed. The algorithm, however, is completely robust with respect to process
delays, failures and restarts. This is because every process potentially visits all array elements. As
long as one process survives, the whole array will be processed.

3

•••••

,

• • • • •
, "

--,V",
, ,

l;"\ '

,,- --

.....J '-----.i
~.----- ~ , , ;,

• • • • • • ••••

Figure 2: Possible paths of the processes

• • • • •

From a higher point of view, the four processes also execute the BasicCollision algorithm where
the grainsize of the work is 5. To see this, we have to consider every pair as a single aggregated process
and every segment of length 5 as a single aggregated array element. A collision now takes place at. a
complete segment, rather than at a single array element. This explains why the middle segment ill
Figure 2 is processed twice.

It is now clear how to generalize this example if we double the numbers of processes and assume
125 array elements. We simply add one level to the hierarchy and have clusters of four processes
operate on segments of length 25, until the clusters collide.

This implies that our algorithm works for any number of processes which is a power of two, so
P = 2k for some k 2: 1. Furthermore, we have that the length of the array is the length of a basic
segment to the same power, so N = xk for some x 2: 2. In the above example we have chosen k = 2
and x = 5.

In Figure 3 the generalization of the Basic Collision algorithm is illustrated in a cube which has
to be filled with 1 's by 8 processes. The picture shows pairs of processes, clusters of 2 processes, and
clusters of 4 processes racing each other, In this example k = 3 (the dimension of the cube) so t.here
are 8 processes, and the length of an edge of the cube is x, so that there are x 3 cells to be filled. This
is the biggest example that we can easily visualize in this way, An example with 16 processes would
require a 4-dimensional figure.

.. Figure 3: Generalization of the collision principle illustrated in a cube.

4

2.3 Datastructures

Additional datastructures are needed in order to enable the processes to decide which array element
should be processed next. First of all, every process has a process identifier (pili) consisting of a
bitstring of length k. The set of all process identifiers is called PID. We use the functions head and
tail to return the first element of a bitstring and thc bitstring with the first element deleted. The
hitstrings will be used to direct the processes to different parts of the array. There is a nice relation
between the pids of the processes and the initial position of the processes in the cube from Figure 3.
If wc consider the general Boolean k-dimensional hypercude, the pids correspond to the processes's
initial co-ordinates.

Next, we assume that the processes share a tree of depth k. According to the above explanation
the tree should have a uniform fan out x. This would mean that there are exactly xk leaves, which
correspond with the elements of the array. However, we will formulate our algorithm in such a way
that it also works for trees with a non-uniform fan-out, for reasons explained in Section 4.

Evcry leaf I has an attribute I.value : int that must be set to 1. The relation between the tree
and the cube that we used to illustrate the generalization of the collision principle, is straightforward.
Each level in the tree corresponds with a dimension, and a cell (CO,CI,C2) of the cube corresponds
with the leaf that we arrive at if we travel down the tree first taking the co-th branch, then the cloth
branch, and finally the c2-th branch.

The internal nodes of the tree maintain information on how far the corresponding subtree has been
processed already. Every internal node n has t.he following three attributes.

• n./an: int
This constant denotes the number of children of the node.

• n.nl : 0 .. n.fan := 0
This variable denotes the number of child nodes that have already been processed, from left to
right.

• n.nr : 0 .. n.fan := 0
This variable denotes the number of child nodes that have already been processed, from right
t.o left.

Note that the subtree of node n has been processed completely if n.nl + n.ne 2: n.fan.
Thc root of the t.ree is denot.ed by root and the predicate is_leaf determines if a node is a leaf. Similar

to algorithm Tin [2], we make use of an atomic tcompare-and-swap-like instruction (see e.g. [4]). In
the algorithm below this is denoted by placing angular brackets around the statement ('(' and ')').
\Ve mention that for correctness of the algorithm, atomicity is not really needed, but for our work
load calculations it is.

2.4 The algorithm

All processes operate in parallel and perform the same recursive procedure traverse with as the first
argument the process identifier and the second argument the root of the tree. The recursive calls have
as arguments smaller bit strings and other nodes of the tree. We use notation from [8] to express this.

forall pid in PID parbegin
iT'a verse(pid, root)

parend

Procedure traverse is defined below.

5

procedure traverse(bs,node)
var i: 0 .. node.fan;
begin

if idea/(node) then
node. value := 1

else
if head(bs) = 0 then

i := node. nl;
while i + node.nr < nodeJan do

. " ,~,' ,'.' .. ,traverse{tail(tls},child(node,iHi··
(if node.nl = i then node.nl := i + 1 Ii);

Ii
end

i := node.nl
od

else
i := node.nr,
while node.nl + i< node.fan do

traverse(tail(bs),child(node,node.fan - 1 - i));
(if node.nr = i then node.nr := i + 1 Ii);
i:= node.nr

od
Ii

In the base case where the node is a leaf, the procedure writes the intended value in the array.
Otherwise, the procedure treats the children of the node in a repetition from left to right or from
right to left. The choice between starting left or right is irrelevant for correctness. For the sake of
the work load, we let the choice depend on the head of the first argument bs, which is a suffix of
the process's pid. The recursive calls have the tail of the bit string bs as first argument, so that the
processes start their actions at different points in the array. The updates of node. nl and node. nT arc
conditional atomic updates, for reason of efficiency only. Otherwise a delayed process might have to
treat a large part of the array again. Private variable i is introduced to allow modification of t.he
shared variables node. nl and node. nr by other processes.

This code expects the process identifiers pid to have length equal to (or greater than) t.he depth
of the tree." One' may prefer' to'· use" pro-cess' identifiers -of type integer with the conventions that
head(bs) = bs mod 2 and tail(bs) = bs div 2.

3 Analysis of the algorithm

3.1 Correctness

The proof of correctness of the distributed algorithm consists of two steps. First we prove partial
correctness (i.e. if one of the processes successfully finishes, the whole tree has been processed) and
next we prove termination (at least one process finishes successfully). If all leaves of a (sub)tree have
been set to 1, we say that the (sub)tree has been processed.

Partial correctness follows from the next lemma.

6

Lemma 1

1. For every internal node n of the shared tree, invariably that n.nl subtrees of node n from left to
right have been processed. Likewise n.nr subtrees have been processed /rom right to left.

2. If a call traverse(CT)n) (for some bitstring CT and some node n finishes successfully, the subtree
rooted in node n has been processed.

Proof We prove the two parts with simultaneous induction on the depth of node n. The base case)
where node n is a leaf is trivial. For the inductive case) we suppose that node n is an internal node.

l. The value of shared variable n. nl is only incremented from i to i + 1 if procedure traverse has
finished on the ith subtree of node n. By induction we then have that this subtree has been
processed, which certifies this invariant. The variable n.nr is treated similarly.

2. If a call traverse(u,n) finishes, one of the guards i + n.nr < n.fan and n.nl + i < n.fan must
be false. Notice that in the first case we have i ::; n.nl and in the second case i ::; n.nr. This
is due to the fact that the values of n.nr and n.nl are non-decreasing. Therefore, if the call
traverse(u,n) finishes we have n.nl + n.nr 2: n.fan. Using the induction hypothesis, we can
conclude that all subtrees of node n are processed, so the tree rooted in n is processed.

Next, we will prove termination of the algorithm. For this we formulate the following termination
function:

L n.nl +n.nr
nEintcrnalnodcs

The fact that this is a proper termination function follows from the following observations.
First, the function is bound, since for every internal node n the values of n. nl and n. nr are bounded

by the constant n.fan. Second, recall that the fault model implies that all but one process may fail.
Since there are no blocking statements, the surviving process will continually invoke calls to procedure
t]"averse. After every call of this procedure (to, say, node n), the value of n.nl + n.nr is strictly larger
than before this call. Namely) it is incremented with 1 by the calling process, or it is incremented
wit.h at least 1 by one or more other processes.

In conclusion, we have that at least one call of tmverse(pid,root) finishes successfully (termination)
and that this implies that the complete tree rooted in root has been processed.

3.2 Space usage

The shared data structure consists of the given array of N bits, together with the data at the N - 1
internal nodes of the tree (see e.g. [81 for a description of how to represent a tree in a heap without
overhead). Every internal node n holds two shared variables of size log n.fan. So the shared memory
has size of O(N log N).

Every process needs a private data structure with space for k stack frames) since the recursion
depth is k. Each stack frame holds a local variable of size log node.fan and two parameters of size k
(or at least log k) and log N.

So the processes have only moderate space requirements.

3.3 Work load

As was mentioned before, the work load of a parallel algorithm is the worst case total amount of work
performed by the processes involved. With 'total amount of work' one generally means the number
of instructions executed by all processes. We measure the work load by counting the total number

7

of calls of procedure traverse in a worst case scenario. The program text clearly shows that only a
constant number of instructions is executed in each call of traverse, so the total number of procedure
calls is an appropriate estimate here.

In the calculations below we will assume that the number of processes is 2k and that the length of
the array is xk for some k 2: 1 and x 2: 2. This allows for the construction of a tree with a uniform
fan-out. We will briefly consider the case of a tree with non-uniform fan-out in Section 4.

Because of the recursive structure of the input of the algorithm, the shared tree with fan out :Z:, \ve
define the work load inductively, i.e. express the work load associated with a tree of height i in terms
of the work load associated with its subtrees of height i - 1. Note, that the number of processes, which
of-course'plays·an··important~role-~in determining the work'load,"'is':fixed>t,wheil:we knoW' the" height 'of
the tree, namely 2i (given a tree of height i). In our first inductive definition of work load, however,
we will decouple the number of processes and the height of the input tree, because, as we will see,
subtrees of the input tree can be overloaded with processes (and will be overloaded in a worst case
scenario).

We introduce numbers Wi,j to estimate the work load for 2i processes on a tree of height 'l ::; j.
These numbers are defined recursively by

WO,j = 2j

WH1 ,j = 2j + (x - l)W;,j_l + W;,;

(1)

(2)

Equation (1) is justified by the observation that, when 2j processes start to work on a tree of
height 0, a single leaf, they will all call procedure traverse once to set the array item associated with
the leaf to 1, resulting in a work load of 2j .

We arrive at equation (2) in the following way (see also Figure 4). When 2; processes start working
on a tree of height i + 1, they will first all call procedure traverse on the root of the tree. This accounts
for the summand 2j in the definition of W;+1,j. Next, the processes split up in two groups of 2;-1
processes, according to their pids. One group will process the subtrees from left to right and the other
group vice versa. The collision-principle assures us that these two groups can interfere in only one of
the x subtrees, the one where they collide (the grey sub-tree in Figure 4). The work load associated
with the subtrees can therefore be split in x-I times the work load of 2j - 1 processes on a tree of
height i (the summand (x - l)W;,j_r), and the work load of 2j processes on a single tree of height i
(the summand W;,j)'

We will now transform the recurrence relation W into a simpler one, taking advantage of the fact
that we are primaiirYintere'steil'in Wk,k(where N ~ Xk and P = 2k). We first need to prove the
following conjecture which states that doubling the number of processes doubles the work load:

2 . Wi,j_l = Wi,j (for j > i) (3)

We prove this by induction on i. For i = 0 we have 2 . WO,j-l = 2 ·2j - 1 = 2j = WO,j. Assuming that
the conjecture holds for i, We derive.for,i + 1: 2· WH1,j-l= 2· (2!-:-1,+ (x-I)· W;,j_2 + W;,j-r) =
2j + (x - 1) ·2· W '-2 + 2 . W '-1 = 2j + (x - l)W_l + W . = W+1 . t,j t,) t,J t,) t ,J

Property (3) can also be explained in terms of pids. When the number of processes is doubled,
they will have to share pids (because j > i). Each process will have a doppelganger that follows the
exact same route through the tree. This imitative behaviour explains the doubling of the work load.

Because of property (3) ~we can rewrite the second equation of the definition of W as follows:

WH1 ,j = 2' + (x -l)W;,j_l + 2· W;,j-l

= 2; + (x + l)W;,j_l

8

j - J <2

)
height i + I

t
height

+
x subtrees

Figure 4: Worst case distribution of processes over subtrees.

This equat,ion exhibits a nice correlation between arguments i and j that equation (2) did not. This
observation and the fact that we are interested in Wk,k lead to the introduction of Wi, which, for i 2: 0,
denotes the work load of 2i processes on a tree of height i. Therefore we define Wk = Wk,k and it
follows that Wk satisfies the recurrence relations (4) and (5).

Wo 1

2'+1 + (x + I)wi

(4)

(5)

"\Ve now calculate an appropriate estimate for Wk. Although these calculations are straightforward
we provide them in full.

Wk

= { solve the recurrence relation}
k

L 2k
-

i (x + I)i
i=O

= { simple math}

(x + I)k+1 _ 2k+l

x-I
= { even more simple math}

x + 1 ()k 2k+l --x+I --
x-I x-I

S; { x ::> 2, hence (x + I)j(x - 1) S; 3 and 2k+l j(x - 1) > 0 }

3·(x+I)k

9

Hence, we have Wk = O((x + l)k). We would like to express the work load in terms of Nand P, so
we do some more calculations on (x + l)k, using the equalities N = xk and P = 2k:

(x + l)k = xk (x +/)k
x

=xk(X;l)"

= N . (x: 1) log(P)

= N. plog(~)

We have now proven that the work load of our algorithm is O(N· Plog(~)), where x = Ni/log(P)

4 Non-uniform fan-out ...

Although we were able to prove correctness of the algorithm for trees with non-uniform fan-out, we
did assume uniform fan-out for OUf work load calculations. This assumption proved very useful for
obtaining a result which can easily be compared with work load calculations for other algorithms.

Nonetheless, we claim that this assumption is not critical for the performance of our algorithm.
Calculations and experimentation support this claim. Examples show that, strictly speaking, an
optimal work load is almost never achieved with a uniform fan-out. In almost all cases the work load
can be slightly improved by rebalancing the tree, while still keeping it quasi-uniform. By quasi-uniform
we mean that the nodes at the same level of a tree have equal fan-out.

In the case of quasi-uniform fan-out the work load can be given as a closed expression that contains
sum and product quantifiers. One cannot expect otherwise, since the fan-out of the levels is now given
by a vector (the sequence of fan-outs of various levels). If one now treats the fan-outs as real numbers,
one can obtain a recursive formula for the optimal fan-outs. This can be used as the starting point
for a search for an optimal integer solution under the side condition that the quasi-uniform tree has
at least N leaves.

These calculations show, e.g., that in the case that N = 12, 000 optimal work load is obtained if
the fan-out for each level is 5, 5, 5, 6, 16, from the root level to the level above the leaves. III the
general case we see that an optimal work load is obtained if the fan-out for all levels arc approximately
th~. same, . except for .. the faIl::-out. at. the .level above. the .leaves,··which· should. be· three times larger.

We expect that in practice rebalancing the tree will yield at most a constant speed up in perfor
mance.

5 Observations and conclusions

We have presented. an.algorithm for· the· asynchronous Write~AII pmblem/rhis algorithm is suitable
for a multiprocess environment, as due to the lack of explicit synchronization, it has good performance.
In particular this is the case when the task of setting a variable to one is replaced by a more time
consuming operation. Moreover, the algorithm is fault tolerant in the sense that it works correctly
even if individual processes can fail or can stop and resume arbitrarily, assuming that not all processes
die. Finally, our algorithm performs a kind of dynamic load balancing. Every process checks in a.
specific order all the tasks that must be executed and if it finds one that has not been performed,
it carries it out. Due to the data structures involved, this can be done with minimal duplication of
work. This guarantees a distribution of tasks over processes, where no process will idle when work
can be done.

10

Our algorithm improves upon existing asynchronous algorithms in several ways. In comparison
with most published algorithms it has a better order of performance. This does not hold for algo
rithms A Wand A W T

, which are based on a rather different algorithmic concept than our algorithm.
Algorithm A W 'only' improves upon our algorithm with high probability, although we expect that in
practice this algorithm has a good performance. From a theoretical perspective AWT performs better
than our algorithm, but due to a high initial constant amount of work A WT is not suitable for any
practical purposes.

To ascertain these findings, we have implemented our algorithm and ran it for different numbers of
processes, where we compared the number of process steps with the worst case estimate of the amount
of work that needs to be done. Without going into detail, as we believe that it is very hard to draw
universal conclusions from experiments, we found that the overhead always remained far below our
worst case estimate.

Finally, we make some observations concerning the restrictions on the values for Nand P. In the
case that we use a tree with uniform fan-out as the shared data structure, an array of size N = xk

can be accommodated. However, such uniform fan-out is not needed for obtaining an optimal work
load. By adjusting the fan-out of the nodes in the tree, it is possible to accommodate an array with
arbitrary size N. Furthermore, since processes need not execute, we can take P ::; 2k, provided all
process identifiers differ and have a length at least equal to the depth of the tree. The work load
remains essentially the same.

References

[1] R. . .I. Anderson and H. Woll. Algorithms for the certified write-all problem. Siam Journal of Com
puting, 26(5) :1277-1283, 1997.

[2] .I.F. Buss, P.C. Kanellakis, P.L. Ragde and A.A. Shvartsman. Parallel Algorithms with Processor
Failures and Delays. Journal of Algorithms, 20:45-86, 1996.

[3] .l.F. Groote and W.H. Hesselink. Synchronization-free parallel accessible hash-tables. In prepara
tion, 1999

[4] Herlihy, M.P.: Wait-free synchronization. ACM Trans. on Program. Languages and Systems 13
(1991) 124-149.

[5] W.H. Hesselink and J.F. Groote. Waitfree Distributed Memory Management by Create, and Read
Until Deletion (CRUD). Technical report SEN-R9811, CWI, Amsterdam, 1998.

[6] P.C. Kanellakis and A.A. Shvartsman. Efficient parallel algorithms can be made robust. Distributed
Computing, 5(4):201-217, 1992. A preliminary version appeared in Proceedings of the 8th ACM
PODC, pages 211-222, 1989.

[7] P.C. Kanellakis and A.A. Shvartsman. Fault-tolerance and efficiency in massively parallel algo
rithms. In G.M. Koob and C.G. Lau, editors,Foundations of Dependable Computing - Paradigms
for Dependable Applications, pages 125-154, Kluwer Academic, 1994.

[81 P.C. Kanellakis and A.A. Shvartsman. Fault-tolerant parallel computation. Kluwer Academic Pub
lishers, 1997.

[9] Z.M. Kedem, K.V. Palem, A. Raghunathan, and P. Spirakis. Combining tentative and definite
executions for dependable parallel computing in Proceedings of the 23d ACM Symposium on Theory
of Computing, 1991.

11

Computing Science Reports

In this series appeared:

96101 M. Voorhoeve and T. Basten

96102 P. de Bra and A. Aerts

96/03 W.M.P. van dec Aalst

96105 T. Basten and W.M.P. v.d. Aalst

96106 W.M.P. van der AaIst and T. Basten

96107 M. Voorhoeve

96/08 A.T.M. Aerts. P.M.E. De Bra.
J.T. de Munk

96109 F. Dignum. H. Weigand, E. Verharen

96110 R. 8100, H. Geuvers

96111 T. Loan

96112 F. Kamareddine and T. Laan

96113 T. Borghuis

96114 S.H.J. Bos and M.A. Reniers

96115 M.A. Reniers and 1.1. Vereijken

96117 E. Boiten and P. Hoogendijk

96118 P,D.V. van dec Stok

96119 M.A. Reniers

96120 L. Feijs

96/21 L. Bijlsma and R. Nederpelt

96122 M.C.A. van de Graaf and Gl. Hauben

96123 W.M.P. van dec Aa1st

96124 M. Voorhoeve and W. van dec Aalst

96/25 M. Vaccari and R.C. Backhouse

97/02 1. Haoman and O. v. Roosmalen

97/03 J. Blanco and A. v. Deursen

97/04 J .C.M. Baeten and J.A. Bergstea

97/05 J.C.M. Baeten and lJ. Vereijken

97/06 M. Franssen

97/07 J.C.M. Baeten and l.A. Bergstra

97/08 P. Hoogendijk and R.C. Backhouse

Department of Mathematics and Computing Science
Eindhoven University of Technology

Process Algebra with Autonomous Actions. p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service Station,
p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net. p. 26.

A Process-Algebraic Approach to Ufe-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Ufe-Cycle Inheritance A Petri-Net-Based Approach. p. 18.

Structural Petri Net Equivalence, p. 16.

OODa Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments. p. 14.

A Formal Specification of Deadlines using Dynamic Deontic Logic. p. 18.

Explicit Substitution: on the Edge of Strong Normalisation. p. 13.

AUTOMA TH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The /2 C-bus in Discrete-Time Process Algebra. p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism. p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time constraints,
p.71.

Static Semantics of Message Sequence Charts, p, 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concurrent
Environment. p. 27.

Predicate calculus: concepts and misconceptions. p. 26.

DeSigning Effective Workflow Management Processes. p. 22,

Structural Characterizations of sound workflow nets, p. 22,

Conservative Adaption of Workflow. p.22

Deriving a systolic regular language recognizer, p. 28

A Programming-Language Extension for Distributed Real-Time Systems. p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric Time,
p.26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues, p, 15.

When do datatypes commute? p. 35.

97/09 Proceedings of the Second IntemationaJ Communication Modeling- The Language/Action Perspective. p. 147.

97/10

97111

97112

97/13

97114

97115

97116

97117

97118

98/01

98/02

98/03

98/04

98/05

98/06

Workshop on Communication Modeling.
Veldhoven. The Netherlands. 9-10 lune. 1997.

P.C.N. v. Gorp. E.l. Luit. D.K. Hammer
E.H.L. Aans

A. Engels. S. Mauw and M.A. Reniers

D. Hauschildt. E. Verbeek and
W. van der Aalst

W.M.P. van der Aalst

I.F. Groote, F. Monin and
I. Springintveld

M. Franssen

W.M.P. van der Aalst

M. Vaccari and R.C. Backhouse

Werkgemeenschap Informatiewetenschap
redactie: P.M.E. De Bra

W. Van der Aalst

M. Voorhoeve

J.C.M. Baeten and 1.A. Bergstra

R.C. Backhouse

D. Dams

G. v.d. Bergen, A. Kaldewaij
V.J. Dielissen

Distributed real-time systems: a survey of applications and a general design
model. p. 31.

A Hierarchy of Communication Models for Message Sequence Charts. p. 30.

WOFLAN: A Petri-net-based Workflow Analyzer. p. 30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked aJgebraic verification of a distributed summation algorithm,
p.28

AP-: A Pure Type System for First Order Loginc with Automated
Theorem Proving. p.35.

On the verification of Inter-organizationaJ worldlows. p. 23

Calculating a Round-Robin Scheduler, p. 23.

Informatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie
Informatiewetenschap, p. 60.

FonnaJization and Verification of Event-driven Process Chains, p. 26.

State / Event Net Equivalence. p. 25

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

Pair Algebras and Galois Connections, p. 14

Flat Fragments of CIL and CIL *: Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union of Intervals on a Line Revisited, p. 10.

98/07 Proceedings of the workhop on Workflow Management:
Net-based Concepts. Models, Techniques and Tools (WPM'98)
June 22, 1998 Lisbon, Portugal edited by W. v.d. Aalst, p. 209

98/08 Infonnal proceedings of the Workshop on User Interfaces for Theorem Provers.
Eindhoven University of Technology .13-15 July 1998

edited by R.C. Backhouse, p. 180

98/09 K.M. van Hee and H.A. Reijers An analytical method for assessing business processes. p. 29.

98/10 T. Basten and J. Hooman Process Algebra in PVS

98/11 J. Zwanenburg The Proof-assistemt Yarrow, p. 15

98112 Ninth ACM Conference on Hypertext and Hypennedia
Hypertext '98
Pittsburgh, USA, June 20-24, 1998
Proceedings of the second workshop on Adaptive Hypertext and Hypennedia.

98/13 J.F. Groote. F. Monin and I. v.d. Pol

98/14 T. Verhoeff (anikel voigt)

99/01

99/02

99/(}3

99/04

V. Bos and J.J.T. Kleijn

H.M.W. Verbeek. T. Basten
and W.M.P. van der AalSI

R.C. Backhouse and P: Hoogendijk

S. Andova

Edited by P. Brusilovsky and P. De Bra, p. 95.

Checking verifications of protocols and distributed systems by computer.
Extended version of a tutorial at CONCUR '98, p. 27.

Structured OperationaJ Semantics of X , p. 27

Diagnosing Workflow Processes using Woflan, p. 44

Final Dialgebras: From Categories to Allegories. p. 26

Process Algebra with Interleaving Probabilistic Parallel Composition. p. 81

99/05

99/06

99/07

99/08

99/09

99110

99111

99112

99113

99114

M. Franssen, R.C. Veltkamp and
W. Wesselink Efficient Evaluation of Triangular B-splines, p. 13

T. Basten and W. v.d. Aalst Inheritance of Workflows: An Approach to taclding problems related to change. p. 66

P. Brusilovsky and P. De Bra Second Workshop on Adaptive Systems and User Modeling on the World Wide
Web. p. 119.

D. Bosnacki, S. Mauw. and T. Willemse Proceedings of the first international syposium on Visual Panna1 Methods - VFM'99

J. v.d. Pol, J. Hooman and E. de long Requirements Specification and Analysis of Command and Control Systems

T.A.C. WilJemse The Analysis of a Conveyor Belt System. a case study in Hybrid Systems and timed
I' CRL. p. 44.

J.eM. Baeten and CA. Middelburg Process Algebra with Timing: Real Time and Discrete Time, p. 50.

S. Andova Process Algebra with Probabilistic Choice. p. 38.

K.M. van Hee. R.A. van der Toom.
J. van der Woude and P.A.c. Verkoulen A Framework for Component Based Software Architectures. p. 19

A. Enge\s and S. Mauw Why men (and octopuses) cannot juggle a four ball cascade. p. 10

Computing Science Reports

In this series appeared:

96/01

96/02

96/03

96/05

96/06

96/07

96108

96/09

96110

96111

96112

96113

96114

96115

96117

96118

96119

96/20

96121

96122

96/23

96/24

96125

97/02

97/03

97/04

97/05

97/06

97/07

97/08

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van dec Aalst

T. Basten and W.M.P. v.d. Aalst

W.M.P. van def Aalst and T. Basten

M. Voorhoeve

A.T.M. Aerts. P.ME. De Bra,
J.T. de Munk

F. Dignum. H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T.Laan

F. Kamareddine and T. Laan

T. Borghuis

S.HJ. Bos and M.A. Reniers

M.A. Reniers and 1.J. Vereijken

E. BoiteD and P. Hoogendijk

P.D.V. van dec Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.e.A. van de Graaf and G.l. Houben

W.M.P. van def Aalst

M. Voorhoeve and W. van dec Aa1st

M. Vaccari and R.C. Backhouse

J. Haoman and O. v. Roosmalen

J. Blanco and A. v. Deursen

I.C.M, Baeten and 1.A. Bergstea

I.C.M. Baeten and J.J. Vereijken

M. Franssen

I.C.M. Baeten and lA. Bergstea

P. Hoogendijk and R.c. Backhouse

Department of Mathematics and Computing Science
Eindhoven University of Technology

Process Algebra with Autonomous Actions. p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service Station,
p.12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Nel-Based Approach. p. 18.

structural Petri Net Equivalence, p. 16.

0008 Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Fonna1 Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Nonnalisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism, p. II.

Real~Time Distributed Concurrency Control Algorithms with mixed time constraints,
p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concurrent
Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric Time,
p.26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling- The Language! Action Perspective, p. 147.

97/10

97111

97112

97113

97114

97/15

97/16

97117

97/18

98/01

98/02

98/03

98/04

98/05

98/06

Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P.C.N. v. Gorp. EJ. Luit, D.K. Hammer
E.H.L. Aarts

A Engels, S. Mauw and M.A Reniers

D. Hauschildt, E. Verbeek and
W. van der Aalst

W.M.P. van der Aalst

J.F. Groote, F. Monin and
J. Springintveld

M. Franssen

W.M.P. van der Aalst

M. Vaccari and RoC. Backhouse

Werkgemeenschap Infonnatiewetenschap
redactie: P.M.E. De Bra

W. Van der Aalst

M. Voorhoeve

J .C.M. Baeten and J .A. Bergstra

R.C. Backhouse

D. Dams

G. v.d. Bergen, A Kaldewaij
VJ. Dielissen

Distributed real-time systems: a survey of applications and a general design
model, p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p. 30.

WOFLAN: A Petri-net-based Workflow Analyzer, p. 30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification of a distributed summation algorithm,
p. 28

)"P-: A Pure Type System for First Order Loginc with Automated
Theorem Proving. p.35.

On the verification of Inter-organizational workflows. p. 23

Calculating a Round-Robin Scheduler, p. 23.

Infonnatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie
lnfonnatiewetenschap. p. 60.

Formalization and Verification of Event-driven Process Chains, p. 26.

State I Event Net Equivalence, p. 25

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

Pair Algebras and Galois Connections, p. 14

Aat Fragments of CTL and CTL *: Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union of Intervals on a Line Revisited, p. 10.

98/07 Proceedings of the workhop on Workflow Management:
Net-based Concepts, Models, Techniques and Tools (WFM'98)
lune 22, 1998 Lisbon, Portugal edited by W. v.d. Aalst, p. 209

98/08 Infonnal proceedings of the Workshop on User Interfaces for Theorem Provers.
Eindhoven University of Technology ,13-15 July 1998

edited by R.c. Backhouse, p. 180

98/09 K.M. van Hee and H.A Reijers An analytical method for assessing business processes, p. 29.

98/10 T. Basten and 1. Hooman Process Algebra in PVS

98/11 J. Zwanenburg The Proof-assistemt Yarrow, p. 15

98112 Ninth ACM Conference on Hypertext and Hypermedia
Hypertext '98

98113

98/14

99/01

99/02

99/03

99/04

Pittsburgh, USA,lune 20-24, 1998
Proceedings of the second workshop on Adaptive Hypertext and Hypennedia.

J.F. Groote, F. Monin and J. v.d. Pol

T. Verhoeff (artikel voigt)

V. Bos and n.T. Kleijn

H.M.W. Verbeek, T. Basten
and W.M.P. van der Aalst

R.C. Backhouse and P. Hoogendijk

S. Andova

Edited by P. Brusilovsky and P. De Bra, p. 95.

Checking verifications of protocols and distributed systems by computer.
Extended version of a tutorial at CONCUR'98, p. 27.

Structured Operational Semantics of X ' p. 27

Diagnosing Workflow Processes using Woflan, p. 44

Final Dialgebras: From Categories to Allegories, p. 26

Process Algebra with Interleaving Probabilistic Parallel Composition, p. 81

99/05

99/06

99/07

99/08

99/09

99/10

99/11

99/12

99/13

99/14

M. Franssen, R.C. Veltkamp and
W. Wesselink Efficient Evaluation of Triangular B-splines, p. 13

T. Basten and W. v.d. Aalst Inheritance of Work flows: An Approach to tackling problems related to change, p. 66

P. Brusilovsky and P. De Bra Second Workshop on Adaptive Systems and User Modeling on the World Wide
Web, p. 119.

D. Bosnacki, S. Mauw. and T. Willemse Proceedings of the first international syposium on Visual Fonnal Methods - VFM'99

J. v.d. Pol, J. Hooman and E. de Jong Requirements Specification and Analysis of Command and Control Systems

T.A.C. WilJemse The Analysis of a Conveyor Belt System, a case study in Hybrid Systems and timed
!1 CRL, p. 44.

J.C.M. Baeten and c.A. Middelburg Process Algebra with Timing: Real Time and Discrete Time, p. 50.

S. Andova Process Algebra with Probabilistic Choice, p. 38.

K.M. van Hee, R.A. van der Toom,
J. van der Woude and P.A.C. Verkoulen A Framework for Component Based Software Architectures, p. 19

A. Engels and S. Mauw Why men (and octopuses) cannot juggle a four ball cascade, p. 10

	Abstract
	1. Introduction
	2. A collision based algorithm
	2.1 Basic case
	2.2 Generalized case
	2.3 Datastructures
	2.4 The algorithm
	3. Analysis of the algorithm
	3.1 Correctness
	3.2 Space usage
	3.3 Work load
	4. Non-uniform fan-out
	5. Observation and conclusions
	References

