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Abstract 

The problem of using P processes to write a given value to all positions of a shared array of 
size N is called the Write-All problem. We present and analyze an algorithm with work load 
O(N· plog(~»), where x = Nl/log(P), OUf algorithm is a generalization of the naive two
processor algorithm where the two processes each start at one side of the array and walk towards 
each other until they collide. 

Keywords: write-all problem, wait-free, distributed algorithms, work load, PRAM, dynamic load 
balancing. 

1 Introduction 

The Write-All problem is defined as follows. Use P processes (or processors) to write a given value 
to all positions of a shared array of size N. Without loss of generality, we shall assume that the array 
is an integer array and that 1 is the value to be written to all its positions. 

If the processes are reliable and run equally fast, it is easy to come up with straightforward, optimal 
solutions for this problem. The situation is quite different, however, if processes-can be faulty or run 
at widely varying speeds while at least one process remains active. Kedem et al. [9] have shown that 
under these circumstances an N + f/(P log N) lowerbound exists on the amount of work processes 
must carry out when processes can fail. This means that even when all processes run fully in parallel 
and no process is actually failing, at least f/(Iog N) time is required to set the array. 

The original motivation for the Write-All problem comes from [6]. Here it was shown that any 
program on a P process synchronous PRAM (Parallel Random Access Machine) can be executed on 
any unreliable PRAM with as overhead the complexity of any algorithm solving the Write-All problem. 
In [8] an overview is given of the algorithms and PRAM simulations that have been developed so-far. 

Om motivation is quite different. It comes from the design of wait-free or asynchronous algorithms 
[3, 4, 5], t.o obtain fast, reliable programs for general purpose parallel computers with typically a few 
dozen processes that run under widely varying loads. 

A common problem on such machines is to carry out a task, consisting of N independent subtasks, 
with P processes, as quickly as possible. Such tasks are for instance copying an array, searching an 
unordered table, and applying a function to all elements of a matrix. We encountered this problem 
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of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands, Tel. +31 40 2472908, (seer. 2474124), Fax 
+:31 40 2463992, E-mail sjouke@win.tue.nl 

1 



when we had to find a parallel solution to refresh a hashtable by copying all valid elements to a new 
array [3]. 

If we abstract from the nature of the subtasks, the problem of executing N independent tasks is 
adequately characterized by the Write-All problem. 

In this paper we present a rather straightforward algorithm to solve the Write-All problem on an 
asynchronous PRAM, i.e. a machine on which the processes can be stopped and restarted at will, This 
means that it is also suitable for all other fault models as mentioned in Kanellakis and Shvartsman, 
page 13 [8]. Using different terminology we can say that our algorithm is wait-free, which means t.hat 
one process will be able to finish the whole task, within a predetermined amount of steps, independent 

. , ohhe 'actions (opfailures)'of-other-processes; "" 
For a shared array of size N and P processes, our algorithm has to carry out O(N plag( ';' I) , 

amount of work where x = N '0, P . The complexity of parallel algorithms is generally characterized by 
the total amount of steps that all processes must execute, which is called the work of the algorithm, 
instead of the execution time, which under ideal circumstances, can be obtained by dividing the work 
by the number of available processes. Note that when t~e number of processes is given, which is 

, generally the case, the amount of work becomes O(N). Furthermore, it should be noted that the 
worst case behaviour leading to this upperhound can only be achieved under a rare lock step scenario 
of the processes. So, we expect average complexity to be much better, which has been confirmed hy 
experiment. 

There are a number of existing solutions to the Write-All problem (see [8] for an excellent overview). 
We compare our algorithm to the algorithms X, X', AW, A W T and Y that are all suitable for 
asynchronous PRAMs, ignoring the solutions suitable for more restricted fault models. From different 
perspectives our algorithm improves upon all of these. 

Algorithm X is the first asynchronous algorithm for the Write-All problem [2]. It is designed for 
the situation where P ::: N and has work O(N plag(~I). In [8] a generalisation of X, called X' is 
presented for the case P ::; N which has the same lowerbound for the amount of work. For N = P 
the algorithm presented here performs as well as X'. For P < N our algorithm is an improvement 
over X'. 

In [1] two particularly clever algorithms are proposed, called A Wand A WT Both have good work 
estimates, but, as stated in [8], are not very practical. 

Algorithm A W requires work O(P' + Nlog Pl. When P ::; .IN this reduces to O(N log N) which 
is particularly good. However, this bound can only be achieved assuming that a set of permutations of 
1 ... P with a specific property is given, which requires exponential time to calculate. Such a set can be 
gene:t;atec.l,;;t~ randoID"but then~the resull-'only;.holds with high probability. In order to overcome this 
problem algorithm Y has been proposed [7]. Algorithm Y is conjectured to have (non probabilistic) 
work upperbound O(N log N), which is confirmed by experiments, but which is unproven. 

Algorithm AWT needs work O(qP N') where E = logq 10gqC for some constant q that can be freely 
chosen, and a constant c which according to the proof in [8] can be chosen to be 2. As log" log q' 

goes to 0 when q goes to infinity, algorithm AWT has superior complexity. However, the constant 
amount of work that must be done in the preprocessing phase (which is independent of Nand P) 
is exponential in q (see [1]). In order to outperform algorithm X' for any II' and' P, it must be the 
case that E < log(~). From this it follows that q must be larger than 80. Therefore, to ourperform 
our algorithm, q must be chosen even larger. In the setting for which we developed our algorithm, 
we generally have P < .IN (and thus x ::: 2), so one must choose E < log ~ to make algorithm AWT 
perform better than Our algorithm. This means that q needs to be larger than 10'- This is the reason 
why we expect that our algorithm performs much better under practical circumstances. 

The present paper has the following structure. In Section 2 we present the algorithm. In Section 3 
we prove its correctness and show space and time bounds. Section 4 contains some considerations on 
using a non-uniform tree as the shared data structure. Finally, Section 5 is reserved for conclusions 
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and further considerations. 

Acknowledgements. We thank Dragan Bosnacki, Andre Engels, Peter Hilbers, Jan Jongejan, 
.lohan Lukkien, and Alex Shvartsman for comments, ideas and references. 

2 A collision based algorithm 

2.1 Basic case 

Although the asynchronous Write-All problem in its general setting is far from trivial, the case that 
there are only two processes (P = 2), allows for a very intuitive and optimal solution. This algorithm 
"olves the problem for any value of N in O(N) steps. One process starts at the left of the array 
and walks to the right, in the meanwhile setting the values of the array elements encountered to l. 
The other process does the same from right to left. If the two processes collide, the whole array is 
processed and the processes can stop. In the worst case, one element of the array is processed twice. 
We will call this algorithm the Basic Collision algorithm. 

In [2J an extension of this algorithm is described, which works with three processes. It is called 
algorithm T. Two processes have the same behaviour as described above, but the third process behaves 
differently. It starts in the middle of the array and fills the array alternately to the left and to the 
right. If the first two processes collide, it means that the whole array is processed. If e.g. the first and 
the third process collide, it means that the left part of the array is processed. Therefore they move to 
the segment of the array that is not processed yet. The first process starts at the left of this segment, 
the third process starts again in the middle of this segment, and the second process is still busy filling 
the segment from the right. This procedure repeats until the array is completely processed. This 
algorithm is also optimal and has a work load O(N). Algorithm T does not appear to be generizable 
to larger numbers of processes. 

2.2 Generalized case 

Our algorithm generalizes the Basic Collision algorithm in a different way. We will call it the Gen
eralized Collision algorithm. It is best explained by looking at a simple example with four processes 
(P = 4). We choose N = 25 in our example. 

The processes operate in pairs. Every pair of processes executes the Basic Collision algorithm 
on successive segments of the array. Each segment has length 5, so there are 5 segments. The four 
processes start at the locations indicated in Figure 1. The arrows indicate the direction in which each 
process traverses the segment . 

• • • • • • • • • • • •••• • •••• • •••• 

Figure 1: Initial configuration 

Every time that a segment of the array has been processed by a pair, operation continues at the 
uext segment. The first process of a pair to finish a segment can directly continue with the next 
~egment, without having to wait for the other process. In this way, the pairs walk towards each other 
through the array in steps of length 5 until they collide. A typical path of the four processes in our 
example is shown in Figure 2. This figure shows just one possible path, in which all processes roughly 
operate at the same speed. The algorithm, however, is completely robust with respect to process 
delays, failures and restarts. This is because every process potentially visits all array elements. As 
long as one process survives, the whole array will be processed. 
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Figure 2: Possible paths of the processes 

• • • • • 

From a higher point of view, the four processes also execute the BasicCollision algorithm where 
the grainsize of the work is 5. To see this, we have to consider every pair as a single aggregated process 
and every segment of length 5 as a single aggregated array element. A collision now takes place at. a 
complete segment, rather than at a single array element. This explains why the middle segment ill 
Figure 2 is processed twice. 

It is now clear how to generalize this example if we double the numbers of processes and assume 
125 array elements. We simply add one level to the hierarchy and have clusters of four processes 
operate on segments of length 25, until the clusters collide. 

This implies that our algorithm works for any number of processes which is a power of two, so 
P = 2k for some k 2: 1. Furthermore, we have that the length of the array is the length of a basic 
segment to the same power, so N = xk for some x 2: 2. In the above example we have chosen k = 2 
and x = 5. 

In Figure 3 the generalization of the Basic Collision algorithm is illustrated in a cube which has 
to be filled with 1 's by 8 processes. The picture shows pairs of processes, clusters of 2 processes, and 
clusters of 4 processes racing each other, In this example k = 3 (the dimension of the cube) so t.here 
are 8 processes, and the length of an edge of the cube is x, so that there are x 3 cells to be filled. This 
is the biggest example that we can easily visualize in this way, An example with 16 processes would 
require a 4-dimensional figure. 

.. Figure 3: Generalization of the collision principle illustrated in a cube. 
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2.3 Datastructures 

Additional datastructures are needed in order to enable the processes to decide which array element 
should be processed next. First of all, every process has a process identifier (pili) consisting of a 
bitstring of length k. The set of all process identifiers is called PID. We use the functions head and 
tail to return the first element of a bitstring and thc bitstring with the first element deleted. The 
hitstrings will be used to direct the processes to different parts of the array. There is a nice relation 
between the pids of the processes and the initial position of the processes in the cube from Figure 3. 
If wc consider the general Boolean k-dimensional hypercude, the pids correspond to the processes's 
initial co-ordinates. 

Next, we assume that the processes share a tree of depth k. According to the above explanation 
the tree should have a uniform fan out x. This would mean that there are exactly xk leaves, which 
correspond with the elements of the array. However, we will formulate our algorithm in such a way 
that it also works for trees with a non-uniform fan-out, for reasons explained in Section 4. 

Evcry leaf I has an attribute I.value : int that must be set to 1. The relation between the tree 
and the cube that we used to illustrate the generalization of the collision principle, is straightforward. 
Each level in the tree corresponds with a dimension, and a cell (CO,CI,C2) of the cube corresponds 
with the leaf that we arrive at if we travel down the tree first taking the co-th branch, then the cloth 
branch, and finally the c2-th branch. 

The internal nodes of the tree maintain information on how far the corresponding subtree has been 
processed already. Every internal node n has t.he following three attributes. 

• n./an: int 
This constant denotes the number of children of the node. 

• n.nl : 0 .. n.fan := 0 
This variable denotes the number of child nodes that have already been processed, from left to 
right. 

• n.nr : 0 .. n.fan := 0 
This variable denotes the number of child nodes that have already been processed, from right 
t.o left. 

Note that the subtree of node n has been processed completely if n.nl + n.ne 2: n.fan. 
Thc root of the t.ree is denot.ed by root and the predicate is_leaf determines if a node is a leaf. Similar 

to algorithm Tin [2], we make use of an atomic tcompare-and-swap-like instruction (see e.g. [4]). In 
the algorithm below this is denoted by placing angular brackets around the statement ('(' and ')'). 
\Ve mention that for correctness of the algorithm, atomicity is not really needed, but for our work 
load calculations it is. 

2.4 The algorithm 

All processes operate in parallel and perform the same recursive procedure traverse with as the first 
argument the process identifier and the second argument the root of the tree. The recursive calls have 
as arguments smaller bit strings and other nodes of the tree. We use notation from [8] to express this. 

forall pid in PID parbegin 
iT'a verse(pid, root) 

parend 

Procedure traverse is defined below. 
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procedure traverse( bs,node) 
var i: 0 .. node.fan; 
begin 

if idea/( node) then 
node. value := 1 

else 
if head( bs) = 0 then 

i := node. nl; 
while i + node.nr < nodeJan do 

. " ,~,' ,'.' .. ,traverse{tail(tls},child(node,iHi·· 
( if node.nl = i then node.nl := i + 1 Ii ); 

Ii 
end 

i := node.nl 
od 

else 
i := node.nr, 
while node.nl + i< node.fan do 

traverse(tail(bs),child(node,node.fan - 1 - i)); 
( if node.nr = i then node.nr := i + 1 Ii ); 
i:= node.nr 

od 
Ii 

In the base case where the node is a leaf, the procedure writes the intended value in the array. 
Otherwise, the procedure treats the children of the node in a repetition from left to right or from 
right to left. The choice between starting left or right is irrelevant for correctness. For the sake of 
the work load, we let the choice depend on the head of the first argument bs, which is a suffix of 
the process's pid. The recursive calls have the tail of the bit string bs as first argument, so that the 
processes start their actions at different points in the array. The updates of node. nl and node. nT arc 
conditional atomic updates, for reason of efficiency only. Otherwise a delayed process might have to 
treat a large part of the array again. Private variable i is introduced to allow modification of t.he 
shared variables node. nl and node. nr by other processes. 

This code expects the process identifiers pid to have length equal to (or greater than) t.he depth 
of the tree." One' may prefer' to'· use" pro-cess' identifiers -of type integer with the conventions that 
head(bs) = bs mod 2 and tail(bs) = bs div 2. 

3 Analysis of the algorithm 

3.1 Correctness 

The proof of correctness of the distributed algorithm consists of two steps. First we prove partial 
correctness (i.e. if one of the processes successfully finishes, the whole tree has been processed) and 
next we prove termination (at least one process finishes successfully). If all leaves of a (sub)tree have 
been set to 1, we say that the (sub)tree has been processed. 

Partial correctness follows from the next lemma. 
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Lemma 1 

1. For every internal node n of the shared tree, invariably that n.nl subtrees of node n from left to 
right have been processed. Likewise n.nr subtrees have been processed /rom right to left. 

2. If a call traverse(CT)n) (for some bitstring CT and some node n finishes successfully, the subtree 
rooted in node n has been processed. 

Proof We prove the two parts with simultaneous induction on the depth of node n. The base case) 
where node n is a leaf is trivial. For the inductive case) we suppose that node n is an internal node. 

l. The value of shared variable n. nl is only incremented from i to i + 1 if procedure traverse has 
finished on the ith subtree of node n. By induction we then have that this subtree has been 
processed, which certifies this invariant. The variable n.nr is treated similarly. 

2. If a call traverse(u,n) finishes, one of the guards i + n.nr < n.fan and n.nl + i < n.fan must 
be false. Notice that in the first case we have i ::; n.nl and in the second case i ::; n.nr. This 
is due to the fact that the values of n.nr and n.nl are non-decreasing. Therefore, if the call 
traverse(u,n) finishes we have n.nl + n.nr 2: n.fan. Using the induction hypothesis, we can 
conclude that all subtrees of node n are processed, so the tree rooted in n is processed. 

Next, we will prove termination of the algorithm. For this we formulate the following termination 
function: 

L n.nl +n.nr 
nEintcrnalnodcs 

The fact that this is a proper termination function follows from the following observations. 
First, the function is bound, since for every internal node n the values of n. nl and n. nr are bounded 

by the constant n.fan. Second, recall that the fault model implies that all but one process may fail. 
Since there are no blocking statements, the surviving process will continually invoke calls to procedure 
t]"averse. After every call of this procedure (to, say, node n), the value of n.nl + n.nr is strictly larger 
than before this call. Namely) it is incremented with 1 by the calling process, or it is incremented 
wit.h at least 1 by one or more other processes. 

In conclusion, we have that at least one call of tmverse(pid,root) finishes successfully (termination) 
and that this implies that the complete tree rooted in root has been processed. 

3.2 Space usage 

The shared data structure consists of the given array of N bits, together with the data at the N - 1 
internal nodes of the tree (see e.g. [81 for a description of how to represent a tree in a heap without 
overhead). Every internal node n holds two shared variables of size log n.fan. So the shared memory 
has size of O(N log N). 

Every process needs a private data structure with space for k stack frames) since the recursion 
depth is k. Each stack frame holds a local variable of size log node.fan and two parameters of size k 
(or at least log k) and log N. 

So the processes have only moderate space requirements. 

3.3 Work load 

As was mentioned before, the work load of a parallel algorithm is the worst case total amount of work 
performed by the processes involved. With 'total amount of work' one generally means the number 
of instructions executed by all processes. We measure the work load by counting the total number 
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of calls of procedure traverse in a worst case scenario. The program text clearly shows that only a 
constant number of instructions is executed in each call of traverse, so the total number of procedure 
calls is an appropriate estimate here. 

In the calculations below we will assume that the number of processes is 2k and that the length of 
the array is xk for some k 2: 1 and x 2: 2. This allows for the construction of a tree with a uniform 
fan-out. We will briefly consider the case of a tree with non-uniform fan-out in Section 4. 

Because of the recursive structure of the input of the algorithm, the shared tree with fan out :Z:, \ve 
define the work load inductively, i.e. express the work load associated with a tree of height i in terms 
of the work load associated with its subtrees of height i - 1. Note, that the number of processes, which 
of-course'plays·an··important~role-~in determining the work'load,"'is':fixed>t,wheil:we knoW' the" height 'of 
the tree, namely 2i (given a tree of height i). In our first inductive definition of work load, however, 
we will decouple the number of processes and the height of the input tree, because, as we will see, 
subtrees of the input tree can be overloaded with processes (and will be overloaded in a worst case 
scenario). 

We introduce numbers Wi,j to estimate the work load for 2i processes on a tree of height 'l ::; j. 
These numbers are defined recursively by 

WO,j = 2j 

WH1 ,j = 2j + (x - l)W;,j_l + W;,; 

(1) 

(2) 

Equation (1) is justified by the observation that, when 2j processes start to work on a tree of 
height 0, a single leaf, they will all call procedure traverse once to set the array item associated with 
the leaf to 1, resulting in a work load of 2j . 

We arrive at equation (2) in the following way (see also Figure 4). When 2; processes start working 
on a tree of height i + 1, they will first all call procedure traverse on the root of the tree. This accounts 
for the summand 2j in the definition of W;+1,j. Next, the processes split up in two groups of 2;-1 
processes, according to their pids. One group will process the subtrees from left to right and the other 
group vice versa. The collision-principle assures us that these two groups can interfere in only one of 
the x subtrees, the one where they collide (the grey sub-tree in Figure 4). The work load associated 
with the subtrees can therefore be split in x-I times the work load of 2j - 1 processes on a tree of 
height i (the summand (x - l)W;,j_r), and the work load of 2j processes on a single tree of height i 
(the summand W;,j)' 

We will now transform the recurrence relation W into a simpler one, taking advantage of the fact 
that we are primaiirYintere'steil'in Wk,k(where N ~ Xk and P = 2k). We first need to prove the 
following conjecture which states that doubling the number of processes doubles the work load: 

2 . Wi,j_l = Wi,j (for j > i) (3) 

We prove this by induction on i. For i = 0 we have 2 . WO,j-l = 2 ·2j - 1 = 2j = WO,j. Assuming that 
the conjecture holds for i, We derive.for,i + 1: 2· WH1,j-l= 2· (2!-:-1,+ (x-I)· W;,j_2 + W;,j-r) = 
2j + (x - 1) ·2· W '-2 + 2 . W '-1 = 2j + (x - l)W_l + W . = W+1 . t,j t,) t,J t,) t ,J 

Property (3) can also be explained in terms of pids. When the number of processes is doubled, 
they will have to share pids (because j > i). Each process will have a doppelganger that follows the 
exact same route through the tree. This imitative behaviour explains the doubling of the work load. 

Because of property (3) ~we can rewrite the second equation of the definition of W as follows: 

WH1 ,j = 2' + (x -l)W;,j_l + 2· W;,j-l 

= 2; + (x + l)W;,j_l 
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j - J <2 

) 
height i + I 

t 
height 

+ 
x subtrees 

Figure 4: Worst case distribution of processes over subtrees. 

This equat,ion exhibits a nice correlation between arguments i and j that equation (2) did not. This 
observation and the fact that we are interested in Wk,k lead to the introduction of Wi, which, for i 2: 0, 
denotes the work load of 2i processes on a tree of height i. Therefore we define Wk = Wk,k and it 
follows that Wk satisfies the recurrence relations (4) and (5). 

Wo 1 

2'+1 + (x + I)wi 

(4) 

(5) 

"\Ve now calculate an appropriate estimate for Wk. Although these calculations are straightforward 
we provide them in full. 

Wk 

= { solve the recurrence relation} 
k 

L 2k
-

i (x + I)i 
i=O 

= { simple math} 

(x + I)k+1 _ 2k+l 

x-I 
= { even more simple math} 

x + 1 ( )k 2k+l --x+I --
x-I x-I 

S; { x ::> 2, hence (x + I)j(x - 1) S; 3 and 2k+l j(x - 1) > 0 } 

3·(x+I)k 
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Hence, we have Wk = O((x + l)k). We would like to express the work load in terms of Nand P, so 
we do some more calculations on (x + l)k, using the equalities N = xk and P = 2k: 

(x + l)k = xk (x +/)k 
x 

=xk(X;l)" 

= N . ( x: 1) log(P) 

= N. plog(~) 

We have now proven that the work load of our algorithm is O(N· Plog(~)), where x = Ni/log(P) 

4 Non-uniform fan-out ... 

Although we were able to prove correctness of the algorithm for trees with non-uniform fan-out, we 
did assume uniform fan-out for OUf work load calculations. This assumption proved very useful for 
obtaining a result which can easily be compared with work load calculations for other algorithms. 

Nonetheless, we claim that this assumption is not critical for the performance of our algorithm. 
Calculations and experimentation support this claim. Examples show that, strictly speaking, an 
optimal work load is almost never achieved with a uniform fan-out. In almost all cases the work load 
can be slightly improved by rebalancing the tree, while still keeping it quasi-uniform. By quasi-uniform 
we mean that the nodes at the same level of a tree have equal fan-out. 

In the case of quasi-uniform fan-out the work load can be given as a closed expression that contains 
sum and product quantifiers. One cannot expect otherwise, since the fan-out of the levels is now given 
by a vector (the sequence of fan-outs of various levels). If one now treats the fan-outs as real numbers, 
one can obtain a recursive formula for the optimal fan-outs. This can be used as the starting point 
for a search for an optimal integer solution under the side condition that the quasi-uniform tree has 
at least N leaves. 

These calculations show, e.g., that in the case that N = 12, 000 optimal work load is obtained if 
the fan-out for each level is 5, 5, 5, 6, 16, from the root level to the level above the leaves. III the 
general case we see that an optimal work load is obtained if the fan-out for all levels arc approximately 
th~. same, . except for .. the faIl::-out. at. the .level above. the .leaves,··which· should. be· three times larger. 

We expect that in practice rebalancing the tree will yield at most a constant speed up in perfor
mance. 

5 Observations and conclusions 

We have presented. an.algorithm for· the· asynchronous Write~AII pmblem/rhis algorithm is suitable 
for a multiprocess environment, as due to the lack of explicit synchronization, it has good performance. 
In particular this is the case when the task of setting a variable to one is replaced by a more time 
consuming operation. Moreover, the algorithm is fault tolerant in the sense that it works correctly 
even if individual processes can fail or can stop and resume arbitrarily, assuming that not all processes 
die. Finally, our algorithm performs a kind of dynamic load balancing. Every process checks in a. 
specific order all the tasks that must be executed and if it finds one that has not been performed, 
it carries it out. Due to the data structures involved, this can be done with minimal duplication of 
work. This guarantees a distribution of tasks over processes, where no process will idle when work 
can be done. 

10 



Our algorithm improves upon existing asynchronous algorithms in several ways. In comparison 
with most published algorithms it has a better order of performance. This does not hold for algo
rithms A Wand A W T

, which are based on a rather different algorithmic concept than our algorithm. 
Algorithm A W 'only' improves upon our algorithm with high probability, although we expect that in 
practice this algorithm has a good performance. From a theoretical perspective AWT performs better 
than our algorithm, but due to a high initial constant amount of work A WT is not suitable for any 
practical purposes. 

To ascertain these findings, we have implemented our algorithm and ran it for different numbers of 
processes, where we compared the number of process steps with the worst case estimate of the amount 
of work that needs to be done. Without going into detail, as we believe that it is very hard to draw 
universal conclusions from experiments, we found that the overhead always remained far below our 
worst case estimate. 

Finally, we make some observations concerning the restrictions on the values for Nand P. In the 
case that we use a tree with uniform fan-out as the shared data structure, an array of size N = xk 

can be accommodated. However, such uniform fan-out is not needed for obtaining an optimal work 
load. By adjusting the fan-out of the nodes in the tree, it is possible to accommodate an array with 
arbitrary size N. Furthermore, since processes need not execute, we can take P ::; 2k, provided all 
process identifiers differ and have a length at least equal to the depth of the tree. The work load 
remains essentially the same. 
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