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But from the usual partial fraction  expansion into distinct linear 
factors, 

Thus 

respectively. 

and (4) 
Now let us look  at  the  denominator of A ,  and B, (10). From  (11) 

w ' ( X , )  w'(x,+N) = - (x,  -Xq+N)'  pa(x,)p&,+N) 

N 
= -(xCr -x,+N)' n Qp(xJ Q~(x,+N).  

@+a 
&-I 

The  identity 

Q ~ x , )   Q p ( x , + ~ )  = naQa(up) + " p Q p ( d  - 2nanp 

then  immediately yields 

W'(X,)  W'(X,+N) = 4 x 0  .- x,+N)2 *a (1 7) 

where \Ira is given by (7). 
Equations  (15)-(17)  then reduce to (6) (see (IO)). It remains but  to 

evaluate Rk,,  in  terms of ui and nj. But this formula is an  immediate 
consequence  of the following lemma. 

Lernmu 
I f u = a + p a n d n = o $ , t h e n  

Proof: Let r = ,/=. Then Q = $(o - r )  and B = $(u + r ) .  Sub- 
stituting  these values of a and @ on the right-hand side of the  identity 

c uk-'g' = 

k  ak+l  +k+l 

i=O (2 - B  
and using the binomial theorem yields (1 8). 
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Absmcf-A procedure is proposed  for the numericPl evaluation of 
the Hankd (Fourier-Bessel) transform of any integer order using the 
FFT algorithm. The basis for the procedare is the " p m j e c t i o n 4 i ~ "  
theorem lssocipted with the  twodimensional Fourie~ transform. 

In a  variety  of  applications, the need arises for the numerical evalu- 
ation of the Hankel  transform  (alternatively  referred to as the Fourier- 
Bessel transform). For example, in ocean acoustics, the reflected pres- 
sure field from a  horizontally stratifted  bottom  and  the plane wave 
reflection  coefficient are related through  the Hankel  transform [ l ] ,  
Other  common areas in which similar relationships arise are in optics 
[ 21 and in molecular biology [ 31 . 

The Hankel transform can be (and often is) interpreted in terms  of 
the two-dimensional Fourier  transform. Specifically, let f(x, y )  and 
F ( p ,  v )  denote a twodimensional  function  and  its  Fourier transform 
so that 

+- +- 
F01,v) = g l, I, f ( x , y )  ejC"B"'dx dr (1) 

1 

or, with f (x,  y )  and F ( p ,  v )  expressed in polar coordinates, 

2n - 
R P ,  $1 = 'h 1 50, e) exp  b[cos(B - $11 r p ) r  drde (2) 

2n 

where 0 is measured relative to the x-axis and $ is measured relative to 
the paxis. If y(r, e) is of the  form 

F(r, e) = g(r)eirne (3) 

where rn is an integer, then (2) reduces to [ 21 

5% = OrnG(deirn' (4) 
where 

G(P)  = 1- Jrn(rp)  g(r) r dr. (5 1 

The integral relationship of (5) corresponds to the Hankel tra dorm of 
order rn [4] .  From (4), we see that it  is equal to Qmeyrn4 times  a 
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slice at angle $0 through  the  twodimensional transform 3 ( p ,  9). Our 
proposed method of numerically evaluating ( 5 )  is based on the  “pro- 
jection-slice” theorem  for  the two-dimensional Fourier  transform.  This 
theorem  states  that  the  onedimensional transform  of  a projecrion of 
f ( x ,   y )  at any angle is a slice at  the same angle of F b ,  v )  [ 5 ] .  For ex- 
ample, referring to (l) ,  let us consider the slice in F b ,  Y) corresponding 
to Y = 0, or equivalently, 3 ( p ,  4) for 9 = 0. Then 

where 

e+- 

is the  projection  of f(x, y )  onto  the x-axis. Thus  from (6)  and  (4), we 
can write that 

+co 

G(P)  = 1- eipX p ( x )  &. (8) 

Thus comparing ( 5 )  and (8), it follows that  the mth-order Hankel trans- 
form can be equivalently expressed (and calculated)  as j-m times  the 
onedimensional Fourier  transform  of the  projection p ( x ) .  

The two basic computational steps in evaluating ( 5 )  using this ap- 
proach are the evaluation  of the projection p ( x )  (7) and the  evaluation 
of the onedimensional Fourier  transform (8). Let us assume that 
G(p)  = 0, IpI b Ro.  Then,  from (7), p ( x )  is bandlimited, and conse- 
quently,  by virtue of the sampling theorem, 

provided that A x  < n/Ro.  If we consider calculating C ( p )  at N equally 
spaced values A p  = (1/N) ( 2 n / A x ) ,  then 

(10) 

Thus, G ( k A p ) ,  k = 0, 1, . . . , N - 1, is  proportional  to  the discrete 
Fourier  transform  of the samples of p ( x ) ,  aliased in x .  If the samples 
of p ( x )  represent  a finite-length sequence  of  length < ( N A x ) ,  then  (10) 
reduces to 

Both  (10) and  (1 1) correspond to the discrete Fourier transform, 
and consequently they can be evaluated  directly using the  onedimen- 
sional FFT. 

The calculation  of samples of p ( x )  is somewhat less direct. Equation 
(7) can  equivalently be  written as 

where Vm (.) is the mth-order Chebyshev polynomial. Equations (12) 
incorporate  the  fact  that since f ( r ,  e )  is conjugate  antisymmetric in 8,  
only its real part  contributes  to p ( x ) .  We have found  it most conve- 
nient to calculate p ( x )  through  the use of (12a). Specifically, we note 
that since f ( x ,   y )  is bandlimited, 

+- 

I_, 
+- 

f ( x ,   y )   d y  = A y  x f ( x ,   k A y )  (13) 

provided  only that A y  < 2n/Ro.  Equation (13) is basically a conse- 
quence  of  the fact that for  a  bandlimited function sampled at one-half the 
Nyquist rate  or higher, 3ts  integral is directly proportional to the sum of 
its samples. Thus, p ( n A x )  as  required in (10)  or (11) is 

k=- - 

(14) 

Equations (10) and (14)  together  provide  an exact expression for  the 
numerical calculation of G ( k A p )  provided only  that G ( p )  = 0, IpI > 
Ro. If this is not the case, then (10) will compute samples of G ( p )  
aliased in p ,  i.e., 

and  an integration rule more complex than  (13)  must be used to calcu- 
late p(x) .  
To evaluate (141, we assume that g ( J W - 1  is known on a rec- 
tangular grid in the x-y  plane. In many  practical cases of interest, in- 
cluding the  one  that motivated our consideration  of this method, g(r) 
is generally available as samples in r. In  this case, evaluation of (14) re- 
quires an interpolation of samples of g(r) to  the sample points on the 
rectangular grid. Under the assumption that C(p)  = 0, I pI > Ro,  this 
is the  only step in the procedure in which an approximation is required. 

The above procedure  has  been sucdessfully applied to a number of 
trial examples. Because of its  apparent accuracy and efficiency, it is 
presently being utilized and explored further  in  the  context  of seabed 
acoustics. 
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