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SUMMARY 

The specialization of Richmond's algorithm to the gen-

ral set-covering problem is accomplished in three parts in 

this thesis. The first part of Richmond' s algorithm, which 

concerns the transformation of the original problem to canon

ical form with Rubin's Sequential Algorithm, is shown to de

generate to the original problem. The notion of a fundamen

tal matrix, although quite interesting due to the structure 

which it exhibits, does not supply any previously-unknown in

formation about problem structure for set-covering constraints. 

The second part of Richmond's algorithm, which deals 

with the use of the classical Fourier-Motzkin elimination 

procedure to obtain bounds on each of the problem variables, 

is shown to degenerate primarily to the intuitive Forced 

Variables reduction property. The addition of some common 

sense rules to the direct results the Fourier-Motzkin forward 

elimination produce the final upper and lower bounding ex

pressions used in the third step of Richmond's algorithm spe

cialized to the general set-covering problem. 

The third part of Richmond's algorithm, that of back

tracking for integer solutions with the Cook and Cooper pro

cedure, is shown to be closely related to the general method 

of implicit enumeration. Using the bounding expressions ob

tained from the second part, the specialized algorithm and 
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general implicit enumeration are compared side-by-side. The 

mechanics of the two procedures are shown to virtually iden

tical, differing only in the basic philosophies underlying 

them. The general implicit enumeration procedure bounds the 

optimal solution value with the values of successively better 

values of feasible solutions discovered during the expansion 

of partial solutions. In the context of the set-covering 

problem, these successively better values bound the value of 

the optimal solution from the top. The philosophy of the 

Richmond algorithm, and hence of the specialization of the 

algorithm to the general set-covering problem, is to approach 

the optimal solution value from the bottom, with the hope 

that the tighter bounds on the variables will cause faster 

fathoming to arrive more quickly at an optimal solution. 

The combined impact of the above results is that the 

apparently quite unusual, number-theoretical approach of 

Richmond' s algorithm degenerates in the set-covering case to 

little more than well-known implicit enumeration techniques. 

Thus, while not producing a new algorithm, the effort of this 

thesis to specialize the Richmond algorithm to the set-cover

ing case produces a unification of two quite separate 

branches of integer programming research. 



CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

The general set-covering problem is a well-established 

problem in mathematical programming that has considerable ap

plication in such diverse areas as information retrieval, 

emergency facilities location, switching theory, political 

redistricting and apportionment, and scheduling problems. 

Formulation 

Intuitively, the general set-covering problem can be 

formulated as follows: 

Given a set W with m elements e^, a collection 

of n subsets of W, and associated positive 

costs cj for each of the subsets S^; 

Find the minimal cost collection C* of subsets 

S. of W which "covers" the set W, so that 
3 

every element e^ of W is in some subset S_. of C*. 

Mathematically, the above formulation can be written 

as 

min cx 

subject to Ax > 1 

0 < Xj < 1 j = 1, 2,...,n 

Xj integer j = l,2,...,n 

(1-1) 
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where 1 is a column m-vector of l's, x is a column n-vector, 

each component x.. representing a decision whether subset 

is a member of the object collection of subsets. At optimal-

ity, the indication of each is 

if  Xj  = I 0, then £ C* 

) 1, then Sj e C* . 

The n columns of the matrix A are associated with the sub

sets Sj , and the m rows of A are associated with the elements 

e^ of W. The elements a^^ of A are defined 

a.. =  j 0 if e ± I S j 

I 1 if e.  e S. . 

The objective of the problem, as stated in the intuitive for

mulation, is to obtain the minimal cost collection of the 

subsets, this being merely the inner product of the vector x 

with c, a row n-vector consisting of the positive c^'s; sub

ject to the "covering constraints" embodied by the matrix in

equality system. Ax _> 1, and the 0,1 restrictions on the x.. . 

A specialization of the general set-covering problem, 

the "set-partitioning" problem, is formulated as follows: 

min cx 

subject to Ax = 1 

0 < x. < 1 j = 1,2,...,n (1-2) 

x_j integer j = 1,2,. . . ,n . 
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Thus this formulation differs from the general set-covering 

problem by stipulating that each element e^ in W can be an 

element of exactly one subset Sj in C*. 

Lemke, Salkin, and Spielberg [15] have demonstrated 

that every feasible set-partitioning problem can be solved 

by first transforming it into an equivalent set-covering for

mulation with a simple adjustment of the cost vector. The 

transformation consists of defining 

and choosing any value L such that 

L > L c. 

j=i ^ 

and defining new cost coefficients 

c \ = c. + Lt. 
3 3 3 

The optimal solution to formulation (1-2) (if any does indeed 

exist) is easily shown to be the same as the optimal solution 

to the set-covering problem 

min c'x 

subject to Ax > 1 

Xj  = 0 or 1 for all j = 1,2,...,n . 

In the sense that the set-partitioning problem can be solved 
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a s  a  s e t  c o v e r i n g  p r o b l e m ,  t h e  s e t  c o v e r i n g  p r o b l e m  i s  t h e 

m o r e  e n c o m p a s s i n g  o f  t h e  t w o  f o r m u l a t i o n s . 

R e d u c t i o n  P r o p e r t i e s 

B e c a u s e  o f  t h e  s p e c i a l  s t r u c t u r e  o f  t h e  g e n e r a l  s e t 

c o v e r i n g  p r o b l e m ,  t h e r e  a r e  c e r t a i n  p r o p e r t i e s  w h i c h  c a n  b e 

e x p l o i t e d  s o  t h a t  a  s e t  c o v e r i n g  f o r m u l a t i o n  m a y  b e  m o r e 

e a s i l y  s o l v e d .  G a r f i n k e l  a n d  N e m h a u s e r  [ 1 1 ]  d i s c u s s  s e v e r a l 

p r o p e r t i e s  w h i c h  h e l p  c h a r a c t e r i z e  o p t i m a l  s o l u t i o n s .  O f 

p r i m e  i m p o r t a n c e  a m o n g  t h e s e  a r e 

1 .  F e a s i b i l i t y    e a c h  c o v e r i n g  c o n s t r a i n t  m u s t  i n 

c l u d e  a t  l e a s t  o n e  c o v e r i n g  e l e m e n t .  T h i s  i s  t o 

s a y  t h a t  e v e r y  e ^  m u s t  b e  c o n t a i n e d  i n  s o m e  S_.  . 

2 .  F o r c e d  v a r i a b l e s    i f  t h e r e  e x i s t s  s o m e  e .  w h i c h 

I 

i s  c o n t a i n e d  i n  e x a c t l y  o n e  S ^ ,  t h a t  s u b s e t  m u s t 

b e  i n  a n y  f e a s i b l e  c o v e r ,  a n d  h e n c e  c a n  b e  e l i m 

i n a t e d  f r o m  t h e  p r o b l e m  ( a s  a  c o l u m n )  a l o n g  w i t h 

a n y  c o v e r i n g  c o n s t r a i n t  i t  m a y  s a t i s f y . 

3 .  R o w  d o m i n a n c e    i f  t h e r e  a r e  t w o  r o w s  r  a n d  r 

p  q 
o f  t h e  c o n s t r a i n t  m a t r i x  s u c h  t h a t  r  >  r  ,  w h i c h 

P    q 

i s  t o  s a y  t h a t  s a t i s f a c t i o n  o f  r  a u t o m a t i c a l l y 
q 

s a t i s f i e s  r  ,  t h e n  r  m a y  b e  e l i m i n a t e d  f r o m  t h e 

P  P 

p r o b l e m . 

4 .  C o l u m n  d o m i n a n c e    i f  t h e r e  i s  s o m e  s u b c o l l e c t i o n 

o f  s u b s e t s  S  s u c h  t h a t  t h i s  s u b c o l l e c t i o n  c o v e r s 

e v e r y  c o n s t r a i n t  c o v e r e d  b y  s o m e  s u b s e t  a n d 

f u r t h e r  t h a t  t h e  t o t a l  c o s t  o f  t h a t  s u b c o l l e c t i o n 
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is less than or equal to the cost of the subset 

Sj , then Sj (as a column) may be eliminated from 

the problem. 

Another property of the general set-covering problem is 

that the upper bound of 1 on in (1-1) can be relaxed with

out adverse effect on an optimal solution. Assume there exist

ed an optimal solution x* = {x* , xi , . . . , x* 1,x*,xt 1,...,,x*}such 
1 2 j-l j j+1 n 

that x. > 1. A solution x 1 = {x* ,x£, . . . ,x* ,, 1, x* x* } 

yields a better objective function value as cx* - ex" = c .(x* ,) 

> 0 and so cx* > cx 1. Further, if x* is feasible, then x 1 is 

also feasible, as the maximum value required of x_. to satisfy 

any covering constraint in which it appears is 1. Hence (1-1) 

can be re-written as 

minimize cx 

subject to Ax > 1 (1-3) 

x j — 0 a n c ^ integer for all j = 1,2, ... ,n . 

Solution Approaches 

The published literature in the area of the general 

set-covering problem treats the problem in a wide variety of 

contexts and from quite a few different vantage points. 

Garfinkel and Nemhauser [11] present a fairly current survey 

of solution procedures for the general set-covering problem. 

These various methods generally break down into two classes: 

cutting plane algorithm and enumerative methods. 
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Cutting Planes and Involutory Bases 

Principally, a cutting plane algorithm in integer 

programming is one in which an additional constraint (or cut) 

is applied to some present set of constraints (usually in an 

optimal simplex tableau) which eliminates part of the feasi

ble region on the constraint set, but which does not exclude 

an integer value which may be optimal from the reduced feasi

ble region. A cut is said to be "strong" if it eliminates 

the current optimal linear programming solution from the re

duced feasible region, and "weak" otherwise. 

An interesting cutting plane approach to the set-cov

ering problem has been developed by Bellmore and Ratliff [2]. 

The essence of this approach is the notion that for the set-

covering problem (1-1), the optimal solution (if the problem 

has a feasible solution) will be a non-redundant (prime) cov

er, a non-redundant cover being simply a feasible solution 

to the covering constraints with the property that no subset 

in the cover C can be wholly contained in the union of the 

other subsets S. in C. Given a non-redundant cover, a basis 
3 

matrix B can then be associated with this prime cover. By 

simply interchanging rows of this basic matrix (in effect 

interchanging inequalities in the original constraint set 

Ax _>  1 . ) , a new basis matrix B can be obtained with the spe

cial form 

B = I I 1 0 

-I. 
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Since BB = I, B is its own inverse and is said to be involu-

tory. 

The involutory basis cutting-plane technique arises 

from this result. The following equational cut is imposed: 

2 x. > 1 where Q = {j : (c^B-1?^. - c.) > 0} (1-4) 
jeQ 3 ~ 

Essentially this cut means that, in the spirit of the revised 

simplex algorithm, the non-basic columns (corresponding to 

the subsets S^ not used in the prime cover) are "priced out" 

in terms of their dual variables. Those columns which price 

out favorably are considered to be in the set Q. The condi

tion implied by the cut (1-4) is that at least one of the 

elements of Q appear in the next prime cover when the process 

is completed. When Q is empty, the last prime cover is op

timal, a situation analogous to dual feasibility in the re

vised simplex algorithm. 

The strength of the involutory bases approach is in 

the determination of which non-basis columns should be mem

bers of Q. When the rows of the constraint set are inter

changed so that the basis B associated with the current prime 

cover is involutory, the set Q may alternately be described 

as 

Q = {j: (C-BA. - c.) > 0} (1-5) 

where the ^ symbol indicates that both the basis matrix B 
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and the constraint matrix A are to be considered in their re

arranged form. Since (1-5) does not require the computation 

of B \ the most significant computational effort is involved 

in the rearrangement of the rows of the current basis matrix 

and constraint set so that the basis matrix is in involutory 

form. 

Enumerative Methods 

The method of implicit enumeration originally intro

duced by Balas [1] and Geoffrion [12] is rather extensively 

used in solutional procedures for both the general set-cov

ering problem and specialized applications of the general for

mulation with exploitable special structure. In general 

terms, the method of implicit enumeration proceeds in the 

following manner: 

Step 1. An initial incumbent solution is set either 

to any feasible solutional value or alternate

ly to some pessimistic bound for an optimal 

solution. 

Step 2. A "free" variable, or a variable not fixed in 

the current partial solution is chosen by 

some predefined entry and is fixed at a value 

(either 0 or 1). If there are no "free" 

variables, the procedure branches to Step 4. 

Step 3. Bounds on the value of any solution obtained 

by "completing" the partial solution reached 

by fixing this variable are computed by some 

bounding procedure. If the bounds for the 
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P A R T I C U L A R  " N O D E "  O R  P A R T I A L  S O L U T I O N  I N D I 

C A T E  T H A T  F U R T H E R  E X P A N S I O N  C A N N O T  R E S U L T  I N 

A  B E T T E R  P A R T I A L  S O L U T I O N ,  T H E  N O D E  I S  " F A T H 

O M E D "  ( S T E P  4 ) ;  O T H E R W I S E  T H E  P A R T I A L  S O L U 

T I O N  I S  E X P A N D E D  B Y  A  R E T U R N  T O  S T E P  2 .  I F 

T H E R E  I S  A  C O M P L E T I O N  O F  T H E  P A R T I A L  S O L U T I O N 

W H I C H  I S  F E A S I B L E ,  A N D  H A S  A  L O W E R  S O L U T I O N 

V A L U E  T H A N  T H E  I N C U M B E N T  S O L U T I O N ,  I T  B E C O M E S 

T H E  N E W  I N C U M B E N T  S O L U T I O N ,  A N D  T H E  P R O C E D U R E 

R E S U M E S . 

S T E P  4 .  I F  T H E  C U R R E N T  N O D E  I N  T H E  S O L U T I O N  T R E E  W A S 

R E A C H E D  B Y  T H E  " F O R W A R D "  M O V E M E N T  O F  S T E P 2 , 

T H E  L A S T  V A R I A B L E  F I X E D  A T  S O M E  V A L U E  I S  N O W 

R E F I X E D  A T  T H E  O P P O S I T E  V A L U E  A N D  T H E  P R O C E 

D U R E  R E S U M E S  A T  S T E P  2 .  I F  T H E  C U R R E N T  N O D E 

W A S  R E A C H E D  B Y  T H E  " B A C K W A R D "  M O V E M E N T  O F 

T H I S  S T E P  ( S T E P  4 ) ,  T H E  L A S T  V A R I A B L E  F I X E D 

I N  T H E  P A R T I A L  S O L U T I O N  I S  R E T U R N E D  T O  T H E 

" F R E E "  V A R I A B L E S ,  A N D  T H E  N E W  " C U R R E N T "  N O D E 

B E C O M E S  T H E  N O D E  D I R E C T L Y  P R O C E E D I N G  T H E  O L D 

" C U R R E N T "  N O D E ,  A N D  T H E  P R O C E D U R E  R E T U R N S  T O 

S T E P  4 .  I F ,  D U R I N G  T H E  E X E C U T I O N  O F  S T E P  4 , 

A L L  V A R I A B L E S  A R E  R E T U R N E D  T O  T H E  " F R E E "  V A R I 

A B L E S ,  T H E  P R O C E D U R E  S T O P S  W I T H  T H E  L A S T  I N 

C U M B E N T  S O L U T I O N  B E I N G  O P T I M A L . 

L E M K E ,  S A L K I N ,  A N D  S P I E L B E R G  [ 1 5 ]  P R E S E N T  A N  A L G O R I T H M 
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which approaches the general set-covering problem in a rather 

straightforward application of implicit enumeration. The 

specialization of the basic implicit enumeration scheme to 

the special structure of the general set-covering problem oc

curs primarily in two areas: the variable entry rule of Step 

2, and the lower and upper bounding procedures of Step 3. 

The existence of a partial solution for a set-covering formu

lation results in a very nice reduction of the size of the 

sub-problem, as and constraints "covered" by some variable 

fixed at the value 1 in the partial solution can be elimi

nated from consideration in the sub-problem, as well as any 

variable which does not "cover" some constraint already 

covered by a variable fixed at 1 in the partial solution. 

With these considerations in hand, the variable entry rule 

and the bounding procedures apply only to the reduced sub-

problem and are as follows: 

a. The variable entry rule is a simple minimum cost 

per number of uncovered rows heuristic, so the 

entering variable x is defined 

x e 

ieG 

c 
e 

a. 

where F is the set of "free" variables in the 

sub-problem, and G is the set of constraints un

satisfied in the current partial solution. 
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b. The lower bound for the sub-problem is simply the 

optimal linear programming solution for the sub-

problem plus the objective function value of the 

partial solution. 

c. The upper bounding procedure for the sub-problem 

heuristicly obtains a prime cover from the op

timal linear programming solution by rounding 

up the fractional value in the optimal LP basis 

and eliminating the redundancy from the result

ing cover. 

The strength of the Lemke, Salkin, and Spielberg al

gorithm lies in the fact that the sub-problems are of reduced 

size and therefore difficulty, a strong asset in enumeration 

methods. Also, the bounding procedures do not absolutely 

require a great deal of computational overhead time, as the 

reduction to the sub-problem can be an implicit operation to 

tableaus constructed for the parent problem. 

A Specialization of the General Set-Covering Problem 

A specialized application of the set-covering formu

lation is an emergency service facilities location model dis

cussed by Toregas, Swain, ReVelle, and Bergman [20]. In this 

model there are two main assumptions: 

1. All user points (associated with covering con

straints) may also be emergency facilities lo

cations (associated with the covering variables) 

and vice versa, and 
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2. The objective is to minimize the total number 

of facilities required to "cover" all user points. 

The first assumption, coupled with the fact that the coeffi

cients of the constraint matrix are based on metric distances 

between points means that the constraint matrix is symmetric, 

or a.. = a... The second assumption means that all c. = 1 , 

this being referred to as "unit costs". 

The solution method of [20] is divided into two main 

steps: 

1. Solve the problem as a linear programming prob

lem and obtain a real solution. If the real 

solution is also integer, fine. Otherwise, 

2. Impose the following constraint: 

n 

2 x. > [ m ] + 1 
j=l 3 

where [ m Q ] is the greatest integer less than 

or equal to m Q, the optimal linear programming 

solution. This cut essentially is along the 

objective function with the intent of forcing 

one or more of the fractional values for the 

basic non-surplus variables to round up to 1, 

and to evoke an all-integer solution to the 

problem. 

Toregas, et al claim that this procedure (at the 

writing of their paper) has not failed to yield an integer 
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solution. And although counterexamples to this claim to 

exist, the simplicity and success of this approach is appeal

ing. What is further interesting about the nature of the im

posed cut is that, although the motivation for the cut is 

very similar to that used in the method of involutory bases, 

the imposed cut here is more closely tied to the objective 

function rather than appearing as an additional covering 

constraint. 

The Number-Theoretical Approach 

As the formulation of integer linear programs involves 

systems of diophantine equations and inequalities, consider

able interest in the literature has been directed toward the 

application of many ideas from the well-developed field of 

linear diophantine analysis to the study of integer linear 

programs. Bradley ([3] and [4]) is exemplary of this spirit 

as he examines the equivalence classes of diophantine equa-

tional and inequality systems. Kendall and Zionts [14] and 

Glover and Woolsey [13] have used well-known number-theoretic 

concepts to discuss the aggregation of diophantine constraints. 

Bradley and Wahi [5] present a combined number-theoretic and 

enumerative algorithmic approach to the solution of the gen

eral integer programming problem. This algorithm involves 

the transformation of the diophantine inequality system to 

a canonical form (closely related to Hermite normal form) 

and applying the Fourier-Motzkin elimination method. The 

solution of the transformed formulation of the problem is 
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then solved by an efficient implicit enumeration scheme. 

Richmond and Ravindran [17] use basicly the same phi

losophy in their development of an algorithm for the solu

tion of the general integer program in equality form. Like 

the Bradley and Wahi approach, the Richmond and Ravindran 

algorithm employs a transformation to a canonical form and a 

subsequent use of a form of the Fourier-Motzkin elimination 

procedure. However, it is here that the two approaches dif

fer. Where Bradley and Wahi use the Fourier-Motzkin elimina

tion procedure as a preparation for an efficient implicit 

enumeration algorithm, Richmond and Ravindran use a modified 

backtracking scheme developed by Cook and Cooper [6] at the 

completion of the forward elimination of the Fourier-Motzkin 

method to arrive at an integer solution. The computational 

results reported for this algorithm are not particularly out

standing, but there are several facets of the manufacture of 

the algorithm which make it rather interesting as a point of 

departure for investigations into specialized problems where 

problem structure might aid in algorithmic simplifications. 

The crux of the performance of the algorithm rests in the 

modified backtracking scheme, as this is the part of the al

gorithm which is executed recursively. Because of the way 

in which Richmond and Ravindran transform the parent problem, 

the backtracking procedure resolves to the imposition of an 

objective function bound followed by a search for a feasible 

integer solution - an approach which, in view of the success 
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of the Toregas approach to a specialization of the set-cov

ering problem and their similar treatment of the objective 

function, would seem to indicate promise for an adaptation of 

the Richmond algorithm to the general set-covering problem. 

The remainder of this thesis is directed toward an investiga

tion of such an adaptation. 
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CHAPTER II 

ADAPTATION OF RICHMOND'S ALGORITHM TO 
THE GENERAL SET-COVERING PROBLEM 

In this chapter Richmond's algorithm will be special

ized using known special structure inherent in the general 

set-covering formulation. The specialized algorithm, once 

constructed, will be compared with the well-known method of 

implicit enumeration described in Chapter I. The results of 

this comparison will be used to draw conclusions about the 

adapted algorithm. 

Richmond's Algorithm 

The general pure integer programming may be described 

as 

minimize z = cx 

subject to Ax = b (2-1) 

x is a non-negative integer vector 

(x_j >_ 0 and integer) 

where A is an m by n matrix, b is an m by 1 column vector, c 

is a 1 by n row vector, and A, b and c are integer. This 

formulation can also be written 

minimize z 

subject to cx + z = 0 
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A x  =  b  (2-2) 

x _ .  >_ 0  a n d  i n t e g e r  f o r 

a l l  j  = 1,2 ,  . . . , n 

I f  Z Q  i s  d e f i n e d  t o  b e  s o m e  i n t e g e r  l o w e r  b o u n d  o n  z  ( a s s u m 

i n g  z  i s  i n d e e d  b o u n d e d ) ,  t h e n  t h e  p r o b l e m  m a y  b e  r e  w r i t t e n 

m i n i m i z e 

s u b j e c t  t o  ~  c  ~ 

X  + 

" z  +  k ~ 
o 

" 0" 
X  + 

" z  +  k ~ 
o 

A _  0 _ b _ 

(2-3) 

Xj  >_ 0  a n d  i n t e g e r  f o r  a l l  j = l , 2 , . . . , n 

k >_ 0  a n d  i n t e g e r 

o r ,  i n  a  m o r e  g e n e r i c  f o r m , 

w h e r e  H  =  • c 

A 

m i n i m i z e  k 

s u b j e c t  t o  H x  =  d 

Xj >_ 0  a n d  i n t e g e r  f o r  a l l  j = l , 2 , . .  , n 

k  > 0  a n d  i n t e g e r 

a n d  d  =   z  +  k 

I n  g e n e r a l  t e r m s ,  t h e  R i c h m o n d  a l g o r i t h m  f o r  s u c h 

p r o b l e m s  o p e r a t e s  b y  f i r s t  s e t t i n g  k  = 0  a n d  f i n d i n g  a  g o o d 

i n i t i a l  v a l u e  f o r  Z Q  ( u s u a l l y  t h e  v a l u e  o f  t h e  l i n e a r  p r o 

g r a m m i n g  s o l u t i o n  t o (2-1) ) .  T h e  p r o c e d u r e  t h e n  c h e c k s  f o r 

t h e  e x i s t e n c e  o f  a n  i n t e g e r  s o l u t i o n  t o (2-4).  I f  o n e  e x i s t s , 

t h e  o p t i m a l  s o l u t i o n  i s  r e a l i z e d ;  o t h e r w i s e ,  k  i s  i n c r e m e n t e d 
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by 1 and the process is repeated until such time as the sys

tem (2-4) is feasible in integers for some k. 

The thrust of the algorithm is thus seated in the pro

cedure which checks for the existence of an integer solution 

for a fixed k value. The development of the mechanics of 

this procedure is divided up into three parts: 

1. The transformation to fundamental form 

(Rubin's Sequential Algorithm) 

2. Forward variable elimination 

(Fourier-Motzkin) 

3. Backtracking scheme 

(revised Fourier-Motzkin - Cook and Cooper) 

Notion of a Fundamental Matrix 

Given the system 

Ax = b 

there is an associated homogeneous system 

Ax = 0 . (2-5) 

If A has m rows and n columns and has rank m, (m <̂  n) , then 

it is a well-established fact that (2-5) has n-m independent 

solutions. These solutions form what is known as a "funda

mental set" and an n by n-m matrix whose columns consist of 

the separate members of a fundamental set is called a "funda

mental matrix" for the matrix A. An elementary property of 

the fundamental matrix F of A is that the product 
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M = AF = 0 . 

Hence x* is a solution to the system Ax = b if and only if 

x* is Fy is also a solution of Ax = b as 

A(x* + Fy) = Ax* + AFy = b + 0 = b . 

Thus given a particular solution x*, and a fundamental matrix 

F of H, the problem of finding a feasible integer solution to 

Hx = d (2-6) 

x a vector _> 0 and integer (2-7) 

can be solved by finding an integer solution to the problem 

x* + Fy > 0 . (2-8) 

Without loss of generality, the elements of F can be assumed 

to be integer, as the components of any column of F can be 

multiplied by the least common multiple of their respective 

denominators without affecting the independence of the columns 

with respect to each other. Given that x* is integer, if y 

is also chosen as integer, then the resultant value for x* + 

Fy is trivially integer. However, it is not true that all 

feasible integer solutions to (2-8) correspond to integer 

values of y. Consider the system of equations 

x n +2x 9 = 1 
1 (2-9) 

x, +x~ = 2 
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where H = 2 0 

0 1 

and d = 

where p is some number, Now in this case, F = T~2p 

P 

L 2PJ 

and a particular solution x* = |~ 1 

0 

_ 1. 

In this example, choose p = 2; so all the feasible solutions 

to (2-9) can be described as 

" l" ~-4~ 

X =  0 +  2 

_1_ . 4_ 

where y is (in this case) a scalar. Notice that the vector 

-1 is an integer solution to (2-9), but the 

1 

L 3 _ 

corresponding value of y which would yield that solution vec

tor is y = 1/2, a non-integer quantity, hence care must be 

taken in the construction of any enumeration technique based 

on the manipulation of the vector y if no feasible integer 

points are to be overlooked. 

Smith [19] demonstrated that a suitable fundamental 

set for any m by n matrix H can be selected such that all 
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integral solutions to the homogeneous problem can be express

ed as integral linear combinations of the members of that 

fundamental set. Hence if the fundamental matrix F of (2-8) 

is constructed so that the columns are members of a Smith 

fundamental set, it can be shown that the integer values for 

x = x* + Fy will occur on integer values of y. In the above 

numerical example (2-9) the Smith normal form of the funda

mental matrix coincides to the value p=l. 

To transform the problem (2-4) into the equivalent 

formulation (2-8), Richmond's Algorithm employs a procedure 

they call Rubin's Sequential Algorithm. Rubin's algorithm 

essentailly uses basic-number-theoretic concepts to induc

tively compute an integer solution x* to (2-6) and simulta

neously compute the Smith fundamental matrix, F. 

Fundamental Matrix in Set-Covering 

The notion of a fundamental matrix in the context of 

the set-covering problem is a slightly extended concept from 

the straightforward presentation above. Again, the general 

set-covering may be written as 

minimize cx 

subject to Ax > 1 (2-10) 

x j — 0 a n <^ integer j=l,2,...,n 

where A and 1_ are as described before. This formulation is 

in inequality form, and so the equality form of (2-10) is 
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minimize cx 
subject to Ax - Is = 1 
xj — 0 an(^ integer for all j=l,2,. 
>_ 0 for all i = l,2,...,m 

. ,n 

In the form of (2-3) this is 
minimize k 
subject to -c x 

-I 
xj il 0 anc^ integer j=l,2,.. 
s_̂  >_ 0 and integer i=l,2,.. 
k > 0 and integer. 

- z
Q
 -k 

,m (2-11) 

So, in the sense of (2-4), 

H = -c 0 
A -I 

x = = [x s] , and d = - z
Q
 -k 

H is here an m+1 by m+n matrix having a row rank of m+1. 
Thus F, the fundamental matrix of H, will be an m+n by n-1 
matrix. Denoting the element in the i*"*1 row and j*"*1 column 
of F as f.., it is clear that the matrix M = HF can be writ-ID 
ten 



2 3 

M  = 

n 

2>jf 

j = i 

n  n 

j i  X crj2  j  D , n  1 

j = l  j = l 

n 

X ,
a

l j
f

j l  f

n + l , l  S a

lj
fj2  f

n+l,2  X a

l j
f

j , n  1  f

n + l , m 

j = l  j = l 

n 

j = l 
nrj  3I  n + m , l 

n 

j = i 

nrj  ]  2  n + m , 2 

j = l 

n 
V a  . f  . 

j = l 

t h 
T h i s  n o t a t i o n  c a n  b e  s i m p l i f i e d  g r e a t l y  i f  t h e  p  c o l u m n  o f 

t  h 

F  i s  d e n o t e d  b y  F ( p )  a n d  t h e  i  r o w  o f  A  i s  d e n o t e d  b y  A ( i ) 

T h e  r e s u l t a n t  f o r m  o f  M  w o u l d  b e 

M  = 

 C F ( 1 )   c F ( 2 )   c F ( n  1 ) 

A<l)F(l>-f A(l)F ( 2)-f n + l i 2 - • • A f D F t n - D - f ^ 

A(m)F(l)-f n^ ( 1 Ata)P(2)-f 2 • • • i W F W ^ 

R e c a l l i n g  t h a t  M = H F = 0 ,  t w o  p r i m a r y  r e s u l t s  c a n  b e  d e r i v e d 

f r o m  ( 2  1 2 )  : 

( 2  1 2 ) 

1 .   c F ( p )  =  0  f o r  a l l  p = l , 2 , . . . , n  1 

2 .  A ( i ) F ( p )  =  f  f o r  a l l  i = l , 2 , . . . , m 
\ f /  n + i , p 

a n d  p = l , 2 , . . . , n  l 

( 2  1 3 ) 

T h e  f i r s t  r e s u l t  i s  c o n s i s t e n t  w i t h  t h e  i d e a  t h a t  t h e 

c o l u m n s  o f  t h e  f u n d a m e n t a l  m a t r i x  F  a r e  a s s o c i a t e d  w i t h  t h e 

i n d e p e n d e n t  s o l u t i o n s  o f  t h e  h o m o g e n e o u s  s y s t e m  H x  =  0  o f 

( 2  1 1 ) .  T h e  s e c o n d  r e s u l t  i d e n t i f i e s  t h e  s u r p l u s  v a r i a b l e 
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th hh 
f ,. with i constraint and the p independent solution. 

This in effect means that f .. is the value of the surplus 
n+i,p 

th t h 

variable in the i equation given the p independent solu

tion. This is consistent with the idea that the n-1 columns 

of F span the solution space of (2-11). 

The significance of the vector y in this application 

is that of an index of participation of each of the n-1 in

dependent solutions with the particular solution to form the 

current solution. Thus y may be said to be a "generating" 

vector for all solutions (in the sense of (2-11) ) of the 

system Hx = d. 

The properties of the fundamental matrix F of H pre

sented in (2-13) are derived assuming k is a fixed value. A 

different fundamental matrix applies when k is considered as 

a variable. Multiplying the second constraint by -1, (2-11) 

can be re-written as 

minimize k 

subject to 1 0 

L O I 

-c 

-A 

k 

s 

Lxj 

-z 

-1 

x j — 0 a n < ^ integer for j=l,2,.. 

s i 1. 0 a n c^ integer for i=l,2,.. 

k > 0 

. . n 

. ,m 

(2-14) 

Here, in the sense of (2-4), 
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H = 1 0 
0  I 

c 
A 

x = k 
s 
X 

and d = 
 z 

1 

The fundamental matrix F of this matrix H  is n+1 by m since 
H  is n+m+1 by n+1. Further, since HF = 0,  F can be easily 
verified to be of the form. 

F = c 
A 
I 

(215) 

Rubin's Sequential Algorithm, given H as in  (214), will ar
rive at F of H as in  (215) and compute x* as 

x * =  r 
1 

L 0 J 
(216) 

This particular solution to  (214)  is interesting in that it 
is equivalent to letting  s and k be basic in the linear pro
gramming relaxation of (214). Further, k and s in x* are 
both negative and hence infeasible. 

With the computation of the fundamental matrix F of H 
as in  (214) and (215) and a particular solution x*  (216), 
Richmond's algorithm seeks a solution to the inequality sys
tem (28) which is in this case 

x* + Fy > 0 .  (217) 
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Substituting (2-16) and (2-15), the relationship 

~-z ~] - c -
o 

-1 +  A 

. 0 _ _ I _ 

> 0 (2-18) 

is obtained. Substracting x* from both sides yields the in

equality. 

c 

A 

I 

(2-19) 

With y = x, the inequality system (2-19) in effect yields 

back the original problem in the form (2-11). It would thus 

appear that in the set covering case the entire first phase 

of Richmond's algorithm (that of transformation of the sys

tem to fundamental form via Rubin's Sequential Algorithm) 

does not result in any reductions and can be entirely elim

inated by the direct result (2-19). 

Fourier-Motzkin Elimination Method 

To solve the system 

x* + Fy > 0, or Fy > -x* (2-20) 

for integer solutions, Richmond's algorithm uses the classi

cal Fourier-Motzkin Elimination procedure. This classical 

procedure has received a substantial amount of attention in 

the mathematical programming literature, both as a free-
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standing method (Dantzig [7], Garfinkel and Nemhauser [11], 

and Bradley [4]) , and in conjunction with other canonical 

transformations (Bradley and Wahi [5]). The classical proce

dure itself is soley involved with a forward variable-by-vari

able elimination of (2-20) in favor of expressional upper and 

lower bounds on each variable in a manner as described below. 

As the computed bounds for each variable are not restricted 

to be integer in the classical approach, modern application 

to integer programming has popularized a second phase to the 

procedure - namely a back-substitution method to locate an 

all-integer solution. This back-substitution method was ori

ginally introduced by Cook and Cooper [6]. 

Forward Variable Elimination 

Forward variable elimination is the process by which 

the system 

Hy _> d (2-21) 

is solved in real-valued variables. Taking the dimension of 

H to be m+1 by n, (2-21) can be written 

n 
t^jYj >_ d ± for all i=l, 2, . . . ,m+l (2-22) 

j=l 

A single interation of the forward variable elimination yields 

a system of inequalities with 1 variable eliminated (hence a 

system of n-1 variables) and sets of both upper and lower 

bounds for the eliminated variable in terms of the other n-1 
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variables. Bacially, the forward elimination procedure can 

be described as a three-step procedure. 

Step 1. Choose the lowest subscript value of the yet-

uneliminated variables (say e ) . Partition or 

divide the current set of inequalities into 

three groups according to the sign of the co

efficient in the current constraint matrix: 

g ^ e ) = {r : h > 
re 

0} 

g 2(e) = {t : h^ < 
te 0} (2-23) 

g 3(e) = {u : h 
ue 

0} 

Step 2. Every r e g-^(e) represents a lower bound for 

y e in terms of the yet-uneliminated variables, 

as division of both sides of the inequality 

by h yields re 

d _ JX h .y. 1 JQ, n 

— ' t -

j 1 j <_ y for all r z g^ (e) 

hre ^ e + 1 hre (2-24) 

Every t e g 2 represents an upper bound for 

y in terms of the uneliminated variables, as u e 

division of both sides of the inequality by 

hte Y i e l d s 

Y e _< d t _ ^ h t j Y j for all t e g 2 (e) 

hte j=e+l hte (2-25) 
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Every u e (e) represents no restriction on 

the variable y , and therefore generates no 

bound. 

Step 3. A new set of inequalities is constructed by 

letting each and every upper bound of y g be 

greater than or equal to every lower bound of 

y . Added to this set are the inequalities 

represented in g^ (e) which did not play an 

active role in bounding y . Hence the new 

"current" set of inequalities is 

d d,_ 

3 * h h. 
re te 

for all r e g 1(e), t e g 2 (e) (2-26) 

n 

E h .y. > d for all u e g 0 (e) (2-27) 
ujJ j — u ^3 

j=e+l 

For ease of notation, the new "current" set 

of inequalities is also written Hy _> d. If 

there are any uneliminated variables left, 

the procedure returns to Step 1. 

At the end of the forward variable elimination proce

dure, y n has upper and lower bounds which are real numbers. 

The least upper bound and the greatest lower bound are the 

true values which y can assume in a feasible solution. If 
J n 

there are no values for y with these bounds, the entire sys-
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tern (2-22) has no real solution. 

The bounds for the variable Yn_-^
 a s computed in Step 2 

are a function only of y . Therefore, given some value for 

y n, the set of upper and lower bounds can be computed for 

Y n_l« The least upper bound and the greatest lower bound 

form the "true" bounds between which all feasible values of 

y -• must fall given the fixed value of y . In a similar n-l n 

fashion, the bounds for any variable can be computed given 

the partial solution ^Y n'Y n_]_' • • • 'Yj+i^ * This procedure is 

known as "back-substitution", and is the basis for the work 

of Cook and Cooper. 

The essence of Forward Variable Elimination is that 

the new "current" system represented by (2-26) and (2-27) rep

resents the necessary and sufficient conditions for the exis

tence of a solution to the old "current" system Hy >̂ d. This 

notion is intuitive and can be best illustrated with an ex

ample . 

Consider the system 

3x1 + 4x 2 > 11 

" x l + x

2 - 1 

If x.. is eliminated, the resultant bounds are 
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and the reduced system in only the variable is 

i A ,11-4 
^ 3 3 ^ 

or x2 ̂  2. Any value of x2 >̂  2 will generate a non-empty in
terval for x̂, and any value of x2 < 2 will generate an empty 
interval for x̂. For example, x2 = -1 generates bounds on x̂  
as 

x-ĵ  j> 5 and <̂  -2 

to which there is no real solution. 
The primary drawback to the use of the Fourier-Motzkin 

Elimination procedure is that the number of inequalities gen
erated may grow exponentially at each stage of the elimina
tion at the rate of [qV/ where q is the number of inequali

ty 
ties at the previous state. If n̂,n2, and n̂  are defined to 
be the number of inequalities represented in g-̂  (e) , g2 (e) , 
and ĝ(e), respectively; the number of inequalities generated 
at each stage will be equal to n̂ n2 + n̂. This potentially 
rapid growth in the sheer problem size is what is probably 
primarily responsible for the relative absence of successful 
algorithms employing a Fourier-Motzkin-based approach. 
Forward Variable Elimination in Set-Covering 

The special structure of the set-covering problem al
lows a substantial simplification in the forward variable e-
limination process. The system to be solved is (from (2-19)), 
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c 

A 

I 

v 

1 

0 

(2-28) 

where v > z is some candidate objective function value. This 
— o J 

is equivalent to the system 

y : 

y > 0 

(2-29) 

Eliminating first on y^ (e=l in Step 1), the inequality 

cy > v (2-30) 

is in set g, (1) , as c-, > 0. Likewise, in the sense of (1-3) 

i e g-, (1) for all e. e S. 

i e g 3 ( D for all e ± £ S1 

which is to say that all inequalities "covered" by S^ are al

so in g^(l). All other rows of A are in g^(l). Thus after 

elimination, only the inequalities for those rows in A which 

did not involve y^ will be preserved. The bounds generated 

for y^ in Step 2 are 

v c .y • 

1 j= 2

 c i 

(2-31) 
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and 
n a..y. < y, for all i such that a., = 1 

j = 2 ^ 1 ~ 1 1 1 

(2-32) 

Assuming all ŷ 1s are non-negative, interpretations of (2-31) 
can be made. The bound represented by (2-31) simply says 
that ŷ  must account for the amount the objective function 
value is short, given the partial solution ̂ Yn'Yn_i'•••'

v2̂ * 
The bound represented by (2-32) indicates that if the partial 
solution {Yn»Yn_i'•••'

v2J does n°t "cover" some row i which 
ŷ  can cover, ŷ  must account for the remainder of 1 if a 
feasible solution is to be obtained. 

Continuing the elimination with variable y2/ the re
maining system is 

n 

Z a..y. > 1 for all i such that a... =0 (2-33) 
ID 3 - il 

j=2 
Here again, all constraints which are "coverable" by 
S2 ̂ai2 = a r e """n 9rouP 9̂(2) r while all other constraints 
i(â2 = 0) a r e in group ĝ(2). So the bounds for y2 are 
(from (2-24) ) 

n 
1 - a..y. < y for all i such that 

D=P+1 a. =1 and a.,=a.̂ =...-a. , = 0 ip ii i2 ip-1 

(2-35) 
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This is a general statement of the "last opportunity" restric

tion imposed by the Fourier-Motzkin procedure which closely 

parallels the Forced Variable reduction property discussed 

in Chapter I. 

Since y is in effect the x vector of (1-3), the inte

grality condition on x is directly imposable on y. With all 

Yj required to be integer, it can be said that (2-35) forces 

Yp to be at least 1, rather than the sum of a number of frac

tions subtracted from 1. 

Insofaras the objective in (2-14) is to minimize the 

value of the variable k, there is a noticeable lack of any 

mention of k in the immediately preceeding discussion. From 

(2-14), k is seen to satisfy the expression 

k = cz -  Z Q (2-36) 

Substituting this into (2-30) and equating x with y, the re

sult obtained is 

k > v - z (2-37) 
— o 

As the objective is to make k the smallest non-negative in

teger possible, it is also the objective to force v as close 

to z Q (from the positive side, as v >̂   Z q ) as possible. In 

this sense, there may appear to be an inconsistency with 

(2-29) as any y = wl with w sufficiently large will satisfy 

the relationship but be utterly meaningless as a problem solu

tion. The way in which the objective of the minimization is 



achieved is inherent in the backtracking procedure and not 
in a simple satisfaction of the relationship (2-29). 
Backtracking for Integer Solutions 

A modified back-substitution method for finding integer 
solutions to the system (2-22) 

n 
£ hijYj - dj f o r a 1 1 i=1'2'* * *'m+1 (2-38) 

has been refined by Cook and Cooper [ 6 ]. If an effective 
lower bound Lg is defined for yg given a partial solution 
{yn'

yn-lye+l} a s 

Lg = the smallest integer greater than or equal to 
I where I is defined from (2-24) as e e 

£e = max A h^y. 

r e 9]>> h h 

' re re 
(2-39) 

and similarly define the effective upper bound U"e for yg 

Ue = the greatest integer less than or equal to u where u is defined from (2-25) as e e 
u = mm e 

t e g2(e) 
d n h. .y. 
lhte j = e + 1 jte 

the modified Cook and Cooper procedure can be described as a 
four-step process as follows: 

Step 1. The index j of the "current" variable is set 
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to n + 1 and the current partial solution is 

set as empty so that the procedure may begin 

correctly with consideration of y at Step  2 . 

Step  2 . The next variable to be considered in the ex

pansion of the current partial solution is 

determined to be Yj_3_» (3 = 3 _ 1) , a n ^ the 

procedure resumes at Step  3 . If there is no 

next variable (j = 1), then the current par

tial solution is complete and is a solution 

to  ( 2  3 8 ) . 

Step  3 . If the bounds on the current variable indi

cate that there does not exist a feasible 

integer completion (L_. > U ̂  ) , then the pro

cedure branches to Step  4 to backtrack. 

Otherwise, the current partial solution is 

The procedure then proceeds to Step  2 to con

tinue the expansion of the new current solu

tion. 

Step  4 . Considering the last variable fixed in the 

partial solution as the current variable 

(j = j + 1) , if y_j is currently at its upper 

bound, then no completion of the partial so-

(j = n + 1) 

lution {y.,y..,,...,y } ca 

Thus, y. is "freed" and y. 

y } can be feasible. 

J+l 
is examined for 



37 

the same characteristics by a return to Step 

4. If yj is below its upper bound (y^ < U..) , 

then Yj is re-fixed at the next highest inte

ger value (y_j ~ Yj + 1) a n c ^ t n e procedure re

sumes with Step 2. If at the time the proce

dure reached Step 4 there was no current par 

tial solution, then there is no feasible in 

teger solution to the system (2-38). 

The application of this backtracking scheme in Rich-

st 

mond 1s algorithm is augmented by k as the n+1 variable in 

the elimination process. This is to say that the value of k 

is the first variable in a given partial solution. 

Backtracking for the Set-Covering Problem 

In the context of the set-covering problem, the addi

tion of k in the backtracking scheme has a direct effect up

on the lower bound for y^ represented by (2-31). The intent 

of this lower bound is to insure that the value of the objec

tive function is at least some value v. With the explicit 

inclusion of k, v can be represented as  Z q + k. Since the 

purpose of the backtracking scheme is to determine if an in

teger feasible solution exists for a fixed value of k, (2-31) 

can be written 

and the term L-. (in the sense of (2-39) ) can be described 

1 1 

(2-41) 
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0 if (2-41) =*> y1 = 0 and 2^aijyj - 1 

for all i e g - ^ D 

L L = ^ 1 if (2-41) =*> Y1 = 1 and ^ a i j v j = 0 (2-42) 

for some i e g-^(l) 

2 otherwise 

The possible assignment of 2 to is to indicate an 

infeasibility in integers of a particular partial solution 

{k,y ,y ,y n} and in coordination with the definition of n J n-1 2 

below, is designed to cause a regression in the expansion 

of the particular partial solution as in Step 4 of the modi

fied Cook and Cooper scheme as described above. 

For the y with q = 2,3,...,n; the bounding expression 
q 

(2-35) applies, so L for q = 2,3,...,n can be described as 
q 

1 if a. .y. = 0 for some i e g^ (g) 
= , D=q+1

 1 3 3 

q 
0 otherwise 

The generation of the variable-bounding expressions 

for (2-29), due to the non-negative nature of both c and A, 

do not include any upper bounding expressions. However, the 

0-1 requirement of the solution vector x in (1-1) is in it

self an imposition of an upper bound on all x^ (and all y^) 

where j = 1,2,...,n. Further, as > 0 for all j = 1,2,... ,n; 
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any partial solution {Y n'Y n_i'•••'Yg}
 w i t n t h e property 

n 

Z c.y. > k + z^ (2-44) 

3 3 ° 

j=q 

cannot have a completion {y _•]_/•••/Y-j_) which satisfies 

n 

Z c.y. = k + z (2-45) 

3 3 o 
j=l 

so each y is also upper bounded by 

n 

y < k + z - Z^c.y. (2-46) 

c 

q 

Thus, in the sense of (2-40), U for q = l,2,...,n can be 
q 

described 

0 if } c .y. > k + z 
U - < J^q 3 3 ° (2-47) 
q 

1 otherwise 

In summary, L in the set-covering environment repre

sents the Forced Variable reduction property discussed in 

Chapter I. In addition, also encompasses (2-41) as an 

objective function value-related restriction on y, . U in 
q 

the set-covering environment represents an objective function 

value ceiling on every partial solution which says that a 
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partial solution cannot be expanded productively if the sum 

of the cost coefficients of the y^ fixed at 1 in the partial 

solution already exceeds the target objective function value, 

k + z . The use of L and U in the modified Cook and Cooper o q q 

procedure constitutes the specialization of the third part 

of Richmond's algorithm to the general set-covering problem. 

Example. So that the actual mechanics of the adapted algo

rithm can be easily understood, consider the following numeri

cal example: 

minimize 3x^ + 4x 2 + 5x^ 

subject to x 3 >_ 1 

x1 + x 2 _> 1 (2-48) 

x 2 + x 3 > 1 

x i = 0 or 1 for i = 1,2,3. 

For this example, consider v = z Q + k = 7 and let the proce

dure operate from Step 1: 

Step 1. j = n+1 = 4. 

Step 2. Current partial solution = {#}. 

Step 3. L 3 = 1, U 3 = 1, L 3 <_ U 3, go to Step 2. 

Step 2. Current partial solution = {x 3=l} j = 3-1 = 2 

Step 3. L 2 = 0, U 2 = 0, L 2 < U 2, go to Step 2. 

Step 2. Current partial solution = {x 3=l,x 2=0} 

j = 2-1 = 1 

Step 3. L 1 = 1, U-ĵ  = 0, L 1 > , go to Step 4. (2-4 9) 
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Step 4. j = 1+1 = 2, x 2 = U 2 

Current partial solution = {x 3=l} go to Step 4. 

Step 4. j = 2+1 =  3 , x 3 = U 3 

Current partial solution = {x 3=l} go to Step 4. 

Step 4. j = 2+1 =  3 , x 3 = U 3 

Current partial solution = { 0 } go to Step 4. 

Step 4. There is no feasible solution with v = 7. 

If the target objective function value v is incremented by 1 

from 7 to 8, and the procedure is repeated starting from Step 

1, the results are the same until the procedure reaches state

ment (2-4 9). From there, the procedure is as follows: 

Step  3 . L 1 = 1, U 1 = 1, L 1 <_ U 1 # go to Step 2. 

Step 2. Current partial solution is {x 3=l,x 2=0,x^=l} 

j = 1-1 = 0 

The current partial solution is complete. 

The Adapted Algorithm as Implicit Enumeration 

The third part of Richmond's algorithm dealing with 

backtracking for integer solutions closely resembles the 

general procedure for implicit enumeration as described in 

Chapter I in such areas as the development of partial solu

tions and the use of bounding procedures. In this section 

it shall be shown that the two procedures are virtually iden

tical in the set-covering case. For the sake of clarity and 

brevity, the central ideas of the method of implicit enumera

tion and the modified Cook and Cooper procedure adapted to 

the general set-covering problem are summarized in Figure 2-1. 
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IMPLICIT ENUMERATION MODIFIED COOK AND COOPER 

Step 1: Initialization 

An incumbent solution The current j is set to n+1. The 
is selected. The current current partial solution is empty, 
partial solution is empty. 

Step 2: Variable Entry Rule 

A variable entry rule selects The next current variable is deter-
some y. to be considered for mined as y so that the new cur-
entry ^into the partial solution . . . , , . , - r £ and is fixed at either 0 or 1 r e n t J is equal to j-1. If the new 
If no variable can enter, the current value of  3 is  0, the old cur-
process branches to Step  4. rent partial solution is a oatplete 
^ solution. 

Step 3: Forward Partial Solution Expansion 

If the current partial solution 
is complete and has a better 
objective function value than 
the old incumbent, it replaces 
the old incumbent and the pro
cess resumes at Step 4. If the 
computed bounds indicate that 
further expansion of the par
tial solution cannot lead to 
a better incumbent, the pro
cess resumes at Step 4; other
wise it returns to Step 2. 

If the bounds on y_. are such that 

Lj > Uj, the process branches to 

Step 4. Otherwise, y_j is fixed at 

Lj in the new partial solution and 

the process returns to Step 2. 

Step 4: Backtracking on the Partial Solution 

If y~j has the value originally 

assigned to it by Step 2, y. 
is fixed at the opposite ^ 
value and the process resumes 
at Step 2. Otherwise, y^ is 

"freed" and the procedure re
turns to Step 4. If all vari
ables are "free", the last in
cumbent solution is optimal. 

The current variable y. becomes the 

last variable fixed in the partial 
solution. If this variable is at 
least its upper bound, then y_. is 

"freed" from the current partial 
solution and the process examines 
y^+^ by returning to Step 4. Other
wise, the fixed value of is in
cremented by 1 in the current par
tial solution, the lower bound L. 

3 

is set to y.., and the process re

turns to Step 2. 

Figure 2-1: A Side-by-side Comparison of the Algorithms 
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It is clear from Figure 2-1 that the two algorithms 

generally break down into the same procedural steps. The 

concept of developing a partial solution into a complete solu

tion is the essence of both algorithms and largely dictates 

their similar procedural flow. However, even though the 

means by which these algorithms achieve their ends are alike, 

their respective goals are different. The method of implicit 

enumeration is constantly looking for a completion which is 

better than some known incumbent solution, while the modified 

Cook and Cooper procedure stops upon reaching the first com

pletion. This difference is seen most easily in noting the 

places where these two procedures terminate. The method of 

implicit enumeration terminates in Step 4 when it is found 

that all branches of the solution tree have been searched. 

The Cook and Cooper procedure stops at Step 2, when the first 

complete integer solution has been constructed. 

The precise details of how the partial solutions are 

constructed are somewhat different in the two procedures and 

demand closer examination. The variable entry rule for the 

modified Cook and Cooper could be considered a special case 

of the more generic statement in the implicit enumeration 

procedure. The entering variable is merely the one with the 

next lowest subscript. More important is the fact that the 

bounds used in Step 3 of the implicit enumeration scheme are 

directly related to the value of the objective function, 

while the bounds on Step 3 of the modified Cook and Cooper 
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procedure are related only to a particular variable y^. For 

the set-covering case, this difference can be reconciled by 

remembering that Uj as stated in (2-47) is really an objec

tive function-related bound. Further, L. as stated in (2-43) 
1 

is primarily the result of a reduction property, and for y^ 

is also an objective function-related bound. 

Perhaps the most interesting difference between the 

two algorithms is that fact that the method of implicit enu

meration is designed for 0-1 variables (see however Trotter 

and Shetty [21] for extensions to the general integer case), 

while the modified Cook and Cooper procedure is restricted 

only to integer problems. Restricting the values of the 

variables to 0-1, as in the set-covering case, has interest

ing effects upon the performance of the Cook and Cooper pro

cedure. First, the assignment of the opposite value to a 

variable in Step 4 of the implicit enumeration scheme is du

plicated by Step 4 of the Cook and Cooper procedure when the 

value of the variable being considered is changed from 0 to 1. 

When this change is subsequently from 1 to 2, or 2 to 3, this 

causes y.. to be greater than UK and a branch to Step 4, which 

is exactly what takes place when the variable being considered 

in Step 4 of the implicit enumeration procedure is not found 

to be at its originally-set value. 

The above observations concerning the similarities and 

differences between the method of implicit enumeration and 

the modified Cook and Cooper procedure serve to point out the 
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fact that the two approaches are very close and virtually 

indistinguishable in many respects. 
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CHAPTER III 

CONCLUSIONS AND EXTENSIONS 

The specialization of Richmond's algorithm to the gen

eral set-covering problem was accomplished in three parts in 

this thesis. The first part of Richmond's algorithm, which 

concerns the transformation of the original problem to canon

ical form with Rubin's Sequential Algorithm, was shown to de

generate to the original problem. The notion of a fundamen

tal matrix, although quite interesting due to the structure 

which it exhibits, does not supply any previously-unknown in

formation about problem structure for set-covering constraints. 

The second part of Richmond's algorithm, which deals 

with the use of the classical Fourier-Motzkin elimination 

procedure to obtain bounds on each of the problem variables, 

was shown to degenerate primarily to the intuitive Forced 

Variable reduction property. The addition of some common 

sense rules to the direct results the Fourier-Motzkin forward 

elimination produced the final upper and lower bounding ex

pressions used in the third step of Richmond's algorithm spe

cialized to the general set-covering problem. 

The third part of Richmond's algorithm, that of back

tracking for integer solutions with the Cook and Cooper pro

cedure, was shown to be closely related to the general method 

of implicit enumeration. Using the bounding expressions ob-
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tained from the second part, the specialized algorithm and 

general implicit enumeration were compared side-by-side. The 

mechanics of the two procedures were shown to virtually iden

tical, differing only in the basic philosophies underlying 

them. The general implicit enumeration procedure bounds the 

optimal solution value with the values of successively better 

values of feasible solutions discovered during the expansion 

of partial solutions. In the context of the set-covering 

problem, these successively better values bound the value of 

the optimal solution from the top. The philosophy of the 

Richmond algorithm, and hence of the specialization of the 

algorithm to the general set-covering problem, is to approach 

the optimal solution value from the bottom, with the hope 

that the tighter bounds on the variables will cause faster 

fathoming to arrive more quickly at an optimal solution. 

The combined impact of the above results is that the 

apparently quite unusual, number-theoretical approach of 

Richmond's algorithm degenerates in the set-covering case to 

little more than well-known implicit enumeration techniques. 

Thus, while not producing a new algorithm, the effort of this 

thesis to specialize the Richmond algorithm to the set-cover

ing case has produced a unification of two quite separate 

branches of integer programming research. 

It is conjectured that other researchers could sub

stantially expand on this unification. The analysis leading 

to the conclusion that Rubin's Sequential Algorithm provides 
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n o  n e w  i n f o r m a t i o n  i n  t h e  s e t  c o v e r i n g  c a s e  w o u l d  s e e m  t o 

e q u a l l y  a p p l i c a b l e  t o  a n y  i n t e g e r  p r o g r a m  w i t h  i n e q u a l i t y 

c o n s t r a i n t s .  S i m i l a r l y ,  t h e  p a r a l l e l  b e t w e e n  t h e  m e c h a n i c s 

o f  i m p l i c i t  e n u m e r a t i o n  a n d  t h e  C o o k  a n d  C o o p e r  p r o c e d u r e 

w o u l d  a p p e a r  t o  h o l d  f o r  a n y  0  1  i n t e g e r  p r o g r a m m i n g  p r o b l e m . 
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