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R A I R O Analyse numérique/Numencal Analysis
(vol 12, n° 4, 1978, p 377 à 400)

AN ALGORiTHM OF SUCCESSIVE MINIMIZATION
IN CONVEX PROGRAMMING (*)

by P. J. LAURENT (X) and C. CARASSO (2)

Abstract — A gênerai exchange algorithm is gwen for the mimmizatwn ofa convex function with
equahty and inequahty constraintsAt is a generahzation of the Cheney-Goldstein algorithm, but
following an idea gwen by Topfer, afimte séquence ofsub-problems the dimension ofwhich is decreasing,
is considered at each itération Gwen a positive number 8, under very gênerai conditions, it is proved
that the method, after afimte number of itérations, leads to an "e-solutwn"

In 1959, Cheney and Goldstein [6] (see also Goldstein [7]) proposed an
algorithm for solving the problem of minimizing a convex function:

« \ ( £ u / *
j(x)=max( iJbl(t)xl — c\

teS \ i = l

under the constramts:

£ bt{t)xt^c(t) for ail tel/,
i = i

where S and U are two disjoint compact sets and blt. . ., bn, c are continuous
real functions defîned on S u U.

At each itération v of this algorithm, a polyhedral approximation of the
problem is associated to a suitable subset Av consisting of n + 1 points of S u U.
Using the exchange theorem (Stiefel [11, 12, 13]; see also [8, 9]) a new element
tv e S u U is introduced: Av+ x =(Av\tv

0) u t\

We propose hère a new algorithm which is an extension of the Cheney-
Goldstein algorithm for solving the same problem but under much weaker
assumptions: the sets S and U are arbitrary and the mappings blt. . ., bn)c are

(*) Rtui décembre 1977
(x) Mathématiques appliquées I M A G Université Scientifique et Médicale de Grenoble
(2) U E R de Sciences, Université de Saiat-Étienne, Saint-Étienne
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378 P. J. LAURENT, C. CARASSO

only supposed to be bounded. Moreover, no Haar condition is introduced. At
each itération, we consider a séquence of nested minimization problems. The
algorithm is based on an extension of the exchange theorem in which the
exchanged quantities are not just a single point {see [3, 4]).

The idea of the algorithm is similar to the recursive method introduced by
Töpfer [14], [15] {see also [3]) for problems of Tchebycheff best approximation.

In the case of a best approximation problem the algorithm becomes an
extension of the Rémès aigorithm {see [5]). For other applications, see [2].

1. PROBLEM AND ASSUMPTIONS

We dénote by E the n-dimensional Euclidean space and by < x, x' > the usual
inner-product of x and x' in E.

1 .1 . The minimization problem

We dénote by L a finite set with l éléments (/ < n) and by S and U two arbitrary
sets. Suppose that L, S and U have no common point and let T = S u U.

Let b and c be two bounded mappings from L u Tinto E and R respectively
(i. e., b{T) and c{T) are bounded).

We define the functionals ƒ and g by:

/ (x)=Sup«x,6( t )>-c( t ) ) .
teS

teU

It is easy to see that ƒ and g are continuous convex functionals defined on E
with values in R,

We defîne the affine variety W by:

W= {xeE\(x, b{t)y=c{t), teL}.

It is convenient to suppose that the b(t),teL are linearly independant and that
they span a /-dimensional subspace:

Thus, the affine variety ^ i s parallel to V1, the orthogonal complement of F,
and has the dimension n — L

The problem (P) consists in minimizing ƒ (x) with x satisfying:

for teL

R.A.I.R.O. Analyse numénque/Numerical Analysis
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and

<x,fe(0:

i. e., xe
Put:

(P) a =

> ^ c (f)

W and gf(x)

Inf f(x)

for f et / .

go.

and suppose that a is finite.
An element xeE is called a solution of (P) if:

O and

An element XGE will be called an e-solution of(P) (with e > 0) if:

^z and

For a given e > 0 (arbitrarily small), the algorithm that we are going to
describe, will give, after a finite number of itérations (depending on e), an
s-solution of (P). The effective use of the method requires that for numbers ê
satisfying r\ ̂  ê ̂  s (where r| is a positive number such that r| < E/2U~1) and for
any x e W, it is possible to détermine

seS such that <x, b{s)) — c(s)^ f{x)~s

and

ueU such that <x, b(u)}~c{u) ^ g(x) — z.

The exact values of/(x) and g (x) are not directly used: only an upper bound in the
calculation of the supremum is necessary.

1.2 . Assumptions

We assume that:
(Hl) there exist xeWand co > 0 such that < x, b(t) > - c(t) g -co Jor all te U,
(this implies the regularity of the constraints);
(H2) the set:

K = {xeE\(x, &(t)>=0, teL; <x, b(t)} ̂  0, teT}

is a linear subspace.

vol. 12, n° 4, 1978



380 P. J. LAURENT, C. CARASSO

Note that the preceding set K is equal to the recession cône of all non-empty level
sets:

Thus, the condition (H2) implies the existence of solutions for the problème (P).
The condition (H2) is also equivalent to:

(H2') Qenco(b{T))+V,

where rico {b(T)) dénotes the relative interior of the convex huil of b{T).
As a conséquence of (H2), there exist a e R and xeR such that for all xeW:

(M) Sup | < x, b (t) > | S o" Sup < x,
teT teT

1.3. Application to best approximation problems

The preceding formulation includes the gênerai problem of best
approximation in a fmite dimensional subspace with equality and inequality
constraints. In this case, the function to minimize is:

ƒ(*) =

where y0, ylf. . ., yn are n + 1 given éléments of a normed linear space Y, the
norm of which is denoted by || j ; ||, for y e Y. It is possible to fmd a subset S a Y'
(the topological dual of Y) such that ƒ can be written in 'the following form:

/ (x )=Sup«x ,bGO>-c ( / ) ) ,
y'eS

with

c(y')=(y0, yl,

where (y, yf) represents the value at y of the continuous linear functional y' e Y'.
For example, take for S the unit sphère of Y' or the set of its extremal points.

2. MINIMAL CONVEX SUPPORT (m. c. s.)

Subsequently, we will need the notion of minimal convex support of a linear
subspace of E. This notion will be used not only relatively to F but also for other
linear subspaces occuring in the algorithm.

R.A.T.R.O. Analyse numérique/Numerical Analysis



SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING 381

Let 'V be a d-dimensional linear subspace of E spanned by the éléments b (t),
teD (not necessarely independant), where D is a finit e subset o f L u T .

2.1 . Convex support of a linear subspace

A non-empty and finite subset i c i will be called a convex support of if if

there exist coefficients p(t) ̂  0, te A satisfying £ p(t)=l such that:

£ p{t)b(t)e<r
tsA

[i. e. if co(5O4))n-rV0].

2.2. Minimal convex support of a linear subspace

A convex support A of if will be called minimal if there does not exist a convex
support of if that is strictly included in A.

A subset A = {tl7. . ., tk+1} consisting of k+1 points of T is a minimal
convex support (m. c. s.) of if if and only if:
(a) there exist positive coefficients p(t), te A satisfying £ p (t) = 1 such that

(b) the subspace JS?(É>(£)| t e D u i ) spanned by the è(t), t e D u i , has the
dimension d + k.

Every convex support contains at least a m.es., and using Caratheodory's
theorem, one shows that a m.es. contains at most n — d+\ éléments.

2.3. Coefficients associated with a m.es .

One also proves that A a r is a m. c. s. if and only if there exist unique positive
coefficients pA(t), te A, satisfying:

£ pA{t)Ht)er and £ pA(t)=l.
teA teA

These coefficients p^ (t), teA, will be called the coefficients associated with the
m.es. A, It will also be useful to introducé coefficients XA(t), teD, such that:

teA te£>

[these XA(t) are not necessarily unique].

vol. 12, n° 4, 1978



382 P. J. LAURENT, C. CARASSO

2 .4 . Minimization associated with a m . e s .

Let A = { t^,. . ., tk+ x } be a m. c. s. of V, consisting of k + 1 éléments such that
>. Put:

fA{x)= max«x,
teAnS

gA (x) = max « x, b (t) > - c (t))
ternir

[if 4̂ n U = Ç), then ^^(x)^ - oo] and consider the problem (PJ of minimizing
ƒ4(x) for x beîonging to W and satisfying gA(x) S 0. Put:

(PJ «,!= min / A ( x ) ^ a .

We dénote by WA the set of solutions of (PA), i. e. of éléments xeW satisfying
gA(x)S0,aA=fA(x).

Then we have the following result, the proof of which is simple:

THEOREM: The amount OLA of(PA) is given by:

SA teA

(where x0 is an arbitrary element of W and sA= £ p,i(0)> or by:

teAnS

1

The set of solutions in given by:

where

' 0 if teS,

Thus, the set WA is an affine variety which is parallel to VA, with:

the dimension of which is equal to l + k. Therefore, the dimension of WA is
n — (/ + /c) and the solution of (PA) is unique when k = n — l.

R.Ai.R.O. Analyse numérique/Numerical Analysis



SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING 3 8 3

For a given s > 0, the algorithm that we are going to describe, will build a
fînite séquence A0, A1,. . ., A* of m . e s . of V and of associated solutions x°,
x 1 , . . ., xii(xveWA.) such that the corresponding amounts a0, a 1 , . . ., a^
(av = ocAv) build a non-decreasing séquence such that:

^ E and f{x»):

As oĉ  ̂  a, the element xM will be an e-solution of (P).

3. A CONVERGENCE RESULT

The convergence resuit that we will state in this section corresponds, for the
time being, to a theoretical algorithm, the use of which is not quite specified. We
will need it, on the one hand, as a guide for the définition of the effective
algorithm, on the other hand as a basis for proving its convergence.

Let Av, v = 0, 1,. . ., be an infinité séquence of m.c.s. of V such that
Av n S # Ç), v = 0, 1,. . . ; and let P=fA*> gy/ = gA* ̂ e t n e associated polyhedral
functionals (as in § 2.4.). Put:

a v = Min ƒv (x) ^ a
xeW

g*(x) ^ 0

and dénote by WV=WA, the set of solutions. Let pv(t) = p^v(t), teAv, be the
positive coefficients corresponding to A" (as in § 2 .3.) and let sv= ]T pv(t)-

Consider the functional hy defined by:

teT

Finaliy, suppose that the set:

is infinité and let Â* = Av+1\Ay, for veiV.

Then, we have the foliowing resuit:

3 . 1 . THEOREM: If, for allveN, there exists xveWv such that:

hv (xv) - « x\b (t) > - c (t) + S (t) ocv) ^ s,

vol. 12, n° 4, 1978



384 P. J. LAURENT, C. CÂRASSO

for ail teÂv, then we have:

« ï + 1 ^ v + 4 l ( Y. pv+1W)(^(x)-av-s)
S t€Âv

(this proves thata? + 1 > oc\ as long as hv (xv) - av - e > 0) and for any e > ê, there
exists [ieN such that:

[what implies that x^ is an s-solution of (P)J.

Proof:
Firstpart: By theorem 2.4, we have:

1
„v+l \p ^v+1 /^\ / / '

= = V+ 1 / j P \l) \ \ •*
5 t<=Av+i

For teÂy, we have: <xv, b(0>-c(t) + 5(0av ^/iv(xv)-ê.
For te^4v + 1 nAv, we have: <xv,
Hence:

1

1
Ç pv+1(O(av-ö(t)av)

TT X P (0-C1 (x ) ~ a £)

and finally:

Second part: The following lemma is a property of the positive coefficients that
are associated with a séquence of m.es. We will only use the fact that A",
v=0,1 , . . ., is a séquence of m.c. s. such that N is infinité.

LEMMA: There exist an infinité subset N in N and a bipartition ofAv in Bv and
Ç) for veiV such that:

R-A.I.R.O. Analyse numérique/Numerical Analysis



SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING 385

2° there exists m > 0 such that pv(t) ^ m, for ail teC? and ail veN;

3° Cv is not included in Av ,for ail veN, wherev' dénotes the integer preceding
v in N.

The proof of this lemma has been given in [4].

Third part: Suppose that we have hv (xv) - ocv > £, for ail v e N (with e > ê) and
prove that this leads to a contradiction.

As a conséquence of the fîrst part, we then have:

4 ) for ail veN,

hence, av is a non decreasing séquence such that av ^ oc.

Let a (a ^ a) be its limit.

First we show that there exists a positive constant s such that

teA-nS

It is equivalent to prove that C r\ S ̂  0 for ail v e N, sufficiently large.

By theorem 2.4, we have:

for

and by (Hl):

c(t)^-(û (withœ>0) for teA\

The mappings b and c being bounded and otv con verging to a, it is possible to find
a constant {; such that:

| < x v - x , b ( t ) > | g ^ for ail te^lv and ail veN.

Suppose Jhat there exists an infinité subset N c JV such that Cv nS^Ç),
for ail veiV and prove that this leads to a contradiction. Consider

v —x, /?(£)> and décompose the sum according to £v and Cv.

Letting r|v= £ py{t), we have:
teB"

teBv

vol. 12, n°4, 1978



386 P - J* LAURENT, C, CARASSO

On the other hand, as Cv ci U, we have < x\b (t) > - c (t) = 0, for all t e C\ and

letting Gv= £ pv(t), we obtain:

6vœ for all veJV,

with Hm 9V = 1 and <£> > 0.

Thus, for ve N sufficiently large, we would have £ pv(0 < XV-3Ê, fc(t)> > 0,
teA*

what is in contradiction with the facts that Â* is a m.c.s. of F and that
x v - * e F x .

Using the result of the second part, we see that for all veJV, the set Cv is not
included in A"~. Therefore, there exist éléments of Cv that have been introduced
between the itération v~ and the itération v. Let veiVbe the last itération
satisfying v~~ ^ v < v for which at least one element of Cv has been introduced.

By theorem 2.4, we have:

<*v=^ Z p^)«x*,b(0>-c<t))
S teA*

with sv ^ s > 0.
We décompose again the sum according to Bv and Cv:
(a) Sum corresponding to Bv.
As a conséquence of (H2), [see (M) in §.1.2.], for all t e T, we have:

\(x\ b(t)>\ ^ aSup<x\ b(t)) +x.
t e r

As the mapping c is bounded and the séquence av is also bounded, we can find
a constant % such that:

for all te T. Hence, we have:

= s

(P) Sum corresponding to Cv.
For

For

R.A.I.R.O. Analyse numérique/Numerical Analysis



SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING 387

Hence, we have:

5 V ^ '
teCv

t e Cv

1

with wv - ( 1 /sv) £ pv (t) (1 - 5 (t)) satisfying lim uv = 1.

Finally, joining (a) and (P) together, we obtain:

otv ^

with vy=l — {r\va/sm)t satisfying lim t?v=l.

As av converges towards 5, we deduce that:

hence:

It is easy to prove that this inequality is contradictory with:

fcv(xv)^av + e for ail veiV,

in the cas where e > ê.

3.2. REMARK: If we suppose that A0nS=£Ç), then, as long as we have
/ivCxv)-av-ê > 0, then we have Av+1 nS¥= <&:

As a matter of fact, if we would have Av+1 nS=Ç), this would mean that
i v + 1 n i v c [ / and that Âv a U; hence

<xv, b(t)}-c(t) = O for ail

<xv, b(t)>-c(t)^/iv(xv)-av-ê>0 for all tsÂ\

vol. 12, n° 4, 1978



388 P. J. LAURENT, C. CARASSO

As we have, by (Hl):

<x, b(t)>-c(t)<0 for ail teA*+1,

we would deduce that:

in contradiction with the facts that Av+1 is a m. c. s. of Vand that xv — xe

4. EXCHANGE THEOREM

The preceding convergence theorem shows that the sets Âv of new éléments
should be such that it is possible to exchange them with a subset Cv of Ax in such a
way that Av+1 =(AV\CV) u Âv is again a m. c. s. of V.

The next theorem shows how to operate this exchange. Subsequently we will
have to do this opération, not only relatively to V but also for other linear
subspaces occuring in the algorithm.

Let "V be a d-dimensional linear subspace of E defîned by:

where D is a fînite subset of L u T.

4.1. Exchange theorem

If AQ is a m. c. s. of *V and if Ax is a m. c. s. of

then, there exists a bipartition of Ao in Bo and C0^Ç) such that:

Â0^=BQKJ Ai is a m. c. s. of ir,

Ai = C0 is a m. c. s. of

This theorem has been proved in [4], It shows that it is possible to exchange
with Ax a non-empty part Co of Ao, in such a way that:

Âo = (Ao \ Co) u Ax

is again a m. c. s. of y.

R.A.I.R.O. Analyse numérique/Numerical Analysis
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4 .2 . Practice of the exchange

Dénote by p0 (t) > 0, t e Ao and by Xo (t), t e D the coefficients associated with
Ao, as in paragraph 2 .3 :

(a0) £ Po(0*>(t)+ 5>o«&W = 0,
teA0 teD

Z Po(0=l-

As Ax is a m. c. s. of y 0, we dénote by px (t) > 0, t e ̂  and by ̂  (t), t e D u ^40 »
the corresponding coefficients:

(ai) I I

Z Pi(t)fc(t)=o.

Substracting r-times the relation (a0) from the relation (a^, we obtain:

teA0

If we choose r= m i n ^ i (t)/po(t)), and we defîne:

C0={teA ^r=r[ and B0 = A0\C0
PoW

then the preceding relation becomes:

(à0)

with:

l i(M0-rpo(t)) if t6B0,
;;

- P i W if

vol. 12, n° 4, 1978



390 P. J. LAURENT, C. CARASSO

q= X(Mt)-rpo(t))+ I Pi M-

The coefficients po(0> ^ ^ o = -8o i J^i a r e positive with the sum equal to one.
Now the relation (a0) can be written:

Z Pi (t)b(t)+ X

with:

1
P

MO-

\{t)

-pPo(t)

0

P= I Po(0-

for teC0,

if teD

if tefi

if te A

teC0

The coefficients pi(t), teÂt = C0 are positive with the sum equal to i.

5. STRING OF M. C. S.

5.1 . Successive minimization

The convergence theorem (§3) and the exchange theorem (§4) lead us to
consider the following sub-problem:

(SPV) pv= Inf fcv(x)

with

teT

This sub-problem can be solved by the algorithm described in [4]:

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Let A\ be a m. c. s. of V, with k\ +1 éléments,

and dénote by h\ the polyhedral functional defined by:

t€A\

We consider the minimization of h\ (x) for x e
Put:

aï = min h\ (x).
xeW^o

The set W^ of solutions, can be written:

It is an affine variety, which is parallel to (V\)l
t where

V\ = &{b(t)\ teLu Al u Aï)

is a / + ko + ^ï-<iimensional linear subspace of E.

The same construction can be repeated relativeiy to V\ : A\ is a m. c. s. of FJ,
with k\ + \ éléments, h\ is the associated functional, a^ the amount
of its minimum on W\, W\ the set of solutions, and

2

V\ = if (fc (t) | r e L \j Av
0 u A\ u A5), the dimension of which is / + £ fc?.

i = 0

We continue this construction until we have Vm, = E, hence HF̂  is reduced to a
single point.

5.2. String of m.es.

The preceding construction leads us to the notion of a string of m. c. s. (shortly
"string"):

A fînite séquence <g = (AQt. . ., Am) of subsets At c Twill be called a string, if,
setting K_ ! = F, we have:

Ai is a m.es. of Vi-X,

Vt = &(b{t)\teL\ teAj,j=Q.. . ., 0,

Ï = 1,. . ., m,

Vm = E.

vol. 1 2 , n ° 4 t 1978



392 P. J- LAURENT, C. CARASSO

If the subset Aj contains Je,- + 1 éléments (ƒ=0,. . ., m), then the dimension of Vt is

/+ Y* kj- Associated with each At of the string <ë, we can define the coefficients
J = O

/ i - i \

pi(t) > 0, te Ai and Xt(t)t teL\j[ (J Aj 1 such that:

Z Pt{t)b(t)+ £ h(t)b(t)+lyZ Y hit)Ht) = 0,
teAt teL j = 0 teAj

E P,W=I.
teAt

5.3. Solution associated with a string

A string W = (A0,. . ., Am) will be said correct if Ao n S # Ç). Put:

ƒ (x)=

i = 0,. . ., m.

We consider the séquence of successive minimization problems associated

with a correct string # :

a o = min /0(x)

9o(x)é0

the set of solutions Wo of which is an affine variety parallel to VQ, and

Oi= min max (/-(x); öf£(x)

i = l , . . ., m, the set of solutions W-x of which is an affine variety parallel to Vf.
As Vm = E, the affine variety Wm is reduced to a single point x = x<ë that we will

call the solution associated with the string ^ . As x = x<# is a solution of the
successive minimization problems, by theorem 2 .4 above and theorem 2.3 of
[4], it is characterized by the foliowing conditions:

<x, b(t)> = c(£), teL (l conditions)
< x, b (t) > + 5 (0 a0 - af = c (t), f e ^ (/cf + 1 conditions),

i = 0,. . ., m.

R.A.I.R.O. Analyse numérique/Numerical Analysis



SrCCFSSTVF MINIMI ZATTON IN CONVEX PROGRAMMTNG 393

We can use these n + m + 1 linear équations for Computing the n + m-f-1
unknown xXt. . ., xn, ot0,. - ., am. By construction, this linear algebraic system
has a unique solution.

5 .4. Exchange opération in a string

Let <g = (A0,. . ., Am) be a strmg and (Ko,. . ., Vm) the corresponding linear
subspaces. We see that A3_ x is a m. c. s. of y* = Fj_2 and that ^ is a m. c. s. of the
linear subspace:

J-2

withD = L u (J A,.

Thus we have the same situation as in theorem 4 . 1 .

There exists a bipartition of AJ-1 in B}-x and C3-i^ Ç) such that, letting:

ÂJ.1=BJ-1KJAJ and ! , = <:,_!,

then <% = (A0,. . ., A,-!, A,,. . ., Am) is again a string.

We will say that we have exchanged A}- x and A3 in the string c€.

5.5. Regular string

A string ^ = (A0>. . ., Am) will be said regular if each of the subsets Alt

i = 0,. . ., m, has at least two éléments. Thus, if <$ is regular, the dimension of Vx

is strictly greater than the dimension of Vt-X (i = 0 f . . ., m) and the integer m is
necessarily smaller or equal to n — l — 1.

If ^ is an arbitrary string, we obtain a regular string by taking away all the
m. c. s. that are reduced to a single point. If Ao is not reduced to a single point,
this opération does not change the solution assocîated with the string as well as
the amounts at corresponding to the remaining m . e s . At.

6. ALGOKITHM

If s > 0 is the desired accuracy, let et be positive numbers satisfying:

(•) eo = £> £ ' + 1 < Y ' i = O>--->*o>

6.1 . Description of the akjorithm

Suppose that, at the itération v, we have a correct and regular string
^ v = {Al,. . ., A^v}, and dénote by xv the associated solution and by
oto,. . ., oC the corresponding amounts.
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Détermine tveT such that

with

= Sup(<x,
teT

and put:

We define the integer j v by:

7v = min0'|0 ^ j ^ mv+l; oC

[the fact that the above inequality is satisfîed for a given integerj means that the
corresponding sub-problem (see 5 .1 and 5 .3) has been sufficiently solved].

We will consider three cases according to the value of f:

First case:

We introducé the new point tv in the string < \̂
Using the exchange theorem, in the string:

we exchange Av
m, and À*m*+1. Then, we obtain:

either (Av
0,. . ., Âx

m,, Am.+ l)

in which A"m, contains tv but is not reduced to this single point,

or (A\tt. . ., A V - I , ( t v } , Al>),

what occurs in the case b(tv)eKlv-i.

In this latter case, we exchange again Amv-i and {£v}, and so on, until we
finally obtain:

either # v = (^5,. . ., Â^lt À], A^) (f ^ 1),

in which Âl_Y contains tv but is not reduced to this single point,

or ( { t v } M 5 , . . . , < 0 .

R.A l.R.O. Analyse numénque/Numerical Analysis



SUCCESSIVE MÏNIMIZATION IN CONVEX PROGRAMMING 395

But in this latter case, this means that xv is an smV+1-solution of (P),
with e ^ . ^ e : As a matter of fact, A^+l= {?} is then a m . e s . of V, By the
remark 3.2, we will have tveS and thus:

will satisfy:

By the choice of t\ \\c iia\e:

what implies that hv(xv) g a + em*+1, i. e. xv is a 8m.+1-solution of (P) and we stop
the algorithm.

Second case:

Using again the exchange theorem, we then exchange A^_x and A** in the string
v (see §5.4). This leads to the new string:

Note that ÂJv_l cannot be reduced to a single point, for it contains A** and the
string ^ v has been supposed to be regular.

Third case:

Then, we have:

and this means that xv is an 80-solution of (P) and we stop the algorithm. In short,
if we put:

if j v = m v +l ,
if 0 ^ ) v ^ m v ,

we see that we stop the computation (the accuracy e being obtained) when kv = 0.
In the other cases, the last exchange executed concerns the m. c. s. the indices of
which are /cv-l and /cv. The m .e s . A\t Ï = 0, . . ., fcv-2 are not modified.

It can happen that the new m. c. s. Â^ is reduced to a single point. In that case,
we suppress it in the string {see § 5.5). Thus, we obtain a new regular string:
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in which mv + 1 can be equal to mv — 1, mv or mv+ 1.

By the remark 3 .2, the string <^v+1 is also correct (Av
0
+

6.2 . Properties of the algorithm

Suppose that /cv ̂  1. Then we have:

(a) Al+1=:Av
k,a

v
k
+1=al fc = 0 , . . . , fcv-2.

'(x*)-(<x\b(O>-c(t) + S(t)aS)^%.

(c) ot̂ v_j ^ a^v_1 H-*yv(skv_1 — ê v), where yv is a positive number given by:

E pÏL\{t) if kvè2.

Proof: The point (a) foliows directly from the définition of the algorithm.
(b) We will consider two cases:

first case:

) v - m v + l ; fcv=ïv.

As we exchange Al^1 and { t v }, we have: ^4^ î \^ fcv = 1 = {£v} and by the
choice of £v, we have:

second case:

1 ^ j ^ m v ; /cv=jv.

We exchange ^ _ ! and Av
k>. Thus we have i v = ̂ fev. Now, for ail teA?, we

have:

and by définition of /cv = j v :

(c) The proof is similar to the first part of the proof of theorem 3 . 1 . We will not
give it hère.
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6 . 3 . Starting the algorithm

Generally, we wish to start the algorithm with an initial string <$0 consisting of
a single m. c. s. A% of F(with exaetly n — Z-h 1 éléments). The détermination of A%
can be diffïcult (even impossible). In the case, it is possible to modify the problem
(P) without changing its amount and one part of its solutions in such a way that
the détermination of A% for the new problem is very easy.

Suppose we know xoeE and reR such that the problem (P) has at least a
solution x satisfying: ||3c —x01| ^ r and let 0eR be constant such that 0 < a.
Consider then the function:

Z ( X ) = T I | | X —Xoll + 0

where r| > 0 satisfies the condition Q + r\r ?g ot, and the new minimization
problem:

(P) 5 = Inf f(x)

where ƒ (x) = max (f(x); z(x)).
It is easy to prove that a = a and that the set of solutions of (P) is exaetly equal

to the set of solution x of (P) satisfying the condition:

Note that the function z(x) can be written
r|<Xo, x ' »

where S' is the unit sphère of E. Thus, the function ƒ has the same form as/ ,
replacing b and c by suitable extensions b and c to S u S\ It is easy to choose AQ
in S'.

7. CONVERGENCE OF THE ALGORITHM

Before pro ving the convergence, we need a theoretical convergence resuit
which is very similar to theorem 3 .1 but corresponds to the form of the sub-
problems (see § 5.1).

7 . 1 . An auxiliary convergence resuit

Suppose that ffî is an affine variety which is parallel to f"1 (where 'V is defined
as in paragraph 2) and consider the following minimization problem:

(SP) p=Inffeo(x),
xeif
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with

max (f(x); g(x) + a0)

= Sup«x,

Leti4\v = 0, l , . . ., be an infinité séquence of m. c. s. of bandiet f and #vbe
the corresponding functionals (as in § 3). Put:

ocv= min max (ƒ(%); g"(x) + *0) û P
xzar

and dénote by W^ the set of solutions.
If we suppose again that the set:

is infinité (put Â = AX+1 \A", for veiV) then we have the following resuit:

THEOREM: If, for ail ve JV, there exists xveWv such that:

for ail teÂ", then for any e > ê, there exists [ieN such that:

[this implies that x* is an e-solution of (SP)].
This resuit is in fact a particular case of theorem 6.1 in [4].

7 .2. Convergence of the algorithm

THEOREM: For an arbitrary positive number e, the algorithm described in
paragraph 6, after afinite number u of itérations, leads to an element x^ e Wwhich
is an z-solution of (P).

More precisely, for a given accuracy e > 0, there exists an integer u (depending
on s) such that the element x ^ Wand the first m. c. s. A§ of the string ̂  satisfy:

/ (x^ )^ag + 8 and g (x*1) ̂  8,

where ag = a^ is the corresponding amount {see § 2 .4). As ag =g a, this implies
that xM is an e-solution of (P).

Proof We only have to prove that the algorithm stops, i. e. that there exists ̂ i
such that fc^ = 0.
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Suppose that we have /cv ̂  1, for all v and show that this leads to a
contradiction:

Let k= lim infkv, ( l ^ E ^ n o +1). There exists v0 such that for ail v ^ v0, we
v-*oo

have fcv ̂  £; and the set:

is infinité.

Hence, for v ^ v0, we have A\. — Ak and V\=Vk (independant of v) for
fc = 0 ,£-2.

By the définition of the algorithm, we have:

<C+i + z«c+i > aL i + E*-i f o r a11 veN-

As ïï ^ mv + 1 , we have smv+1 :g e ,̂ hence:

(i) a^ + ! -«£_! > e^_!-£^ for ail veN.

Put F^_2= T T . T h u s ^ . j i s a m . c . s . of V .̂ For ail v ^ v0, such that v £fif, we
have ^ _ i = ̂ _ i and for ail veiV, by 6.2 b, we have:

h v (x v ) - [<x\ b(t)) -

forall t e i ^ ^

The choice of the e£ [see condition (•) in § 6] implies that e^_! — s^ > e^ Using
theorem 3 .1 in the case £ = 1 and theorem 7 .1 in the case £ > 1 (with ê = ê  and
e = S£_1 — £Ê) there exists [ ieN such that:

As we have oc^+1 ^ /iM(x^), we obtain:

The two inequalities (i) and (ii) are contradictory.
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