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ABSTRACT

The problem of production management for an automated manufacturing system is described. The
system consists of machines that can perform a variety of tasks on a family of parts. The machines
are unreliable, and the main difficulty the control system faces is to meet production requirements
while the machines fail and are repaired at random times. A multi-level hierarchical control
algorithm is proposed which involves a stochastic optimal control problem at the first level. Optimal
production policies are characterized and a computational scheme is described.
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1. INTRODUCTION

A flexible manufacturing system (FMS) consists of a set of workstations, capable of perforrning a

number of different operations, interconnected by a transportation mechanism. The FMS produces a

family of parts related by similar operational requirements or by belonging to the same final

assembly. All parts in the part family are produced simultaneously. Workpieces are introduced into

the system at a loading station, and leave at an unloading station after undergoing a specified

sequence of operations. The machines in an FMS are capable of performing operations on a

random sequence of parts with negligible change over time from one part to the next. The flexibility

of the system allows the parts the choice of one or more stations for each operation. This allows

production to continue even when a workstation is out of service because of failure or maintenance.

The change over-time for parts in the same family is negligible in these systems because the

machines are numerically controlled with a large number of tools used for each operation or because

operations are performed by robots. In the first case, several tools must be selected and replaced for

each operation so that no time is saved by working on two successive parts of the same type on the

same machine. In both cases, software determines the operations, and changing the software can be

done nearly instantaneously compared to operation times.

The FMS concept is not limited to metal cutting, such systems can also be used for the assembly

of printed circuit boards, integrated circuit fabrication and automobile assembly lines. A survey of

Flexible Manufacturing Systems appears in Dupont-Gatelmand [31.

The ability of an FMS to produce a family of parts simultaneously results in reduced finished and

in-process parts inventories, and faster responses to changes in demand requirements when compared

to traditional production methods. However, careful attention must be paid to production scheduling.

The high capital cost of an FMS means that efficient use of system resources is very important.

In the majority of implementations, FMS's are part of a multi-stage manufacturing system. The

input consists of parts that have undergone one or more processing stages and the finished family of

parts are assembled into different final products.

Most manufacturing systems are large and complex. It is natural therefore, to divide the control or

management into a hierarchy consisting of a number of different levels. Each level is characterized

by the length of the planning horizon and the kind of data required for the decision making process.

Higher levels of the hierarchy typically have long horizons and use highly aggregated data, while
lower levels have shorter horizons and use more detailed information. The nature of uncertainties at

each level of control also varies.

The managers of a manufacturing firm make production plans for finished products by considering

forecasts of demand, sales, raw material availability, inventory levels and plant capacity. From the

resulting master plan, the requirements for the components that go into the final products can be
made. The various departments responsible for the manufacture of the components schedule their

activities so as to meet the requirements dictated by the master production and the materials

requirements plans [41[7].

In an FMS, the operations at the workstations and the material handling system are entirely under

computer control. Decisions such as which parts should be loaded into the system and what

workstations particular workpieces should visit next are taken by the FMS control computer.

Human intervention is necessary only when unusual or unanticipated events take place. It is

important therefore, to develop models and algorithms which allow the FMS controller to generate

production schedules which satisfy demand requirements and to exercise control over the system so

that the output conforms to the schedule. The task of the controller is complicated by random

failures of the workstations. A good production policy should anticipate failures and demand



-3-

changes if it is to satisfy all of the objectives stated above.

It is important that this policy employ feedback so as to respond to failures and to allow human

operators (who can deal with a wider range of situations than envisioned by system planners) to
override control decisions on rare occasions.

In systems currently operating, a number of operating policies are employed. Typically, parts are

loaded into the system whenever an opportunity arises, and planned production affects few decisions
internal to the FMS [91. Such policies do not typically consider capacity or reliability and can lead

to congestion and under utilization.

Hutchinson [8] describes information and algorithm structures which have been implemented on an

actual system. It is to be noted that a high degree of human intervention is necessary because of
machine failures, human errors, maintenance and changes in operating environment. In this paper,
an FMS control policy is described. Parts are loaded into the system in a way that will not overload

the system or cause congestion and yet will meet long term production objectives. Because of the

problem's complexity, the policy is organized hierarchically.

2. HIERARCHICAL SCHEME FOR THE OPERATIONAL CONTROL OF AN FMS

A four-level control structure specifically designed to compensate for workstation failures and

changes in part requirements is proposed. The hierarchy is illustrated in Figure 1, in which the FMS

controller is imbedded into the larger hierarchy of production management. The objective of the

FMS controller is to satisfy a known, possibly time-varying demand for a family of items that is
dictated by the Master Production Plan, subject to constraints imposed by the resources available.

The routing and scheduling policy described here is based on a set of assumptions on the time

scales of various classes of events that occur in the operation of the flexible manufacturing system.

(i) The shortest time period is that of the set up when switching among the family of operations

for which the machine is configured. It is assumed that these times are short compared to

the following times and they may be ignored.

(ii) The next time period is that of the typical operation. If operation times are random, then we
refer to the mean of the distributions. Operation times are assumed to be orders of
magnitude larger than set-up times.

(iii) The next time period is that between machine failures or repairs. Again, mean times between

failures and to repair (MTBF and MTTR) are considered.

(iv) The longest time period is the planning horizon for the problem under consideration. It is

assumed that demand can be specified for a time period larger than the typical MTBF or

MTTR. At this time period, the machines may be reconfigured for another part family.

2.1 The Flow Control Level (Calculates Short Term Production Rates)

The flow control level of FMS control determines the short term production rates of each member

of the part family. The rates must be determined jointly because the parts share the time available
at the workstations. In addition, the demand, the level of downstream buffer levels and the
reliability of the workstations must be taken into account.

The mix of parts being produced must be adjusted continuously so as to take into account random
failures of the workstations. If, for example, a part cannot be made because a certain workstation
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Figure 1. The Hierarchical Production Control Scheme

has failed, the lost production must be made up when the station is repaired. Using failure and

repair statistics of the machines, the production rates should be chosen in a way that anticipates
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station down-time. Adequate but not excessive downstream buffer levels should be maintained so as
to satisfy downstream demand.

2.2 The Routing Control Level (Calculates Route Splits)

A part entering the FMS has one or more paths it can take through the system in order to
complete its processing requirements. The proportion of parts that should follow each of the
available paths is chosen by the route control level of the controller. The objective is to meet the
production rate dictated by the flow controller while minimizing congestion and delay within the
system.

The system can be modelled as a network of queues with the stations represented as the service
nodes. The arrival rate of the parts is determined by the flow control level. The flow rate on each
path can then be determined by a mathematical programming technique. Alternatively, it can be
calculated together with total part flow as described below.

2.3 The Sequence Controller (Schedules Times at which to Dispatch Parts)

At the lowest level of control are scheduling algorithms that dispatch parts into the system and
supervise the operations of the workstations. The objective is to maintain the flow rates chosen by
the flow and route controllers.

We suggest a simple method which uses the flow rates calculated by the route controller to
determine time intervals between loading parts on each path. Simulation results show that
production rates and workstation utilizations determined by the flow and routing levels of the
controller can be achieved provided they are feasible.

2.4 Generation of Decision Tables

At the highest level of the control scheme is the off-line calculation of the control policies to be
used in the flow and routing levels. In principle, this is required only when a new schedule is
established. In practice, it may be prudent to include a long term feedback loop to compile data on
failure and repair rates as well as other parameters that may not be well known.

Whenever new estimates of parameters are found that are significantly different from earlier
values, the calculation of control policies should be redone. While the calculation is being performed,
production can continue using the previous control policy.

3. COMPARISON WITH OTHER WORK

The hierarchical approach to FMS planning and control has been suggested by a number of
authors. Hildebrant [61 examines a three-level hierarchy that minimizes the time to produce a given
number of parts. The top level calculates steady state production rates for each failure condition.
Inventory levels are not considered and a change in production requirements means that the
production rates must be re-computed. The second and third levels determine loading schedules for
the parts. Olsder and Suri [1 use a dynamic programming formulation for the minimum time
production problem. In this case, a feedback policy results which depends on the current failure
state and production levels.

Hahne [51 and Tsitsiklis [131 study the problem of maximizing throughput in a system in which
parts can be routed from an upstream machine to one of two unreliable downstream machines. They
show that optimal policies are piece-wise constant functions of intermediate buffer levels.
Calculation of exact optimal policies for the three machine system has large computational
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requirements.

The hierarchical controller described here utilizes currently available capacity while anticipating

workstation failures, repairs and changes in demand requirements. It differs from Hildebrant's [6]

scheme in that flow rate decisions are made on the basis of the current inventory levels as well as

the current set of working machines. Part types that are backlogged will tend to be favored over part

types for which a surplus exists. Therefore, this control scheme satisfies requirements for a part

family without the need for large finished and in-process parts inventories.

Buzacott and Yao [21 present a survey of other research in the modeling and control of flexible

manufacturing systems. A survey of routing policies within the FMS is given by Buzacott [1].

4. THE FLOW CONTROL LEVEL OF THE FMS CONTROLLER

4.1 Problem Formulation

The flow control level of the FMS controller determines the production rates for the part family.

The horizon is set by the FMS management and is of the order of one period of the master

production plan. The routing and the sequencing levels ensure that the output of the system is the

same as that set by the flow controller. For the lower levels of the hierarchy to be able to track the

rates set by the flow controller, the rates must be at all times feasible for the current system

configuration. It is important therefore for the flow controller to have complete and timely

information of the operational status of all workstations. In addition, knowledge of the finished

parts inventory is needed.

The FMS consists of M workstations. Workstation m (m - 1, 2, ..., M) has Lm identical

machines. The concept of workstation is logical, not physical: the machines in a workstation need

not be located closer to one another than other machines.

A family of N part types is produced. The material flow is modelled as a continuous process. This

kind of model ignores combinatorial details which are treated at the lower levels of control. Its

accuracy is adequate for the time horizon treated at the flow control level which is long compared to

the time needed to produce individual parts. Let u (t)eRN be the production rate for the part family,

the control variable. The downstream demand rate is d (t)RN and is known in the interval (O,tf ).

Finished parts are stored in downstream buffers from where the downstream demand is satisfied.

Define x (t)eRN by the following differential equation;

dx (t)
dx () - u (t)-d(t) (1)

The vector x (t), termed the buffer state, measures the cumulative difference between production

and demand for the parts. A negative value for a component of x (t) gives the backlogged demand

for the corresponding part. A positive value is the size of the inventory stored in the downstream

buffers. Ideally, parts in an FMS are produced as they are required, keeping the buffer state close to
zero.

The state of the workstations is called the machine state and is denoted by an M-tuple of integer

variables a(t) with the component a, (t) equal to the number of operational machines at station m.

Given that a machine at station m is operational, the probability of a failure in an interval of

length At is pm6t. The probability that a failed machine is repaired during the At time interval is

given by rmbt. The parameters Pm and r, are the failure and repair rates for the machines at
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station m. The dynamics of the machine state are therefore governed by

P(a(t+t)-I+la(t)- l(Lm - l)rm)t for 0l<L,(2)

0 otherwise

P(a, (t+6t)-l- la(t) l)_ (Lpl for 0< wise
lo otherwise

Note that

P(am(t+5t) - IlIam(t) - 12) -0 if 11-121 > 1

For two machine states i and j, it is convenient to define

Xi>jt - P(a(t+6t)-jja(t)-i) fori # j

and

The times between failures and to repair are thus modelled by exponentially distributed random

variables with means 1/p, and 1/r, respectively. The machine state can be modelled by an

irreducible Markov chain with a finite number of states. Each state communicates with M

neighbors and transitions are due to the failure or repair of a single machine. The model assumes

that machine failure rates do not depend on the part flow rate through the workstations. Where

reliability does depends on the part flow rate, the failure rate then becomes a function of the

production rate and part routing through the FMS.

Failure and repair rates are assumed to be independent of production rates and the number of

operational machines for computational and expository convenience. It is easy to extend the model

and the control method of this paper to include these effects.

Exponentially distributed times between failures are suitable where machine downtime is caused by

the random failure of any one of a large number of components. The exponential model is also

consistent with reported field data [121. Non exponential distributions can be used to model failure

rates that depend on the time since the last repair. However, in a practical implementation, the

estimation of time-dependent failure and repair rates may prove to be difficult whereas the mean

time between failures and to repair may be readily available.

The choice of the production rate is not arbitrary. The production rate at each instant is limited by

the capacity of the currently operational machines. At time t, the production rate must lie in a set

fl (a(t)) which depends on the machine state and is thus subject to sudden changes.

To define fl(a), consider the machine state a-(al,a2, ...,aM). Let ykmn be the rate at which

station m performs operation k on type n parts ( measured in parts per unit time interval). Let Tk.

be the time required to complete the operation. It then follows that

ySknmrnnTm <am for all m (4)
n k



-8-

The product YnkmT is the proportion of each unit time interval used by one or more operational
machines at station m to perform operation k on type n parts. The left hand side of equation (4) is
thus the total amount of work brought to station m per unit time by the part flow rate yk. The
inequality follows because the amount of work brought to station m per unit time interval cannot
exceed the time available at the operational machines.

Since no material is accumulated within the system, the total number of type n parts going
through operation k per unit time interval is equal to the throughput of type n parts. This is
expressed as

M

u n -y for all k and n (5)

The set f (a) is defined to be the set of all production rates u - (U1,U2, . .. UN) such that there
exists feasible flow rates y k satisfying (4) and (5). We note that f (a) is the projection of a
polyhedral set into a lower dimensional subspace. The feasible set is therefore convex and
polyhedral.

This set is thus a representation of the capacity of the FMS. It would not be precise to denote
capacity by a single number ( a production rate for all the parts flowing through the system) or even
a vector ( a production rate for each part type). A set is required because of the sharing of resources
among part types. The rate at which it is possible to manufacture one part is reduced by the
production of other parts.

The flow control problem can now be stated. Given an FMS as described above, an initial buffer
state x(to) and machine state a(tO), we wish to specify a production plan for t0ot tf that

minimizes the performance index

. (X,a,t) -Efg (x (t))dt Ix -xaQO -a (6)

Subject to (1), (2), (3) and u (t)ef (a(t)). The function g(x(t)) penalizes the controller for failing
to meet demand and for keeping an inventory of parts in the downstream buffers. The performance
index J(x, a,t,) is thus the expected total penalty incurred by the controller in the interval (to,tf).
The function g(x) is given by g,,(x,) where g. (xn) are scalar convex functions satisfying

lim
Ixl-.oo gI(-)--°

and g (0)"0.

The cost function serves to enforce desired behavior on the controller. The ideal production policy
would minimize the performance index by producing parts at exactly the demand rate thereby
keeping the buffer state at zero. Such a policy is impossible because of the failures of the machines.

The class of production policies to be considered consists of functions u(x, a, t) that satisfy for each
x, a and t

u (x ,at)f (a) (7)

The production policies are therefore feedback control laws which give a feasible production rate for
each buffer and machine state in the interval(to,tf).
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4.2 Characterization of Optimal Production Policies

Define the cost-to-go, when the production policy u(x, a, t), is applied as

J. (x,a,t)-E g(x (s))ds x(t)-x,a(t)-a (8)

The cost to go is thus the expected total penalty incurred by the controller for the remaining time

given that the buffer and machine states are x and a at time t.

This function satisfies a partial differential equation. It can be derived informally by noting that, for

any 6t >0,

· · i,,,,,,.,,,Itb t )(9)

For small 6t, this becomes, approximately,

Ju(x(t),a(t),t)-g(x(t))6t+ ~ XabtJu(x(t+6t),f,t+/6t)+ (10)
.'~a(t)

(1-Xg(t)a(t)/t)[Ju (x (t),a(t) J,+ ( (,a(t),t) + 8x (x(t),(t),t)

ex Ot

where the derivatives of J. are evaluated at x(t), a(t) and t.

By letting 6t go to zero and re-arranging terms, this becomes

O-g (x (t))+ (u -d)+ '--i-+;XaJ (x (t),,t). (1 )

It is also possible to show that an optimal feedback control law u (x,a,t) and the optimal cost-to-

go Ju.(x,a,t) satisfy

- uef (a) g(x(t))+- - (u-d)+ -a +8 avu'(x(t),',t) (12)
Ox Ot

Note that a control u' is determined, in this equation, by

muiQ(n) ax u (13)uEfi (a) ex

These results can be established formally by the techniques of Rishel [10] and Tsitsiklis [131.

We note that (13) is linear in u and that I (a) is a convex polyhedral set. An optimal policy

u*(x,a,t) therefore takes values at extreme points of D (a) whenever the gradient -- J .(x,a,t)
ax

exists. For each machine state a, an optimal policy divides the buffer state space into a set of

regions in which the production rate is constant. Whenever the buffer state is in one of these regions,

optimal production rates are constant. However, the regions do not cover the whole space. If the

derivative J,.(x,a,t) does not exist, is orthogonal to a face of I (a) or is zero, a unique
ax

minimizing value to (13) does not exist. The optimal production rate in that case depends on the

extreme point policies in the neighboring regions.

In the following, we consider the time-invariant case, in which d(t)-d, a constant, and the final

time t is infinite. In that case, the criterion is the average cost, rather than the total cost over the

period [to,tf]. As a result the cost-to-go function J.(x(t),t),(t),t) is time-invariant and is written

J, (x ,a) and is called the value function.
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There are two kinds of machine states: those for which the demand rate d is feasible, ie. those for

which defl(a) and those for which it is not. The former machine states called feasible states,

each has an associated fixed buffer. We call this buffer level xg, the hedging point. The hedging

point is so designated because if a(t) remains constant for a long enough period and a is a feasible

state then

tJ, .(X (t),a(t)) a (u*-d) (14)
dtu ex

since u* minimizes (- )u for all ufll(a) and since the demand rate satisfies dEfl(a) then
ax

(d/dt)J,.(x (t),a(t)) is negative and J,.(x (t),a(t)) is a decreasing quantity. On the other hand, J.'

is the integral of a positive quantity, so it can not decrease without reaching a limit.

The limit is reached when x(t) is equal to x 1 ( assuming that the machine state is constant for a

sufficiently long time). After that time, u* is set equal to d and the buffer state x(t) stays constant

at the hedging value.

The hedging point, which is the minimum of J.' (x,a,t) with respect to x, is the optimal buffer

level with which to hedge against future failures. When demand is close to the capacity of the

system, the hedging points are at high buffer levels because failures quickly result in deficits and

recovery from a deficit is slow. The gradient -J J.(x,a,t) can be regarded as a weighting on part
x U

production for an optimal control law defined by (13). The calculation of the optimal value function

Ju' takes into account the relative costs of backlogs and inventory storage determined by the
functions g (x). Thus a part that has a high value index and is at the same time sensitive to

machine failures would have correspondingly a large weighting. The exact solution to the flow

control problem requires the solution of a coupled set of differential equations (12). This is only

possible for small problems. Typical flexible manufacturing systems may have ten workstations and

half a dozen different part types [91. To solve a problem of that size, a practical computational

method is required.

5. AN ESTIMATE-BASED (EB) CONTROL SCHEME

5.1 The Approach

The optimal policy in the flow control problem is determined from the optimal value function

Ju.(x,a,t) by the linear program (13). An optimal policy is a feedback law which for every machine

state divides the buffer state space into regions within which the control is constant at an extreme

point of the control constraint set.

The hedging point xH ,which is the minimum of Ju.(x,a,t) with respect to x, is the optimal buffer

level with which to hedge against future failures.

Optimal policies cannot be computed in practice because of the large dimension of the flow control

problem. We need a practical method for calculating sub-optimal control laws which produces good

results when used in the flow control level of the hierarchy.

Given convex functions #(x,a,t) which are estimates of the optimal value function, consider a

control policy u (x ,a,t) determined by
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The sub-optimal policy d (x,a,t) like an optimal policy divides the buffer state space into a set of
regions in each of which it takes values at an extreme point of fl (a).

The estimates 4,(x,a,t) should exhibit the properties of the optimal value function described above.
The value of the estimate should be largest for machine states with the smallest production capacity.

aThe relative magnitudes of the components of the gradient -{--A should reflect both the relative

value of parts and their vulnerability to machine failures. The minimum with respect to x of
4'(x,a,t), which determines the hedging point for the sub-optimal policy, should be of a magnitude
comparable to the optimal hedging buffer levels. If the estimates satisfy these criteria, we expect the
sub-optimal policy to perform well and to meet demand requirements when they are close to system
capacity. If the optimal value of the cost index is not sensitive to the location of the region
boundaries, the cost J, (x,a,t) corresponding to the estimate based control policy should be close to
the optimal cost.

5.2 Calculation of the Estimates

The control constraint set fi (a) is polyhedral, lies in the positive orthant and contains the origin.
Define H (a) and H(a) to be sets such that

H(a) - {ueR I O<u n -n} 1,2,...,N (16)

H(a) - {eRu N i O<u. < tn n - (17)

and

H(a) C fl(a) H(a) (18)

H (a) and H(a) are hypercubes, the former contained in f (a) and the latter containing the control
constraint set. For example, Figure 2 shows the hypercubes for a sample control constraint set.

Define .(x,a,t) and ,(x,a,t) by the following optimization problems.

(x,a,t)-u(s) (s) ) E g(x(s))ds (19)
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O(i) Y(i

Figure 2. An Example of the Hypercubes for a Control Constraint Set

'(x,a,t) min E fg( x(s))ds 1 (20)
u(t) W I(a(s))

both subject to (1), (2) and (3), and with initial conditions x(t)-x and a(t)-a.

From (13), the following holds,

V(x,a,t) < J,.a(x,,t) ) <(x,,t) (21)

Thus 4 and J are upper and lower bounds on the optimal value function. An estimate 4 of J.* can

be obtained by taking a convex combination of the lower and upper bounds.

The cost function g(x) is separable. The constraints (16) and (17) affect each part separately. The
optimization problems (19) and (20) are therefore decoupled and can be solved as a set of scalar
problems one for each part.

The hypercubes H(a) and H(a) approximate the control constraint set. If the capacity for the
production of part n is small in machine state a, the corresponding limits a,, and a,, of the
hypercubes are small. Likewise, if the capacity is large, the limits are also large. The calculation of
the upper and lower bounds thus takes into account the relative productive capacity in all machine
states, demand rates and the value of the parts as given by the cost function g(x). We expect
therefore that the cost estimates satisfy the criteria above necessary for good performance by the
estimate based controller.

5.3 Implementation of the Estimate Based Controller

There are two steps in the implementation of the EB-controller. Off-line (ie in the top box of

Figure 1), upper and lower bounds to the optimal value function are computed by solving (19) and
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(20). In practice this is done by discretizing the problems over discrete points in time and the buffer

state. The estimate t4(x,a,t) is computed from the bounds and stored. On-line (in the flow control

level), whenever the system enters machine state i, the control u(t) is determined by the linear

program (15) using the stored values of 4(x,a,t).

Computational and storage costs of the EB controller grow exponentially with the number of

workstations M and linearly with the number of parts N. However, the computation is done off-line

and the estimates of the optimal value function can be stored in peripheral devices. The on-line

computation consists of the linear program (15) and has N variables and M constraints. Typically,

N is between 5 and 10, and M between 10 and 20. The program can thus be easily solved on a

small computer.

The off-line computational cost can be reduced by pruning the machine state to exclude states with

low probability. With the failure and repair rates typically found in manufacturing systems, a small

number of states account for over 95% of the probability. A large number of states can therefore be

eliminated without substantially altering the regions and hedging points corresponding to the

estimate based control policy.

6. EXAMPLE

6.1 System and Analytic Results

To demonstrate the application of the hierarchical controller, consider the flexible transfer line of

Figure 3. Each station has two identical machines. Two parts are produced. The first type requires

two operations one at each station, while the second part requires a single operation which can only

be performed at the first station.

The operation times and reliability data for the system are given in Tables 1 and 2. In this

example, there are nine possible machine states. We will discuss only three of them, all machines

operational (a-(2,2)), one failed machine at station A (a-(1,2)) and one station B machine failed

(a-(2,1)). The calculation, however, must include all nine states.

TABLE 1

PROCESSING TIME FOR THE PARTS IN MINUTES

Part Stage

A B

1 0.33 0.33

2 0.67 not required

TABLE 2

RELIABILITY DATA IN MINUTES

Stage MTBF MTTR

A 300 30

B 300 30

The cost function is given by
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Thus the system is penalized equally for being ahead or behind demand requirements.

The production constraint sets for machine states (2,2),(2,1) and (1,2) are shown in Figure 4.
The different effects of station A and station B failures are evident. The demand rate d(t) for the
two part types are constant at 2.5 type I and 1.25 type two parts per minute. That is dl(t)-2.5, and
d2(t)-1.25. Production can exceed demand only in machine states (2,2) and (2,1). In all other
machine states, the demand rate is beyond the capacity of the system.

The control policy is characterized by the regions shown in Figure 5. In each region, the
production vector is at an extreme point of a constraint set. It is indicated by the circled numbers in
Figures 4 and 5. In finite horizon problems, the boundaries are time varying but maintain their
structure. In infinite horizon problems, there is a solution only if the FMS can satisfy the long term
demand requirements. In this case a steady production policy exists and is characterized by constant
boundaries between the regions.
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The control policy was computed by evaluating an estimate of the optimal cost-to-go function and
then solving equation (15) to obtain the regions.

Also shown in Figure 5 is the behavior of the buffer state trajectory. Initially, the system has all
machines operating and the buffer state x(O) is 0. (The origin of Figure 5a). The point x(O) happens
to lie on the boundary between two regions. (This is not always the case). The production vectors in
the two neighboring regions both drive the trajectory towards the boundary. The trajectory moves in
the positive direction as an inventory of parts is built up as a hedge against future failures. At point
(i), production equals demand and the trajectory remains constant. That is u (x,a,t)-d(t) and
dx /dt O.

When a type A machine fails, the new production rate is found at point (ii) of Figure 5b. Initially
only type 1 parts are produced resulting in an increase in the buffer level of type 1 parts. The buffer
level of type 2 parts as a consequence, drops. At point (iii), the trajectory meets the boundary and a
mix of both parts is produced, keeping the trajectory on the boundary. After approximately 25
minutes, the failed machine is repaired with the buffer levels at point (iv). The production rate is
found at point (v) of Figure 5a. Type 2 parts are produced at the maximum rate to clear the
backlog caused by the failure. Production of typel parts resumes at point (vi) and the trajectory
follows the boundary to point (i) where once again production is at the demand rate. A similar set
of events can be constructed for any other sequence of failures and repairs.

6.2 Simulation Results

The system of Figure 3 was simulated with the scheduling being performed by the hierarchical
controller. Each station had an internal buffer with a capacity for 5 pieces and a last-in-first-out
discipline. The simulation model was run for an equivalent of 14 hours. It should be pointed out that
the buffer state x(t) refers to the difference between actual and desired production levels and can
therefore take on negative values indicating backlogs. Internal storage buffers aid the sequence
control level in generating schedules which maintain the production rates determined by the flow
control level.

The availability and utilization of available time at each machine is given in Table 3. Station A is
the system bottleneck. The controller is able to attain utilizations of 94% and 85% at the two station
A machines. Station B on the other hand is lightly loaded with only 55% and 36% of the available
time being used.

TABLE 3
UTILIZATION AND AVAILABILITY FOR THE SIMULATION

Stage Machine Availability Utilization

A 1 0.95 0.94
A 2 0.91 0.85
B 1 0.92 0.55
B 2 0.92 0.36

Production statistics are shown in Table 4. On average, the production was 5.2 pieces behind
demand for type 1 parts and 4.2 for type 2. The average in-process inventory in the system is small,
3 type 1 pieces and 1.2 type 2 pieces. At the end of the simulation, the system had produced the
required number of type 2 parts and was two type I parts short of target. Thus the algorithm was
able to track demand and at the same time keep the number of pieces inside the system small. It
should be pointed out that the cost function (22) penalizes the controller equally for excess
production and for backlogged demand. The preferred mode of operation is therefore to keep the



buffer trajectory close to zero when all machines are operational and to clear backlogs which result
when failures occur, rather than to maintain a large inventory of parts as a hedge against future
failures. The behavior can be modified by penalizing backlogged demand more than excess
production and by weighting the parts differently in the cost function.

TABLE 4
PRODUCTION STATISTICS FOR THE SIMULATION

Part Average In- Mean Buffer Number of Number of
process State Parts Required Parts Produced
Inventory

1 3.0 -5.2 2083 2081
2 1.2 -4.2 1042 1042

A portion of the buffer state plotted at one minute intervals is depicted in Figure 6. The flow
control level implemented in the simulation calculates the production vector at one minute intervals.
This, in addition to the fact that production increases by integer amounts, accounts for the chatter
of the trajectory in the vicinity of the region boundaries. However, the simulated buffer state
behaves in a manner very close to that predicted by theory and shown in Figures 5a and 5b.

x 2 (t)

.. 20

10

time 57 min.
I ~ ~_~. 1 I I I 'I

-20 -10 10 20 30 xl (t)

/ '

/ '. >

-20 initial state at time
28 minutes after

repair completion

Figure 6. A Part of the Buffer State Trajectory for the Simulation Model
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7. CONCLUSIONS

We have described a hierarchical algorithm for the control of production in an -automated

manufacturing system with unreliable machines. The algorithm is designed to fit into existing

factory mangement structures. The example and the simulation results show that it is possible to

accurately track demand requirements while maintaining a low in-process inventory, thereby

realizing an important advantage of FMS's over traditional production methods.

The flow control level of the controller is responsible for regulating the input flow rate into the

system so that production goals are met. It is important for the performance of the system that the

production requirements should be feasible. The managers of the FMS should therefore have

planning tools that ensure that the demand is within the capacity of the system.

This approach to short term production planning has several desirable features. Feedback is intrinsic

to the approach, so that rational responses to random events are chosen. The control policy is

adapted to the whole FMS, and not merely the first machine that a part encounters. this eliminates

the buildup of material inside the system and, thus, congestion. It reduces the combinatorial

complexity of the scheduling problem. It explicitly takes repair and failure information into account.

Our current research is aimed at implementing this approach and reducing the off-line

computational effort. It is also aimed at improving algorithm performance by better maintaining the

buffer state trajectory on region boundaries, when appropriate, and by modifying the sequence

control level.
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