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Abstract. It is well known that a simple transformation of the electric dipole interaction provides
a convenient means for ascertaining the effects of permanent dipoles on the optical behaviour of
systems with a response dominated by two energy levels. By establishing the general validity of
the procedure for parametric processes such as harmonic generation, it is shown how the detailed
structure of the optical susceptibilities associated with arbitrary forms of optical nonlinearity can
be ascertained by an algorithmic method, based on a novel interpretation of the relevant quantum
electrodynamical Feynman diagrams. Application of the algorithm to second and third harmonic
generation illustrates its usefulness and simplicity, whilst also providing new results and revealing
features, related to the role of permanent dipoles, which have not hitherto been apparent.

1. Introduction

In the description of optically parametric processes, one is concerned with phenomena mediated
by a material which suffers no overall change; at the molecular level these may be termed
‘elastic’ processes. Familiar examples are optical harmonic generation and multiwave mixing,
though the simplest (optically linear) example is forward Rayleigh scattering. Use of the
electric dipole approximation in deriving the optical susceptibilities for such processes leads to
expressions involving products of transition dipole moments along a connected route beginning
and ending in the same, usually ground, state. The term ‘transition moment’ (used in this
connection as a distinction from permanent moments) immediately needs qualifying, however.
Each such transition moment embedded in an optical susceptibility tensor connects twoen route
states, at least one of which will be a virtual state. The usual prescriptions of perturbation
theory require us to sum such states over the complete set of eigenstates for the unperturbed
system, one of which must necessarily generate a diagonal matrix element corresponding to a
permanent moment. In this sense, permanent electric dipole moments are particular cases of
the transition moments, and they play a significant role (often unacknowledged, though see,
for example, recent papers [1–4]) in the structure of any nonlinear susceptibility. The role
of such permanent moments innon-parametric laser–molecule interactions is relatively well
attested—see for example [5–8] and citations therein.
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For polar molecules, it proves [9, 10, 7] that a singular role is played by the vectordifference
or displacementbetween excited and ground-state dipole moments, traditionally given the
symbold. Though such a permanent dipole displacement can be defined for all excited states,
for many systems the optical response is dominated by just one excited state, and this is the case
we shall consider here. One aim of our work is to verify the general applicability of employing
a suitably transformed interaction Hamiltonian which directly isolates terms driven by such a
dipole difference—the general validity of such a procedure with regard to parametric processes
has not previously been established, and is the first issue to be addressed in this paper. With
this result proven, our second aim is to demonstrate through its application a convenient and
calculationally expedient way to discover the dependence of nonlinear optical susceptibilities
on the dipole displacement.

Specific applications to second- and third-harmonic generation reveal a number of new
features, while also serving to illustrate the usefulness and simplicity of the procedure. With
the correct choice of convention for the inclusion of resonance damping—see for example
[11, 12]—the new algorithm leads directly to results which exhibit proper symmetry with
respect to time reversal. Our results for harmonic generation clarify the relative roles of
single- and multi-photon resonances; more importantly, they serve to demonstrate that the
permanent dipole displacementd can prove the major factor in determining the magnitude of
the susceptibility tensor elements, and hence the strength of nonlinear optical response. For
third harmonic generation in particular, new effects related to the role of permanent dipoles
are discussed. Such results are of particular importance to the many ‘push–pull’ (giant dipole)
organic materials currently being investigated in the pursuit of higher efficiencies for laser
frequency conversion [13–17].

2. Parametric processes and the interaction transformation

2.1. Quantum electrodynamical formulation

Consider first the full quantum electrodynamical Hamiltonian in multipolar form:

H = Hrad +
∑
ξ

Hmol(ξ) +
∑
ξ

Hint(ξ). (1)

The leading term is the radiation Hamiltonian, the second a sum of the unperturbed Hamiltonian
operators for each molecule or siteξ with distinct electronic integrity, and the last a sum of the
interaction operators, whose explicit form we detail below, for each of these species with the
radiation field. The sum of the first two terms in equation (1) represents a HamiltonianH

(0)
sys

whose eigenstates, products of the eigenstates ofHrad with those of eachHmol(ξ), form a basis
set ofsystem statesfor the standard perturbative treatment in powers of the termsHint(ξ). In
the usual electric dipole approximation we have†

Hint(ξ) = −µ(ξ) · e⊥(Rξ ), (2)

whereby a molecule at positionRξ undergoes dipolar interaction with the transverse electric
field of the radiation at that position,e⊥(Rξ ). To employ the above interaction Hamiltonian
we implement the following mode expansion of the electric field:

e⊥(r) = i
∑
k,λ

(
h̄ck

2ε0V

)1/2

{e(λ)(k)a(λ)(k)eik·r − ē(λ)(k)a+(λ)(k)e−ik·r}. (3)

† Here the interaction is cast in terms of the electric field rather than the electric displacement, to avoid possible
confusion in over-use of the symbold.
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Here photon creation and annihilation operators,a+(λ)(k) and a(λ)(k) respectively, are
associated with each radiation mode of wavevectork and polarization vectore(λ): V is the
quantization volume andε0 the vacuum permittivity. A key property is thatHint(ξ) is linear
in a+(λ)(k) anda(λ)(k).

To address cases of nonlinear optical response, in general we need to evaluate a probability
amplitude or optical parametric signal fieldA given by [18, 19]

A ∼
∑
ξ

〈fsys|{Hint(ξ) +Hint(ξ)Tsub(ξ)Hint(ξ)}|isys〉, (4)

whereTsub(ξ) is the resolvent operator for a subsystem comprising the radiation and molecule
ξ alone. The subscript on both the initial and final state labels,isysandfsys, shows that system
states are referred to—and as energy is conserved, both have the same energy,E

(0)
sys. Moreover

for parametric interactions, energy is separately conserved by both the molecular and radiation
parts of the system; each summand matrix element on the right-hand side of equation (4) is
thus diagonal in the molecular basis but, save in the trivial case of forward Rayleigh scattering
or its higher-order analogues, nondiagonal in the radiation basis. Since all molecules other
thanξ provide vanishing contributions to each summand, equation (4) can be written as

A ∼
∑
ξ

〈fsub|Hint +HintTsubHint|isub〉ξ ≡
∑
ξ

Sξ , (5)

given that all states, operators and energies within the Dirac bracket now implicitly refer to the
subsystem comprising the radiation and moleculeξ . In fluid media, two-centre interference
terms in the signal to be derived from|A|2 survive for all parametric processes, and thus reflect
their coherent nature [20].

For each molecule–radiation subsystem the resolvent operator of equations (4) and (5)
can be cast in terms ofT0 = (E0 −H0)

−1 and expressed [18] as

Tsub= (E0 −H)−1 = (E0 −H0 −Hint)
−1 = (E0 −H0)

−1 + (E0 −H0)
−1Hint(E0 −H0)

−1

+ · · · =
∞∑
p=0

[T0Hint]
pT0 (6)

whereH0 is the Hamiltonian whose eigenstates are products of the eigenstates ofHrad with
Hmol(ξ); Hint(ξ) is the operator for the coupling of the radiation and molecular states andE0

is the corresponding ground-state energy. Then, the probability amplitudeSξ is

Sξ ∼ 〈fsub|Hint +
∞∑
p=0

{Hint[T0Hint]
pT0Hint}|isub〉ξ . (7)

Since each operation ofHint produces a change by one in photon number, for the case of an
n-photon process the result forSξ has as its leading contribution:

S
(n)
ξ ∼ 〈fsub|Hint(T0Hint)

n−1|isub〉ξ . (8)

Calculation normally proceeds by introducing the completeness relation for the subsystem
states:

S
(n)
ξ = 〈fsub|Hint

n−1∏
j=1

{∑
s
(j)

sub

T0|s(j)sub〉〈s(j)sub|Hint

}
|isub〉ξ . (9)

In the above equation the sum over each set of virtual intermediate states represented by|s(j)sub〉
comprises all molecular and radiation eigenstates ofH0. Again the linearity ofHint ensures
that for each operation it either creates or destroys a photon; explicitly effecting in equation (9)
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the sum over all intermediate states, and the product overj , singles out the various sequences
of allowed routes between the initial and final radiation state corresponding to the familiar
time-orderings—see for example [21]. Substituting for the explicit form ofHint allows the
result for the signal amplitude from each molecule to be represented as the tensor inner product
of a radiation tensorγ and a nonlinear susceptibility tensorOfi(ηω)(ξ):

Sξ ≡ γ (k)α1...αn
Of i(ηω)
α1...αn

(ξ), (10)

in which there is implied summation over the set of Cartesian indicesα1 . . . αn. The structure
of the radiation tensorγ (k) is that of an outer product of the beam polarization vectorse(λ)(k)—
according to equation (3), taking the complex conjugate for emitted photons. This tensor also
carries factors relating to other beam parameters—which, in the signal derived from|A|2,
will manifest the dependence on beam intensities and degrees of coherence [20]. These need
concern us no further here.

Our interest is in the nonlinear susceptibility tensorOfi(ηω)(ξ), wherein the superscript
(ηω) represents a parametric dependence on each beam frequencyωj , with the multiplier
ηj = +1 for emission andηj = −1 for absorption. Dropping the labelξ on each side of
the following equation for simplicity, the susceptibility tensor can neatly and concisely be
expressed in the following form [22] (in which{s} signifies the set of molecular intermediate
states and{α} the Cartesian indices;π{α} andπ(ηω) are a shorthand notation for parallel
(linked) permutations of the indices and frequency parameters):

O
fi(ηω)

{α} =
∑

π{α},{s}

N
π{α}{s}
f i

D
π{ηω}{s}
f i

, (11)

with

N
{α}{s}
f i ≡ µfsn−1

αn
µsn−1sn−2
αn−1

. . . µs1iα1
, (12)

D
{ηω}{s}
f i =

n−1∏
j=1

[
Ei − Esj − h̄

j∑
i=1

ηπ(i)ωπ(i)

]
, (13)

i.e. a sum of quotients for each of which the numerator is a product of dipole transition moment
components, and the denominator is a product of energy factors. It is convenient at this point to
give a more compact notation for the algebraic frequency sum

∑j

i=1 ηπ(i)ωπ(i), that is�π(j, 1);
in those cases where there is no permutation involved the subindexπ may be dropped. As so
defined, the tensorOfi(ηω) differs from common forms of the nonlinear susceptibilityχ only
through a trivial sign factor(−)n−1.

Where any molecular excited state differs from the initial state by an amount similar to
the net energy of a subset of the participating photons, it is necessary to properly account for
the finite resonance enhancement and the detailed dispersion behaviour. Here it is traditional
to include phenomenologically based damping in the energy factors to extend applicability to
those frequency regions where such (nonsecular†) resonances occur. There are, nonetheless,
two conflicting but equally current conventions concerning the sign of the imaginary addenda
which represent the damping, which can lead to physically different results. One dictates,
for example, that in the case of harmonic generation the damping should carry opposite signs
for interactions preceding and following emission; the other convention dictates that all signs
should be the same—see for example [11, 12]. A recent detailed assessment of their legitimacy,
on the basis of time-reversal symmetry, unequivocally confirms the latter convention [23]. This

† Secular resonances involve the ground state, and since this has no decay channel it suffers no damping. See, for
example, [3].
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can be denoted by the introduction of a tilde onEsj , representing̃Esj ≡ Esj − i0sj where0sj
is the damping factor. Notice that the product of sums in equation (9) is here finally reduced to
a qualified sum of products, as given by equations (11)–(13), reflecting inclusion only of the
permitted time-orderings—the distinguishable permutations of the beam interaction sequence.

2.2. Employment of the fluctuation dipole operator

We now address the implications of employing a transformed electric dipole interaction for
treating the nonlinear optical response of systems dominated by two electronic levels. It
has been established in a series of recent works that a transformation of the electric dipole
interaction is valid for deriving various optical characteristics of molecular systems with a
response dominated by two electronic states [5–10, 24, 25]. This procedure relates to the
employment of afluctuationdipole operator [26, 3] as given by

H ′int = −[µ− µ00] · e⊥, (14)

in which the subtracted moment is the permanent dipole of the initial molecular state—usually
the ground state; the absence of state superscripts onµ serves as a reminder of its operator
status. In the following we shall show how the adoption of (14) for the form of the interaction
operator leads to a new and expedient algorithm for the calculation of the requisite nonlinear
optical susceptibilities, to be summarized at the end of the section. The reader intent only on
direct applications can move directly to that summary.

The obvious corollary to the modification of the interaction Hamiltonian according to
equation (14) is the inclusion inH0 of a counterpart set of terms with opposite sign:

H ′0 = H0 − δ, (15)

defining byδ the extra operator term introduced in equations (14) and (15):

δ = µ00 · e⊥. (16)

This leaves the overall Hamiltonian of equation (1) unchanged, and signals a recasting of the
resolvent operator (6), in terms ofT ′0 = (E0 −H ′0)−1, as follows:

Tsub= (E0 −H)−1 = (E0 −H ′0 −H ′int)
−1 = (E0 −H ′0)−1 + (E0 −H ′0)−1H ′int(E0 −H ′0)−1

+ · · · =
∞∑
p=0

T ′0[T ′0H
′
int]

p (17)

in which the factorization is purposely cast in a different form from equation (7), to expedite
the development below. Instead of the later equation, we now have an expression in terms of
H ′0,H ′int andHint:

Sξ ∼ 〈fsub|Hint +
∞∑
p=0

{HintT
′
0[H ′intT

′
0]pHint}|isub〉ξ , (18)

which can be written in terms ofH ′int andH0 by further expanding the factorT ′0 in terms ofT0

andδ:

T ′0 = (E0 −H0)
−1 + (E0 −H0)

−1(−δ)(E0 −H0)
−1 + · · · =

∞∑
m=0

(−1)mT0[δT0]m. (19)

The probability amplitude can then be rewritten as

Sξ ∼ 〈fsub|(H ′int − δ)|isub〉ξ
+〈fsub|(H ′int − δ)

∞∑
l,m,p=0

{T0[(−δ)T0]l [H ′intT0[(−δ)T0]m]p}(H ′int − δ)|isub〉ξ .

(20)
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This expression accommodates every order ofn (the number of photons involved in the
process). Forl,m andp (non-negative integers) such thatl +p(m+ 1)+ 2= n, it follows that
the leading contribution for ann-photon process is

S ∼ 〈fsub|H ′int[T0H
′
int]

n−1|isub〉 +
n∑
p=1

Lf in,p, (21)

where for simplicity we drop the subindexξ . The first term of equation (21) is the equivalent
of equation (8), where the interaction HamiltonianHint has been replaced with the transformed
one,H ′int. As it transpires, theLf in,p terms are all exactly zero—the general proof and explicit
expressions for theLf in,p are given in the appendix.

As an example, let us consider the simple two-photon process of Rayleigh scattering.
From equation (20) the probability amplitude is given by

S(2) = 〈fsub|H ′intT0H
′
int|isub〉 + 〈fsub|(−δ)T0H

′
int|isub〉 + 〈fsub|H ′intT0(−δ)|isub〉

+〈fsub|(−δ)T0(−δ)|isub〉, (22)

and it can be shown that the last three terms vanish. Specifically, the second and third terms
in equation (22) can be expressed as∑
ssub

〈fsub|(−δ)T0|ssub〉〈ssub|H ′int|isub〉 + 〈fsub|H ′intT0|ssub〉〈ssub|(−δ)|isub〉

=
∑
ss=0,u

(
h̄ck

2ε0V

)
{m(m− 1)}1/2ei ēj

×
{

µ00
i d

s0
j

E0 − Es − h̄ω +
µ00
j d

s0
i

E0 − Es + h̄ω
+

d0s
i µ

00
j

E0 − Es − h̄ω +
d0s
j µ

00
i

E0 − Es + h̄ω

}
δ0,s

(23)

wheres denotes the molecular state of the intermediate statessub andds0 = 〈s|µ − µ00|0〉.
The fact that the matrix element〈0|(µ − µ00)|0〉 is identically zero could be used to justify
the null contribution of equation (23). In the more general context of employing transformed
Hamiltonians, it is nevertheless expedient to proceed without explicitly invoking this result.
For the right-hand side of equation (23) we then have(
h̄ck

2ε0V

)
{m(m− 1)}1/2ei ēj

{
µ00
i d

00
j

−h̄ω +
d00
j µ

00
i

h̄ω
+
µ00
j d

00
i

h̄ω
+
d00
i µ

00
j

−h̄ω

}

=
(
h̄ck

2ε0V

)
{m(m− 1)}1/2ei ēj (h̄ω − h̄ω)

(−h̄ω)(h̄ω)(µ
00
i d

00
j +µ00

j d
00
i ). (24)

Expression (24) is equal to zero not only because the matrix elementd00 = 〈0|(µ− µ00)|0〉,
but also because it is proportional to the difference in energy between the initial and final state:

Einitial − Efinal = (E0 +mh̄ω)− (E0 + (m− 1 + 1)h̄ω) = h̄ω − h̄ω ≡ 0. (25)

The fourth term in equation (22) is also proportional to the difference in energy of the initial
and final states:

〈fsub|(−δ)T0(−δ)|isub〉 =
∑
ssub

〈fsub|(−δ)T0|ssub〉〈ssub|(−δ)|isub〉

=
(
h̄ck

2ε0V

)
{m(m− 1)}1/2

{
µ00
i µ

00
j

h̄ω
+
µ00
j µ

00
i

(−h̄ω)

}

=
(
h̄ck

2ε0V

)
{m(m− 1)}1/2µ

00
i µ

00
j

(h̄ω)2
{h̄ω − h̄ω}. (26)



Nonlinear optical susceptibilities of dipolar molecules 7

Therefore the probability amplitude reduces to the first term of equation (22) alone. With this
we conclude the application to Rayleigh scattering.

Returning to the most general case, the development of theory described above justifies
the adoption of the following single prescription for susceptibility calculations:

µuu→ µuu − µ00 = d; µ00→ 0 (27)

whilst the transition dipoles remain unchanged.When the various time-orderings for any
optical processes of interest are drawn up, application of this rule enables expressions involving
a connected route which entails any ground-state dipoleµ00 to be discarded, so long as those
entailing the excited-state dipoleµuu are reinterpreted to invoked. This is the algorithm
whose illustrative applications are described in the following section. The method has been
explicitly validated for all parametric and nonparametric processes, both degenerate and fully
nondegenerate, of rankn. In every case its implementation leads in a matter of lines to results
identical to those previously established by substantially more laborious means: for example,
see [2, 6].

3. Applications

3.1. Second-harmonic generation

Interesting features emerge in the first case with any significant complexity: second-harmonic
generation. Here there are three time-ordered diagrams [27], as illustrated in figure 1. The
route of molecular states between the initial (ground) state and the final (also ground) state
runs through two virtual states,s1 ands2, and in the two-level approximation each of these is
summed to represent one of two possibilities, either the ground state 0 or the excited stateu.
The(0→ s1→ s2→ 0) sequences which arise are thus concisely expressible as 0000, 00u0,
0u00, 0uu0. From the three time-orderings we therefore have 3× 22 = 12 contributions—
each a product of three ‘transition’ dipoles (one or more of which may be permanent—see the
introduction), divided by a product of two energy factors.

Figure 1. The three time-ordered diagrams for second-harmonic generation.
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Application of the algorithm determines that only the state sequence 0uu0 need be
considered in a suitable reinterpretation of the three time-ordered diagrams, since each of
the other possibilities includes a 00 segment. From figure 1 we therefore have a two-level
hyperpolarizability tensor given by:

O00
α1α2α3

(−2ω,ω, ω) ≡ βα1α2α3 =
µu0
α1
dα2µ

u0
α3

(E0 − Eu + 2h̄ω + i0u)(E0 − Eu + h̄ω + i0u)

+
µu0
α2
dα1µ

u0
α3

(E0 − Eu − h̄ω + i0u)(E0 − Eu + h̄ω + i0u)

+
µu0
α2
dα3µ

u0
α1

(E0 − Eu − h̄ω + i0u)(E0 − Eu − 2h̄ω + i0u)
. (28)

In passing we note that in any application the index-symmetrized formβα1(α2α3) ≡ 1
2(βα1α2α3 +

βα1α3α2)would necessarily be invoked because of the corresponding symmetry in the radiation
tensor—with which it is eventually contracted to give a result for the signal as in equation (10).
It is instructive to compare the above result (28) with that given in our earlier work. In
equation (11) of that work [2], a result of almost identical form is presented: trivial differences
relate to taking the negative of each denominator factor, writing(Eu − E0) asEu0, and
taking 0u ≡ 1

2h̄γu. For example, with the first denominator of equation (28) we have
(E0 − Eu + 2h̄ω + i0u)(E0 − Eu + h̄ω + i0u) ≡ (Eu0 − 2h̄ω − 1

2ih̄γu)(Eu0 − h̄ω − 1
2ih̄γu),

which is identical to that occurring in the corresponding first term from [2]. The sign of the
damping in the antiresonant terms—the second and third terms of both corresponding equations
being associated with time-ordered diagrams 1(b) and (c)—was in that work determined by
the prevailing convention of opposite signs for interactions preceding and following emission
[28, 11]. By adopting in our earlier derivation the convention of a constant sign for damping
[12, 23, 29, 30], the result coincides exactly with equation (28), and now without the need to
assume that the linewidth is small compared to the harmonic frequency.

3.2. Third-harmonic generation

The second application of our algorithm serves both to illustrate its power and to draw out some
new physics. The process of third-harmonic generation is a frequency up-conversion technique
currently attracting significant interest for the study of thin films [31–34] and in scanning laser
microscopy [35]—one of its attractions being that it is mediated by a susceptibility of even
rank, supported by all materials irrespective of their intrinsic symmetry. To derive the form
of the susceptibility tensor one employs four time-ordered diagrams, as shown in figure 2.
The state route connecting the initial and final (ground) states here runs through three virtual
states,s1, s2 ands3, and the two-level approximation requires each to be either the ground or
the excited state. In this case, from the four time-orderings we get a total of 4× 23 = 32
contributions, each a product of four transition or permanent dipoles divided by three energy
quotients.

With the benefit of the algorithmic method delineated above, we can take the four time-
orderings and dispense with all but two of the following state sequences; 00000, 000u0,
00u00, 00uu0, 0u000, 0u0u0, 0uu00, 0uuu0: specifically, discarding each sequence which
includes the segment 00, we retain only 0u0u0 and 0uuu0. With proper reinterpretation of
these remaining cases we thus immediately obtain the following explicit result comprising only
eight terms, of which each successive pair results from the successive time-ordered diagrams
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Figure 2. The four time-ordered diagrams for third-harmonic generation.

of figures 2(a)–(d):

O00
α1α2α3α4

(−3ω,ω, ω, ω) = µu0
α1
µu0
α2
µu0
α3
µu0
α4

(E0 − Eu + 3h̄ω + i0u)(2h̄ω)(E0 − Eu + h̄ω + i0u)

+
µu0
α1
dα2dα3µ

u0
α4

(E0 − Eu + 3h̄ω + i0u)(E0 − Eu + 2h̄ω + i0u)(E0 − Eu + h̄ω + i0u)

+
µu0
α1
µu0
α2
µu0
α3
µu0
α4

(E0 − Eu − h̄ω + i0u)(2h̄ω)(E0 − Eu + h̄ω + i0u)

+
µu0
α2
dα1dα3µ

u0
α4

(E0 − Eu − h̄ω + i0u)(E0 − Eu + 2h̄ω + i0u)(E0 − Eu + h̄ω + i0u)

+
µu0
α1
µu0
α2
µu0
α3
µu0
α4

(E0 − Eu − h̄ω + i0u)(−2h̄ω)(E0 − Eu + h̄ω + i0u)

+
µu0
α2
dα2dα1µ

u0
α4

(E0 − Eu − h̄ω + i0u)(E0 − Eu − 2h̄ω + i0u)(E0 − Eu + h̄ω + i0u)

+
µu0
α1
µu0
α2
µu0
α3
µu0
α4

(E0 − Eu − h̄ω + i0u)(−2h̄ω)(E0 − Eu − 3h̄ω + i0u)

+
µu0
α2
dα3dα4µ

u0
α1

(E0 − Eu − h̄ω + i0u)(E0 − Eu − 2h̄ω + i0u)(E0 − Eu − 3h̄ω + i0u)
(29)

where once again it is the index-symmetrized form, here entailing all permutations ofα2, α3

andα4, which will feature in the observables.
One aspect of the result (29) which deserves comment is its amenability for the

identification of resonances. Three-photon resonances are manifest in the first and second terms
of (29); two-photon resonances feature in the second and fourth, and single-photon resonances
in each of the first six. Since exploitation of the latter kind of resonance is in practice usually
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avoided because of the competing linear absorption with which it is associated, it is the two-
and three-photon resonances which are of the most interest. Under suitable conditions, the
susceptibility is therefore in either of those cases largely driven by just two of the contributions
to (29), other contributions representing minor corrections of much the same order of magnitude
as those relating to the involvement of other molecular energy levels.

Other factors become evident when the relative magnitudes of the dipole difference|d| and
the transition dipole|µu0| are considered. One immediately striking feature is the observation
that the second, fourth, sixth and eighth terms all disappear if|d| = 0, leaving only terms
associated with virtual excitation routes. (Note that no such routes were manifest in the
second-harmonic result. If|d| = 0 then the entire expression (28) becomes zero—any process
involving an odd number of photons has to entail at least one 00 oruu segment in the interaction
sequence). In the third-harmonic case, in particular, both terms associated with two-photon
resonances disappear—in other words there can be no two-photon resonance enhancement of
third-harmonic generation under such circumstances. This is consistent with the observation
that two-photon absorption itself depends critically on the existence ofd [5–8]. If, however,
|d| � |µu0|, then the even terms of (29) dominate the susceptibility—and in the case of three-
photon resonance it is the second term which provides by far the leading contribution. Such
considerations should play an important role in implementing strategies for the calculation of
nonlinear susceptibilities—for example in the case just cited, the dominant term is of a form
which has not previously been identified as representing the major contribution.

4. Conclusion

A procedure has been established for directly identifying the effects of permanent dipoles
on the optically parametric behaviour of systems dominated by two energy levels. The
method, based on a transformation of the interaction operator, leads to an algorithm involving
reinterpretation of the conventional Feynman diagrams. Though illustrated specifically in
terms of the electric dipole approximation—where the susceptibility for a process involving
n photons is of E1n form (n electric dipoles)—the procedure is equally amenable to dealing
with higher-order multipoles, since they too are linear functions of the photon creation and
annihilation operators. Such extensions of the algorithm will prove useful in connection with
parametric processes involving an odd number of photons, where the corresponding optical
nonlinearities for centrosymmetric substances are dominated by susceptibilities of E1n−1E2
(one electric quadrupole) or E1n−1M1 (one magnetic dipole) form.

It has been shown how application of the algorithm to second- and third-harmonic
generation swiftly leads to results which would otherwise demand considerable algebraic
manipulation, even starting from the general Orr and Ward formulation [36], moreover it aids
direct identification of the crucial dependence on the difference in dipole moments between the
ground and excited state. The case of third-harmonic generation in particular illustrates how the
method is amenable to the identification of resonances, and to calculational implementation.
Both aspects represent major factors in the formulation, design and characterization of new
nonlinear optical materials. Where higher orders of optical nonlinearity are concerned, as for
example in the various five- and six-wave processes currently of interest [37–46], exploratory
work shows that the algorithm will enormously simplify derivation of the appropriate
susceptibilities.
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Appendix

Equation (21) expresses the probability amplitude for ann-photon process(n > 1), in the
subsystem formed byonemolecule and the radiation, in a form including the termsL

f i
n,p. The

explicit form of these is as follows:

Lf in,p =
n−p∑
m1=0

n−p−σ(1)∑
m2=0

· · ·
n−p−σ(p−1)∑

mp=0

{
〈fsub|[H ′intT0]n−p−σ(p)

×
p−1∏
l=1

[(−δ)T0[H ′intT0]ml ](−δ)[T0H
′
int]

mp |isub〉
}

(A.1)

where theσ(r) are defined for 16 r 6 p as

σ(r) =
r∑
j=1

mj . (A.2)

The expression forLf in,p, equation (A.1), is sufficiently intricate to warrant further analysis and
exemplification, beyond the simple case in section 2.2, for whichn = 2 andp has two possible
values: 1 and 2. Consider then = 3 case, wherep = 1, 2, 3; the expressions for the different
values ofp are:

• p = 1

L
f i

3,1 =
2∑

m1=0

〈fsub|[H ′intT0]2−m1(−δ)[T0H
′
int]

m1|isub〉 (A.3a)

• p = 2

L
f i

3,2 =
1∑

m1=0

1−m1∑
m2=0

〈fsub|[H ′intT0]1−m1−m2(−δ)T0[H ′intT0]m1(−δ)[T0H
′
int]

m2|isub〉 (A.3b)

• p = 3

L
f i

3,3 =
0∑

m1=0

0−m1∑
m2=0

0−m1−m2∑
m3=0

〈fsub|[H ′intT0]−m1−m2−m3(−δ)T0[H ′intT0]m1(−δ)T0

×[H ′intT0]m2(−δ)[T0H
′
int]

m3|isub〉. (A.3c)

In equation (A.3c) the sums overm1, m2 andm3 collapse to a single term in which these
indices are identically zero. This characteristic occurs in any case wherep is equal ton. When
equations (A.3a)–(A.3c) are expanded the resulting expression forS(3) becomes

S(3) = 〈fsub|H ′intT0H
′
intT0H

′
int|isub〉 + 〈fsub|H ′intT0H

′
intT0(−δ)|isub〉

+〈fsub|H ′intT0(−δ)T0H
′
int|isub〉 + 〈fsub|(−δ)T0H

′
intT0H

′
int|isub〉

+〈fsub|H ′intT0(−δ)T0(−δ)|isub〉 + 〈fsub|(−δ)T0H
′
intT0(−δ)|isub〉

+〈fsub|(−δ)T0(−δ)T0H
′
int|isub〉 + 〈fsub|(−δ)T0(−δ)T0(−δ)|isub〉. (A.4)
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Figure A1. Induction scheme.

The probability amplitudeS(3) is easier to understand when written explicitly, as in (A.4).
It has a term with noδ operators present, three with a singleδ operator, three with twoδ
operators and one with threeδ operators. The probability amplitude for aspecificn-photon
process follows similar lines. The format of expression (A.4) is not useful for the general
development, however. Then it is necessary to establish connections between the expressions
of the different orders.

Casting results in terms ofLf in,p, it is possible to show by induction that each one of
these terms is proportional to the difference in energy between the initial and final states
of the subsystem, and which through energy conservation therefore do not contribute to the
probability amplitude. For the special case whenp = (n−1), theLf in,n−1 also cancels because
it is proportional to the matrix element〈0|(µ − µ00)|0〉, but for generality we will conduct a

proof for alln andp(6 n). SinceLf in,p depends on two indices, it is helpful to follow a scheme
where induction can be applied (figure A1). Supposing that for a givenn and allp 6 n the
L
f i
n,p is effectively proportional to the difference in energy, it is to be shown that it is also valid

for Lf in+1,p. This proof will not be sufficient, it being also necessary to show that if for a given

n = p theLf in,n is proportional to the energy difference, so isLf in+1,n+1 (diagonal in the scheme
of figure A1).

Let us first establish a link between the expressions ofLn+1,p andLn,p. From (A.1) the
L
f i

n+1,p coefficient can be written as follows:

L
f i

n+1,p =
n+1−p∑
m1=0

· · ·
n+1−p−σ(p−1)∑

mp=0

{
〈fsub|[H ′intT0]n+1−p−σ(p)

×
p−1∏
l=1

{(−δ)T0[H ′intT0]ml }(−δ)[T0H
′
int]

mp |isub〉
}
. (A.5)

It is now necessary to express (A.5) in terms ofLsin,p, wheres(≡ ssub) is an intermediate state for
the(n+ 1)-photon process. To do so let us consider the indices in the sums. Ifm1 = n+ 1−p,
the rest of themi indices (withi = 2, . . . , p) are null, andLf in+1,p can be re-expressed as

L
f i

n+1,p = 〈fsub|(−δ)T0[H ′intT0]n+1−p[(−δ)T0]p−2(−δ)|isub〉

+
n−p∑
m1=0

· · ·
n+1−p−σ(p−1)∑

mp=0

{
〈fsub|[H ′intT0]n+1−p−σ(p)

×
p−1∏
l=1

{(−δ)T0[H ′intT0]ml }(−δ)[T0H
′
int]

mp |isub〉
}
. (A.6)
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In a similar manner, for a givenm1, if the m2 = n + 1− p − m1, the rest of the indices
(m3, m4, . . . , mp) will be zero. Repeating this argument for all indices, the final result is

L
f i

n+1,p = 〈fsub|(−δ)T0[H ′intT0]n+1−p[(−δ)T0]p−2(−δ)|isub〉

+
n−p∑
m1=0

{〈fsub|(−δ)T0[H ′intT0]m1(−δ)T0[H ′intT0]n+1−p−m1[(−δ)T0]p−3(−δ)|isub〉}

+ · · · +
n−p∑
m1=0

· · ·
n−p−σ(r−1)∑

mr=0

{
〈fsub|

r∏
l=1

{(−δ)T0[H ′intT0]ml }

×(−δ)[T0H
′
int]

n+1−p−σ(r)[(−δ)T0]p−2−r (−δ)|isub〉
}

+ · · · +
n−p∑
m1=0

· · ·
n−p−σ(p−2)∑
mp−1=0

{
〈fsub|

p−1∏
l=1

{(−δ)T0[H ′intT0]ml }

×(−δ)[T0H
′
int]

n+1−p−σ(p−1)|isub〉
}

+
n−p∑
m1=0

· · ·
n−p−σ(p−1)∑

mp=0

{
〈fsub|[H ′intT0]n+1−p−σ(p)

×
p−1∏
l=1

{(−δ)T0[H ′intT0]ml }(−δ)[T0H
′
int]

mp |isub〉
}
. (A.7)

In the third line of (A.7) there are implicit terms whose general form is given in terms of
r. These terms can be obtained following the arguments for the construction of the first and
second term. Including the second and the fourth line, there are(p − 1) terms of this form,
with 16 r 6 (p − 1).

We can now expressLf in+1,p in a simple and compact form. All the terms given by the
subindexr (second, third and fourth lines of (A.7)) combined with the first line of equation (A.7)
can be expressed in terms ofLsin,p−1. On the other hand, the last line in equation (A.7) can be
expressed in terms ofLsin,p. The final expression is

L
f i

n+1,p =
∑
π

{∑
ssub

[〈fsub|(−δ)T0|ssub〉Lsin,p−1] +
∑
ssub

[〈fsub|H ′intT0|ssub〉Lsin,p]

}
. (A.8)

In equation (A.8) the intermediate statesssub have been introduced, by summing over the
complete set of eigenstates ofH0. It is important to notice that, althoughssubis an intermediate
state forLf in+1,p, it is the final state forLsin,p′ (p

′ = p, p − 1). The expression (A.8) is
completely general and no assumption has been made about the system: therefore it is valid
for both parametric and nonparametric processes.

With an expression, (A.8), connecting theLf in+1,p from an(n + 1)-photon process with
Lsin,p′ from ann-photon process, we now examine the specific form of theLsin,p′ . In two-level
systems whose initial molecular state is the ground state, the molecular part of the intermediate
statesssub can be either|u〉 or |0〉, and it is necessary to have expressions ofLsin,p′ where these
two possibilities are entertained. When the initial and final molecular states are the ground
state the following identity is valid:

L00
n,p′ =

∑
π

{
2fi
n ×

µ0u
in
{d;µu0}µu0

ip′+1

h̄�π(n, p′ + 1){1E} ×
µ00
ip′
. . . µ00

i1∏p′
r=1 h̄�π(r, 1)

× (Einitial − Efinal)

}
(A.9)
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where the function2fi
n accounts for the radiation parameters

2fi
n ≡

n∏
l=1

[
(−i)

(
h̄ckl

2V ε0

)1/2

g(ml)

]
(A.10)

and the functiong(ml) is defined in terms of the number of photons of each mode,m(kl , λl),
participating in the process:

g(ml) =
{
(m(kl , λl))

1/2e
(λl )
l (kl) for photon absorption

(m(kl , λl) + 1)1/2ē(λl )l (kl) for photon emission.
(A.11)

In expression (A.9) the term in braces,{d;µu0}, is a direct product of transition dipole moments
between statesu and 0(µu0 = µ0u), and/or thed vector(d = µuu − µ00), while {1E} is
defined as the product of the energy difference between the intermediate states (in−1 to ip′+1)
and the energy of the intermediate stateip′ . The sum overπ denotes that all possible time-
orderings are considered and�π(k, l) is defined in the main text, following equation (13). A
similar expression is also valid for the case where the final molecular state is the excited state
u:

Lu0
n,p′ =

∑
π

{
2fi
n ×

din{d;µu0}µu0
ip′+1

(E0 − Eu + h̄�π(n, p′ + 1)){1E}

×
µ00
ip′
. . . µ00

i1∏p′
r=1 h̄�π(r, 1)

× (Einitial − Efinal)

}
. (A.12)

To unravel equation (A.8) we also need to cast the difference(Einitial − Efinal) in terms of
�π(k, l):

Einitial − Efinal =
(
(Emol)initial +

∑
p

mph̄ωp

)
−
(
(Emol)final +

∑
p

m′ph̄ωp

)
= (Emol)initial − (Emol)final +

∑
p

(mp −m′p)h̄ωp (A.13)

wheremp andm′p are initial and final occupation numbers of the modekp, λp (|kp| = ωp/c),
and

∑
p(mp − m′p)h̄ωp =

∑
l ηlh̄ωl . In a parametric process,(Emol)initial = (Emol)final, and

equation (A.13) reduces to

(Einitial − Efinal) =
∑
l

ηlh̄ωl ≡ h̄�(n + 1, 1). (A.14)

Assuming that expressions (A.9) and (A.12) are valid for a certainn, expression (A.8)
can be used to show that a similar result holds for(n + 1). First, when the initial and final
molecular states are the ground state, equation (A.8) reduces to

L00
n+1,p = 2fi

n+1

∑
π

{
µ00
ip
µ0u
in+1
{d;µu0}µu0

ip+1

h̄�π(n + 1, p + 1){1E}
µ00
ip−1

. . . µ00
i1∏p−1

r=1 h̄�π(r, 1)

+
µ0u
in+1
{d;µu0}µu0

ip+1

{1E}
µ00
ip
. . . µ00

i1∏p

r=1 h̄�π(r, 1)

}

= 2fi

n+1

∑
π

µ0u
in+1
{d;µu0}µu0

ip+1
µ00
ip
. . . µ00

i1

h̄�π(n + 1, p + 1){1E}∏p

r=1 h̄�π(r, 1)

×{h̄�π(n + 1, p + 1) + h̄�π(p, 1)}. (A.15)
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Equation (A.15) is proportional to

{h̄�π(n + 1, p + 1) + h̄�π(p, 1)} = h̄�π(n + 1, 1) ≡ h̄�(n + 1, 1), (A.16)

which from equation (A.14) is identical to(Einitial − Efinal). Therefore equation (A.15) is
equivalent to (A.9).

In the case where the final molecular state is the excited state we obtain the following
expression:

Lu0
n+1,p = 2fi

n+1

∑
π

{
µ00
ip
µu0
in+1
{d;µu0}µu0

ip+1

(E0 − Eu + h̄�π(n + 1, p + 1)){1E}
µ00
ip−1

. . . µ00
i1∏p−1

r=1 h̄�π(r, 1)

+
µu0
in+1
{d;µu0}µu0

ip+1

{1E}
µ00
ip
. . . µ00

i1∏p

r=1 h̄�π(r, 1)

}

= 2fi

n−1

∑
π

µu0
in+1
{d;µu0}µu0

ip+1
µ00
ip
. . . µ00

i1

(E0 − Eu + h̄�π(n + 1, p + 1)){1E}∏p

r=1 h̄�π(r, 1)

×{E0 − Eu + h̄�π(n + 1, p + 1) + h̄�π(p, 1)}. (A.17)

The factor in equation (A.17) is the difference in energy between the initial and the final state

{E0 − Eu + h̄�π(n + 1, p + 1) + h̄�π(p, 1)} = E0u + h̄�π(n + 1, 1) ≡ E0u + h̄�(n + 1, 1)

(A.18)

as shown in equation (A.13). Therefore, equation (A.18) is the same as (A.12) for the(n + 1)-
photon process.

We have now proved that if anyLf in,p is proportional to the energy difference between
the final and the initial state, then this will be also true forL

f i

n+1,p. This allows us to ‘move’
downwards in the scheme of figure A1 (increasingn). To complete the proof it is necessary
to show that ifLf in,n is proportional to the difference in energy between the initial and the final
molecular states, then so will beLf in+1,n+1. The general expression forLf in,n is deduced from
equation (A.1) by settingp = n,

Lf in,n = 〈fsub|[(−δ)T0]n−1(−δ)|isub〉. (A.19)

This expression can be written in terms of the electric dipole moment of the ground state, by
introducing intermediate statesssub:

Lf in,n = 2fi
n

∑
πn

µ00
in
. . . µ00

i1∏n−1
r=1 h̄�πn(r, 1)

δfmol,imol. (A.20)

This means that the termLf in,n can only be nonzero in a parametric process. Subject to these
kinds of processes, it is easily shown that the expression (A.20) can be written as

l00
n,n = 2fi

π

µ00
in
. . . µ00

i1∏n
r=1 ηrh̄ωr

h̄�πn(n, 1) (A.21)

which is identically zero(�πn(n, 1) = �(n, 1) is independent of the permutationπn, see
equation (A.14)). For equation (A.21) to be valid, it is necessary to prove the following
identity: ∑

πn

1∏n−1
r=1 �πn(r, 1)

= �πn(n, 1)∏n
l=1�πn(l, l)

. (A.22)

Forn = 2 the identity is satisfied:∑
π2

1∏1
r=1�π2(r, 1)

= 1

η1ω1
+

1

η2ω2
= η1ω1 + η2ω2

η1ω1η2ω2
= �π2(2, 1)∏2

l=1�π2(l, l)
. (A.23)
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Now let us suppose that the identity is valid for ann-photon process, equation (A.22). Then
the(n + 1) case should be also valid. For the(n + 1) case, it can be seen from equation (A.20)
thatLf in+1,n+1 is proportional to∑

πn+1

[ n∏
r=1

�πn+1(r, 1)

]−1

. (A.24)

Since the symbolπn+1 is the permutation of a set of(n + 1) elements, equation (A.24) can be
expressed differently, by partitioning the set into two subsets ofn and 1 elements respectively
and considering all possible partitions [47]:
n+1∑
m=1

∑
πn+1
m

[ n∏
r=1

�πn+1
m
(r, 1)

]−1

=
n+1∑
m=1

∑
πn+1
m

[
(�πn+1

m
(n, 1))

n−1∏
r=1

(�πn+1
m
(r, 1))

]−1

=
n+1∑
m=1

(�(m + n,m + 1))−1
∑
πn+1
m

[ n−1∏
r=1

(�πn+1
m
(r, 1))

]−1

(A.25)

where πn+1
m is the permutation ofn of the (n + 1) photons present in the process,

excluding(ηmωm). For example, theπn+1
3 embraces all the permutations of the following

waves:η1ω1, η2ω2, η4ω4, . . . , ηn+1ωn+1. Rewriting equation (A.25) using then case result,
equation (A.22), we obtain
n+1∑
m=1

(�(m + n,m + l))−1

( n∏
l=1

ηm+lωm+l

)−1

�(m + n,m + l)

=
n+1∑
m=1

{( n+1∏
l=1

ηm+lωm+l

)−1

ηm+n+1ωm+n+1

}
(A.26)

where we have definedηiωi for (n+ 1< i 6 2(n+ 1)) asηn+2ωn+2 = η1ω1, ηn+3ωn+3 = η2ω2,
and so on. This last expression leads us to the desired identity∑

πn+1

[ n∏
r=1

�πn+1(r, 1)

]−1

=
( n+1∏
l=1

�πn+1(l, l)

)−1

�πn+1(n + 1, 1). (A.27)

Expressions (A.15), (A.17) and (A.21) prove that all theLf in,p are proportional to the
energy difference between the initial and final states. Therefore, when energy conservation is
imposed, the first contribution to the probability amplitude for ann-photon process is, as given
by the first term of equation (21) in the main text, simply:

S(n) ∼ 〈fsub|H ′int[T0H
′
int]

n−1|isub〉. (A.28)
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