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An Algorithm for the Second Immanant

By Robert Grone and Russell Merris*

Abstract. Let x be an irreducible character of the symmetric group S„. For A = (a¡j) an

n-by-n matrix, define the immanant of A corresponding to x by
n

d(A)=   £    x{o)U <W
o = S„ ' = 1

The article contains an algorithm for computing d(A) when x corresponds to the partition

(2,1"~2).

Introduction. Denote by x* the (irreducible, characteristic zero) character of the

symmetric group Sn corresponding to the partition {k,V~k), for k = 1,2,...,«. If

A = (a¡j) is an n-by-n matrix, define
n

dk{A)=   £    Xk(°)Tl  «ra(r)-
aes„ ' = 1

Then, for example, dx(A) = det(^) and dn(A) = per(yl), the permanent of A. In

general, dk is known as an immanant or a generalized matrix function. (An

immanant is a generalized matrix function based on Sn.)

Suppose G is a (simple) graph on n vertices. Denote by L(G) the Laplacian matrix

corresponding to some labeling of the vertices of G, i.e., L(G) is an n-by-n matrix,

the (i, j) entry of which is the degree of vertex i when /' = j,-l if / =£ j but vertex i is

adjacent to vertex /', and zero otherwise. It is shown in [5] that the number of

Hamiltonian circuits in G is given by the formula

(1) /!(G) = e¿   (-l)kdk(L(G)).
Ln fc-2

While there is an immense literature on generalized matrix functions, Eq. (1) is

already sufficient motivation to seek "fast" algorithms for their actual computation.

The main result of this note is an algorithm for computing d2. (See the next section.)

It seems that d2 may be especially appropriate for the study of Laplacian matrices

for the following reason: If G is a graph on n vertices, then ¿(G) is positive

semidefinite symmetric and singular. Moreover, G is connected if and only if

rank L(G) = n - 1. For arbitrary positive semidefinite symmetric matrices without

a zero row, it was established in [3, Corollaries 5 and 6] that d2(A) > 0 with equality

if and only if rank(/l) < n — 1.
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Two graphs, Gx and G2 are isomorphic if and only if L(GX) is permutation similar

to L{G2). Thus, any permutation-similarity invariant of L(G) is actually a property

of the underlying graph G. This observation has motivated the use of determinants

in the study of graphs. (See, e.g. [1].) The trouble with determinants is that they are

preserved under arbitrary similarities. It was suggested in [6] that permanents might

be substituted for determinants. The trouble with permanents is their computational

intractability. (See [7]. It is already evident from (1) that the computation of at least

some immanants is as hard as the Hamiltonian circuit problem.) It occurred to us

that d2 might afford a reasonable compromise, and this turns out to be the case.

The key to fast algorithms for dx lies in the observation that the determinant of a

matrix with two equal rows is zero. If A has k + 1 equal rows, it turns out [3,

Corollary 4] that dk(A) = 0. Although our algorithm does not make explicit use of

this observation, it provides some evidence (corroborated by Werner Hartmann [2])

that dk(A) should become easier to compute as k decreases. On the other hand,

there may be something unique about d2. It was shown in [4] that d2, but not dk for

k > 2, is linked in an interesting way with the determinant, namely d2{A)det(A~1)

= d2(A~l)det(A), for all in vertible matrices .4.

An Algorithm for d2. If a e S„, then x2(c) = e(a)(f(a) - 1), where e is the

alternating (signum) character and F(a) is the number of fixed points of a. It follows

from this fact that d2(A) = -det(A) for any matrix A with main diagonal consisting

entirely of zeros. Our algorithm is based on this observation. We proceed with its

description.

1. Scale A. Denote by D the n-by-n diagonal matrix; the (/, /) entry of which is 1 if

a„ = 0 and l/a„ if au * 0. Let Ax = D~yA. Then d2(A) = det(D)d2(Ax).

2. Permutation Similarity. (While this step is unnecessary, it makes the subsequent

discussion easier to follow.) If A has r main diagonal elements equal to zero, let P be

a permutation matrix such that the first r main diagonal elements of A2 = P'AXP are

zero. Then d2(Ax) = d2{A2).

3. Polynomial Coefficients. At this point, we are dealing with a matrix, A2, whose

main diagonal begins with r (possibly r = 0) zero entries. The remaining n - r

entries are ones. Imagine replacing each 1 with an indeterminate À. Call the resulting

matrix A. Then A = diag(0,... ,0, X,... ,X) + E, where the (/, j) entry of E is equal

to the (/, j) entry of A2 provided i + j; and each diagonal entry of E is zero. Denote

the polynomial det(A) by cr\"r + ■ ■ ■ + cn_x\ + cn. Consider the coefficient ck.

For k = 0, c0 is 0 or 1; it is 1 if and only if r = 0, i.e., if and only if A = Xln + E.

Observe that cx is always 0, for no permutation of Sn has exactly n - 1 fixed points.

For k > 1, ck is the sum of the determinants of all k-by-k principal submatrices of E

which contain the leading r-by-r principal submatrix. We may formalize this statement

as follows: For r < k < n, let Qk n denote the set of strictly increasing functions a:

{1,2,..., k) -» {1,2,...,«} such that a(i) = /fort = l,2,...,r. Then (for A: > 1),

(2) ck =    E     det(£[a]),

where E[a] is the k-by-k principal submatrix of E corresponding to rows and

columns a, i.e., the (/, /') entry of E[a] is the (a(t), a(j)) entry of E.
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Now, the indeterminate X is merely a device to help us organize together those

diagonal products of A2 which involve exactly « - k fixed points, none of which

corresponds to a main diagonal zero. That is,

(3) q = £e(o)fl af\t),
1=1

where A2 = (aff), and where the summation is over all permutations aej„ which

fix exactly « - k of the integers {r + l,r + 2,...,n) and none of the integers

{1,2,...,r}. To achieve d2(A2), it remains to multiply each diagonal product in (3)

by F(a) — 1 — n — k — l, and sum on k. Thus,

(4) d2{A) = det(Z>) t   (n-k-l)ck,
k = 0

where ck is given by (2).

Of course, the more zeros A has on its main diagonal, the faster the algorithm

works. At worst, it is comparable to the evaluation of the characteristic polynomial.
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