RAIRO Analyse numérique

P. J. LAURENT C. CARASSO An algorithm of successive minimization in convex programming

RAIRO – Analyse numérique, tome 12, nº 4 (1978), p. 377-400. http://www.numdam.org/item?id=M2AN_1978_12_4_377_0

© AFCET, 1978, tous droits réservés.

L'accès aux archives de la revue « RAIRO – Analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ RAIRO Analyse numérique/Numerical Analysis (vol 12, n° 4, 1978, p 377 à 400)

AN ALGORITHM OF SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING (*)

by P. J. LAURENT (¹) and C. CARASSO (²)

Abstract – A general exchange algorithm is given for the minimization of a convex function with equality and inequality constraints. It is a generalization of the Cheney-Goldstein algorithm, but following an idea given by Topfer, a finite sequence of sub-problems the dimension of which is decreasing, is considered at each iteration Given a positive number ε , under very general conditions, it is proved that the method, after a finite number of iterations, leads to an " ε -solution"

In 1959, Cheney and Goldstein [6] (see also Goldstein [7]) proposed an algorithm for solving the problem of minimizing a convex function:

$$f(x) = \max_{\iota \in S} \left(\sum_{\iota=1}^{n} b_{\iota}(\iota) x_{\iota} - c(\iota) \right)$$

under the constraints:

$$\sum_{i=1}^{n} b_i(t) x_i \leq c(t) \quad \text{for all } t \in U,$$

where S and U are two disjoint compact sets and b_1, \ldots, b_n , c are continuous real functions defined on $S \cup U$.

At each iteration v of this algorithm, a polyhedral approximation of the problem is associated to a suitable subset A^v consisting of n+1 points of $S \cup U$. Using the exchange theorem (Stiefel [11, 12, 13]; see also [8, 9]) a new element $t^v \in S \cup U$ is introduced: $A^{v+1} = (A^v \setminus t_0^v) \cup t^v$.

We propose here a new algorithm which is an extension of the Cheney-Goldstein algorithm for solving the same problem but under much weaker assumptions: the sets S and U are arbitrary and the mappings b_1, \ldots, b_n, c are

^(*) Recu decembre 1977

⁽¹⁾ Mathematiques appliquees I M A G Universite Scientifique et Médicale de Grenoble

^{(&}lt;sup>2</sup>) U E R de Sciences, Université de Saint-Étienne, Saint-Étienne

only supposed to be bounded. Moreover, no Haar condition is introduced. At each iteration, we consider a sequence of nested minimization problems. The algorithm is based on an extension of the exchange theorem in which the exchanged quantities are not just a single point (see [3, 4]).

The idea of the algorithm is similar to the recursive method introduced by Töpfer [14], [15] (see also [3]) for problems of Tchebycheff best approximation.

In the case of a best approximation problem the algorithm becomes an extension of the Rémès algorithm (see [5]). For other applications, see [2].

1. PROBLEM AND ASSUMPTIONS

We denote by E the *n*-dimensional Euclidean space and by $\langle x, x' \rangle$ the usual inner-product of x and x' in E.

1.1. The minimization problem

We denote by L a finite set with l elements (l < n) and by S and U two arbitrary sets. Suppose that L, S and U have no common point and let $T = S \cup U$.

Let b and c be two bounded mappings from $L \cup T$ into E and **R** respectively (i. e., b(T) and c(T) are bounded).

We define the functionals f and g by:

$$f(x) = \sup_{t \in S} (\langle x, b(t) \rangle - c(t)),$$

 $g(x) = \sup_{t \in U} \left(\langle x, b(t) \rangle - c(t) \right).$

It is easy to see that f and g are continuous convex functionals defined on E with values in **R**.

We define the affine variety W by:

$$W = \{ x \in E \mid \langle x, b(t) \rangle = c(t), t \in L \}.$$

It is convenient to suppose that the b(t), $t \in L$ are linearly independent and that they span a *l*-dimensional subspace:

$$V = \mathscr{L}(b(t) \mid t \in L).$$

Thus, the affine variety W is parallel to V^{\perp} , the orthogonal complement of V, and has the dimension n-l.

The problem (P) consists in minimizing f(x) with x satisfying:

$$\langle x, b(t) \rangle = c(t)$$
 for $t \in L$

R.A.I.R.O. Analyse numérique/Numerical Analysis

and

 $\langle x, b(t) \rangle \leq c(t)$ for $t \in U$.

i. e., $x \in W$ and $g(x) \leq 0$.

Put:

(P)
$$\alpha = \inf_{\substack{x \in W \\ g(x) \leq 0}} f(x)$$

and suppose that α is finite.

An element $\overline{x} \in E$ is called a solution of (P) if:

$$\overline{x} \in W$$
, $g(\overline{x}) \leq 0$ and $f(\overline{x}) = \alpha$.

An element $\tilde{x} \in E$ will be called an ε -solution of (P) (with $\varepsilon > 0$) if:

$$\widetilde{x} \in W$$
, $g(\widetilde{x}) \leq \varepsilon$ and $f(\widetilde{x}) \leq \alpha + \varepsilon$.

For a given $\varepsilon > 0$ (arbitrarily small), the algorithm that we are going to describe, will give, after a finite number of iterations (depending on ε), an ε -solution of (P). The effective use of the method requires that for numbers $\hat{\varepsilon}$ satisfying $\eta \leq \hat{\varepsilon} \leq \varepsilon$ (where η is a positive number such that $\eta < \varepsilon/2^{n-1}$) and for any $x \in W$, it is possible to determine

$$s \in S$$
 such that $\langle x, b(s) \rangle - c(s) \ge f(x) - \hat{\varepsilon}$

and

 $u \in U$ such that $\langle x, b(u) \rangle - c(u) \ge g(x) - \hat{\varepsilon}$.

The exact values of f(x) and g(x) are not directly used: only an upper bound in the calculation of the supremum is necessary.

1.2. Assumptions

We assume that:

(H1) there exist $\check{x} \in W$ and $\omega > 0$ such that $\langle \check{x}, h(t) \rangle - c(t) \leq -\omega$, for all $t \in U$, (this implies the regularity of the constraints);

(H2) the set:

$$K = \{ x \in E \mid \langle x, b(t) \rangle = 0, t \in L; \langle x, b(t) \rangle \leq 0, t \in T \}$$

is a linear subspace.

Note that the preceding set K is equal to the recession cone of all non-empty level sets:

 $S_{\lambda} = \{ x \in W | f(x) \leq \lambda, g(x) \leq 0 \}.$

Thus, the condition (H2) implies the existence of solutions for the probleme (P). The condition (H2) is also equivalent to:

(H2') $0 \in \operatorname{rico}(b(T)) + V$,

where rico (b(T)) denotes the relative interior of the convex hull of b(T).

As a consequence of (H2), there exist $\sigma \in \mathbf{R}$ and $\tau \in \mathbf{R}$ such that for all $x \in W$:

(M)
$$\sup_{t \in T} |\langle x, b(t) \rangle| \leq \sigma \sup_{t \in T} \langle x, b(t) \rangle + \tau.$$

1.3. Application to best approximation problems

The preceding formulation includes the general problem of best approximation in a finite dimensional subspace with equality and inequality constraints. In this case, the function to minimize is:

$$f(x) = \left\| \sum_{i=1}^{n} x_i y_i - y_0 \right\|,$$

where y_0, y_1, \ldots, y_n are n+1 given elements of a normed linear space Y, the norm of which is denoted by ||y||, for $y \in Y$. It is possible to find a subset $S \subset Y'$ (the topological dual of Y) such that f can be written in the following form:

$$f(x) = \sup_{y' \in S} (\langle x, b(y') \rangle - c(y')),$$

with

$$b(y') = [(y_1, y'), \dots, (y_n, y')],$$

$$c(y') = (y_0, y'),$$

where (y, y') represents the value at y of the continuous linear functional $y' \in Y'$. For example, take for S the unit sphere of Y' or the set of its extremal points.

2. MINIMAL CONVEX SUPPORT (m. c. s.)

Subsequently, we will need the notion of minimal convex support of a linear subspace of E. This notion will be used not only relatively to V but also for other linear subspaces occuring in the algorithm.

te A

Let \mathscr{V} be a *d*-dimensional linear subspace of *E* spanned by the elements b(t), $t \in D$ (not necessarely independent), where *D* is a finite subset of $L \cup T$.

2.1. Convex support of a linear subspace

A non-empty and finite subset $A \subset T$ will be called a *convex support* of \mathscr{V} if there exist coefficients $\rho(t) \ge 0$, $t \in A$ satisfying $\sum \rho(t) = 1$ such that:

 $\sum_{t\in A}\rho(t) b(t)\in \mathscr{V}$

[i. e. if co $(b(A)) \cap \mathscr{V} \neq \emptyset$].

2.2. Minimal convex support of a linear subspace

A convex support A of \mathscr{V} will be called *minimal* if there does not exist a convex support of \mathscr{V} that is strictly included in A.

A subset $A = \{t_1, \ldots, t_{k+1}\}$ consisting of k+1 points of T is a minimal convex support (m. c. s.) of \mathscr{V} if and only if:

(a) there exist positive coefficients $\rho(t)$, $t \in A$ satisfying $\sum_{t \in A} \rho(t) = 1$ such that $\sum_{t \in A} \rho(t) = \alpha(t) h(t) = \alpha(t)$.

 $\sum_{t\in A}\rho(t)b(t)\in\mathscr{V};$

(b) the subspace $\mathscr{L}(b(t) | t \in D \cup A)$ spanned by the b(t), $t \in D \cup A$, has the dimension d+k.

Every convex support contains at least a m.c.s., and using Caratheodory's theorem, one shows that a m.c.s. contains at most n-d+1 elements.

2.3. Coefficients associated with a m.c.s.

One also proves that $A \subset T$ is a m. c. s. if and only if there exist *unique* positive coefficients $\rho_A(t)$, $t \in A$, satisfying:

$$\sum_{t \in A} \rho_A(t) b(t) \in \mathscr{V} \quad \text{and} \quad \sum_{t \in A} \rho_A(t) = 1.$$

These coefficients $\rho_A(t)$, $t \in A$, will be called the coefficients associated with the m.c.s. A. It will also be useful to introduce coefficients $\lambda_A(t)$, $t \in D$, such that:

$$\sum_{t \in A} \rho_A(t) b(t) + \sum_{t \in D} \lambda_A(t) b(t) = 0$$

[these $\lambda_A(t)$ are not necessarily unique].

2.4. Minimization associated with a m.c.s.

Let $A = \{t_1, \ldots, t_{k+1}\}$ be a m. c. s. of V, consisting of k+1 elements such that $A \cap S \neq \emptyset$. Put:

$$f_A(x) = \max_{t \in A \cap S} (\langle x, b(t) \rangle - c(t)),$$

 $g_{A}(x) = \max_{t \in A \cap U} (\langle x, b(t) \rangle - c(t))$

[if $A \cap U = \emptyset$, then $g_A(x) \equiv -\infty$] and consider the problem (P_A) of minimizing $f_A(x)$ for x belonging to W and satisfying $g_A(x) \leq 0$. Put:

$$(\mathbf{P}_{A}) \quad \alpha_{A} = \min_{\substack{x \in W \\ g_{A}(x) \leq 0}} f_{A}(x) \leq \alpha$$

We denote by W_A the set of solutions of (\mathbf{P}_A) , i. e. of elements $\overline{x} \in W$ satisfying $g_A(\overline{x}) \leq 0$, $\alpha_A = f_A(\overline{x})$.

Then we have the following result, the proof of which is simple:

THEOREM: The amount α_A of (\mathbf{P}_A) is given by:

 $\alpha_{A} = \frac{1}{s_{A}} \sum_{t \in A} \rho_{A}(t) \ (\langle x_{0}, b(t) \rangle - c(t)),$ (where x_{0} is an arbitrary element of W and $s_{A} = \sum_{t \in A \cap S} \rho_{A}(t)$), or by:

$$\alpha_{A} = -\frac{1}{s_{A}} \left(\sum_{t \in L} \lambda_{A}(t) c(t) + \sum_{t \in A} \rho_{A}(t) c(t) \right).$$

The set of solutions in given by:

$$W_{A} = \left\{ x \in W \middle| \langle x, b(t) \rangle - c(t) + \delta(t) \alpha_{A} = \alpha_{A}, t \in A \right\},\$$

where

$$\delta(t) = \begin{cases} 0 & \text{if } t \in S, \\ 1 & \text{if } t \in U. \end{cases}$$

Thus, the set W_A is an affine variety which is parallel to V_A^{\perp} , with: $V_A = \mathscr{L}(b(t) | t \in L \cup A),$

the dimension of which is equal to l+k. Therefore, the dimension of W_A is n-(l+k) and the solution of (P_A) is unique when k=n-l.

R.A.I.R.O. Analyse numérique/Numerical Analysis

For a given $\varepsilon > 0$, the algorithm that we are going to describe, will build a finite sequence $A^0, A^1, \ldots, A^{\mu}$ of m.c.s. of V and of associated solutions $x^0, x^1, \ldots, x^{\mu}(x^{\nu} \in W_{A^{\nu}})$ such that the corresponding amounts $\alpha^0, \alpha^1, \ldots, \alpha^{\mu}$ ($\alpha^{\nu} = \alpha_{A^{\nu}}$) build a non-decreasing sequence such that:

$$x^{\mu} \in W$$
, $g(x^{\mu}) \leq \varepsilon$ and $f(x^{\mu}) \leq \alpha^{\mu} + \varepsilon$.

As $\alpha^{\mu} \leq \alpha$, the element x^{μ} will be an ε -solution of (P).

3. A CONVERGENCE RESULT

The convergence result that we will state in this section corresponds, for the time being, to a theoretical algorithm, the use of which is not quite specified. We will need it, on the one hand, as a guide for the definition of the effective algorithm, on the other hand as a basis for proving its convergence.

Let A^{ν} , $\nu = 0, 1, ...$, be an infinite sequence of m.c.s. of V such that $A^{\nu} \cap S \neq \emptyset$, $\nu = 0, 1, ...$; and let $f^{\nu} = f_{A^{\nu}}$, $g^{\nu} = g_{A^{\nu}}$ be the associated polyhedral functionals (as in § 2.4.). Put:

$$\alpha^{\mathsf{v}} = \min_{\substack{x \in W \\ g^{\mathsf{v}}(x) \leq 0}} f^{\mathsf{v}}(x) \leq \alpha$$

and denote by $W^{\vee} = W_{A^{\vee}}$ the set of solutions. Let $\rho^{\vee}(t) = \rho_{A^{\vee}}(t)$, $t \in A^{\vee}$, be the positive coefficients corresponding to A^{\vee} (as in § 2.3.) and let $s^{\vee} = \sum_{t \in A^{\vee} \cap S} \rho^{\vee}(t)$.

Consider the functional h^{v} defined by:

$$h^{\mathsf{v}}(x) = \max \left(f(x); g(x) + \alpha^{\mathsf{v}} \right)$$
$$= \sup_{t \in \mathcal{T}} \left(\langle x, b(t) \rangle - c(t) + \delta(t) \alpha^{\mathsf{v}} \right).$$

Finally, suppose that the set:

$$\hat{N} = \left\{ \nu \in \mathbf{N} / A^{\nu+1} \neq A^{\nu} \right\},\,$$

is infinite and let $\hat{A}^{\nu} = A^{\nu+1} \setminus A^{\nu}$, for $\nu \in \hat{N}$.

Then, we have the following result:

3.1. THEOREM: If, for all $v \in \hat{N}$, there exists $x^{\nu} \in W^{\nu}$ such that:

$$h^{\mathsf{v}}(x^{\mathsf{v}}) - (\langle x^{\mathsf{v}}, b(t) \rangle - c(t) + \delta(t) \alpha^{\mathsf{v}}) \leq \hat{\varepsilon},$$

for all $t \in \hat{A}^{\vee}$, then we have:

$$\alpha^{\nu+1} \geq \alpha^{\nu} + \frac{1}{s^{\nu+1}} \left(\sum_{t \in \tilde{A}^{\nu}} \rho^{\nu+1}(t) \right) \left(h^{\nu}(x) - \alpha^{\nu} - \hat{\varepsilon} \right)$$

(this proves that $\alpha^{\nu+1} > \alpha^{\nu}$, as long as $h^{\nu}(x^{\nu}) - \alpha^{\nu} - \hat{\epsilon} > 0$) and for any $\epsilon > \hat{\epsilon}$, there exists $\mu \in \hat{N}$ such that:

$$h^{\mu}(x^{\mu}) - \alpha^{\mu} \leq \varepsilon$$

[what implies that x^{μ} is an ε -solution of (P)].

Proof: First part: By theorem 2.4, we have:

$$\alpha^{\nu+1} = \frac{1}{s^{\nu+1}} \sum_{t \in A^{\nu+1}} \rho^{\nu+1}(t) (\langle x^{\nu}, b(t) \rangle - c(t)).$$

For $t \in \hat{A}^{\vee}$, we have: $\langle x^{\vee}, b(t) \rangle - c(t) + \delta(t) \alpha^{\vee} \ge h^{\vee}(x^{\vee}) - \hat{\epsilon}$. For $t \in A^{\vee+1} \cap A^{\vee}$, we have: $\langle x^{\vee}, b(t) \rangle - c(t) + \delta(t) \alpha^{\vee} = \alpha^{\vee}$. Hence:

$$\begin{aligned} \alpha^{\nu+1} &\ge \frac{1}{s^{\nu+1}} \sum_{t \in A^{\nu+1} \cap A^{\nu}} \rho^{\nu+1}(t) (\alpha^{\nu} - \delta(t) \alpha^{\nu}) \\ &+ \frac{1}{s^{\nu+1}} \sum_{t \in A^{\nu}} \rho^{\nu+1}(t) (h^{\nu}(x^{\nu}) - \delta(t) \alpha^{\nu} - \hat{\varepsilon}) \\ &= \frac{1}{s^{\nu+1}} \sum_{t \in A^{\nu+1}} \rho^{\nu+1}(t) (\alpha^{\nu} - \delta(t) \alpha^{\nu}) \\ &+ \frac{1}{s^{\nu+1}} \sum_{t \in A^{\nu}} \rho^{\nu+1}(t) (h^{\nu}(x^{\nu}) - \alpha^{\nu} - \hat{\varepsilon}) \end{aligned}$$

and finally:

$$\alpha^{\nu+1} \geqq \alpha^{\nu} + \frac{1}{s^{\nu+1}} \left(\sum_{t \in A^{\nu}} \rho^{\nu+1}(t) \right) \left(h^{\nu}(x^{\nu}) - \alpha^{\nu} - \hat{\varepsilon} \right).$$

Second part: The following lemma is a property of the positive coefficients that are associated with a sequence of m.c.s. We will only use the fact that A^{v} , $v=0,1,\ldots$, is a sequence of m.c.s. such that \hat{N} is infinite.

LEMMA: There exist an infinite subset \tilde{N} in \hat{N} and a bipartition of A^{\vee} in B^{\vee} and $C^{\vee} \neq \emptyset$ for $\nu \in \hat{N}$ such that:

1° $\lim_{v\in\tilde{N}} \left(\sum_{t\in B^{v}} \rho^{v}(t)\right) = 0;$

R.A.I.R.O. Analyse numérique/Numerical Analysis

2° there exists m > 0 such that $\rho^{v}(t) \ge m$, for all $t \in C^{v}$ and all $v \in \tilde{N}$;

3° C^v is not included in A^{v^-} , for all $v \in \tilde{N}$, where v^- denotes the integer preceding v in \tilde{N} .

The proof of this lemma has been given in [4].

Third part: Suppose that we have $h^{\nu}(x^{\nu}) - \alpha^{\nu} > \varepsilon$, for all $\nu \in \hat{N}$ (with $\varepsilon > \hat{\varepsilon}$) and prove that this leads to a contradiction.

As a consequence of the first part, we then have:

$$\alpha^{\nu+1} \ge \alpha^{\nu} + \frac{1}{s^{\nu+1}} \left(\sum_{t \in \hat{A}^{\nu}} \rho^{\nu+1}(t) \left(\varepsilon - \hat{\varepsilon} \right) \quad \text{for all} \quad \nu \in \hat{N},$$

hence, α^{v} is a non decreasing sequence such that $\alpha^{v} \leq \alpha$.

Let $\tilde{\alpha}$ ($\tilde{\alpha} \leq \alpha$) be its limit.

First we show that there exists a positive constant s such that

$$s^{\mathsf{v}} = \sum_{t \in A^{\mathsf{v}} \cap S} \rho^{\mathsf{v}}(t) \ge s > 0.$$

It is equivalent to prove that $C^{\nu} \cap S \neq \emptyset$ for all $\nu \in \tilde{N}$, sufficiently large. By theorem 2.4, we have:

$$\langle x^{\mathsf{v}}, b(t) \rangle - c(t) = \alpha^{\mathsf{v}} - \delta(t) \alpha^{\mathsf{v}}$$
 for $t \in A^{\mathsf{v}}$

and by (H1):

$$\langle \check{x}, b(t) \rangle - c(t) \leq -\omega$$
 (with $\omega > 0$) for $t \in A^{\vee}$.

The mappings b and c being bounded and α^{v} converging to $\tilde{\alpha}$, it is possible to find a constant ξ such that:

 $|\langle x^{\mathsf{v}} - \check{x}, b(t) \rangle| \leq \xi$ for all $t \in A^{\mathsf{v}}$ and all $\mathsf{v} \in \widetilde{N}$.

Suppose that there exists an infinite subset $N \subset \tilde{N}$ such that $C^{\vee} \cap S \neq \emptyset$, for all $v \in \tilde{N}$ and prove that this leads to a contradiction. Consider $\sum_{v \in V} \rho^{v}(t) \langle x^{\vee} - \tilde{x}, b(t) \rangle$ and decompose the sum according to B^{\vee} and C^{\vee} .

Letting
$$\eta^{v} = \sum_{t \in B^{v}} \rho^{v}(t)$$
, we have:
 $\left| \sum_{t \in B^{v}} \rho^{v}(t) \langle x^{v} - \check{x}, b(t) \rangle \right| \leq \eta^{v} m$,
with $\lim_{v \in \tilde{N}} \eta^{v} = 0$.
vol. 12, n° 4, 1978

On the other hand, as $C^{\nu} \subset U$, we have $\langle x^{\nu}, b(t) \rangle - c(t) = 0$, for all $t \in C^{\nu}$, and letting $\theta^{\nu} = \sum_{t \in C^{\nu}} \rho^{\nu}(t)$, we obtain:

$$\sum_{t \in C^{\mathsf{v}}} \rho^{\mathsf{v}}(t) \langle x^{\mathsf{v}} - \check{x}, b(t) \rangle \ge \theta^{\mathsf{v}} \omega \quad \text{for all } \mathsf{v} \in \overset{\approx}{N},$$

with $\lim_{v \in \tilde{N}} \theta^{v} = 1$ and $\omega > 0$.

Thus, for $v \in \widetilde{\widetilde{N}}$ sufficiently large, we would have $\sum_{\substack{t \in A^{\vee} \\ \text{ is a } m. c. s.}} \rho^{\vee}(t) \langle x^{\vee} - \check{x}, b(t) \rangle > 0$, what is in contradiction with the facts that A^{\vee} is a m.c.s. of V and that $x^{\vee} - \check{x} \in V^{\perp}$.

Using the result of the second part, we see that for all $v \in \tilde{N}$, the set C^{v} is not included in $A^{v^{-}}$. Therefore, there exist elements of C^{v} that have been introduced between the iteration v^{-} and the iteration v. Let $\hat{v} \in \hat{N}$ be the last iteration satisfying $v^{-} \leq \hat{v} < v$ for which at least one element of C^{v} has been introduced.

By theorem 2.4, we have:

$$\alpha^{\mathsf{v}} = \frac{1}{s^{\mathsf{v}}} \sum_{t \in A^{\mathsf{v}}} \rho^{\mathsf{v}}(t) \left(\left\langle x^{\hat{\mathsf{v}}}, b(t) \right\rangle - c(t) \right)$$

with $s^{v} \geq s > 0$.

We decompose again the sum according to B^{v} and C^{v} :

(a) Sum corresponding to B^{\vee} .

As a consequence of (H2), [see (M) in §.1.2.], for all $t \in T$, we have:

$$\left|\langle x^{\hat{\mathbf{v}}}, b(t) \rangle\right| \leq \sigma \sup_{t \in T} \langle x^{\hat{\mathbf{v}}}, b(t) \rangle + \tau.$$

As the mapping c is bounded and the sequence α^{v} is also bounded, we can find a constant χ such that:

$$\left|\langle x^{\hat{\mathbf{v}}}, b(t) \rangle - c(t)\right| \leq \sigma h^{\mathbf{v}}(x^{\hat{\mathbf{v}}}) + \chi,$$

for all $t \in T$. Hence, we have:

$$\left|\frac{1}{s^{\mathsf{v}}}\sum_{t\in B^{\mathsf{v}}}\rho^{\mathsf{v}}(t)\left(\langle x^{\hat{\mathsf{v}}}, b(t)\rangle - c(t)\right)\right| \leq \frac{1}{s}\eta^{\mathsf{v}}(\sigma h^{\mathsf{v}}(x^{\hat{\mathsf{v}}}) + \chi).$$

(β) Sum corresponding to C^{\vee} .

For $t \in C^{\mathsf{v}} \cap \hat{A}^{\circ} \neq \emptyset$: $\langle x^{\circ}, b(t) \rangle - c(t) \ge h^{\circ}(x^{\circ}) - \delta(t) \alpha^{\circ} - \hat{\varepsilon}$. For $t \in C^{\mathsf{v}} \setminus \hat{A}^{\circ}$: $\langle x^{\circ}, b(t) \rangle - c(t) = \alpha^{\circ} - \delta(t) \alpha^{\circ}$.

R.A.I.R.O. Analyse numérique/Numerical Analysis

Hence, we have:

$$\begin{split} \frac{1}{s^{\mathbf{v}}} & \sum_{t \in C^{\mathbf{v}}} \rho^{\mathbf{v}}(t) \left(\langle x^{\hat{\mathbf{v}}}, b(t) \rangle - c(t) \right) \\ & \geq \frac{1}{s^{\mathbf{v}}} \left(\sum_{t \in C^{\mathbf{v}} \cap \hat{A}^{\hat{\mathbf{v}}}} \rho^{\mathbf{v}}(t) \left(h^{\hat{\mathbf{v}}}(x^{\hat{\mathbf{v}}}) - \delta(t) \alpha^{\hat{\mathbf{v}}} - \hat{\epsilon} \right) \\ & + \sum_{t \in C^{\mathbf{v}} \setminus \hat{A}^{\hat{\mathbf{v}}}} \rho^{\mathbf{v}}(t) \left(\alpha^{\hat{\mathbf{v}}} - \delta(t) \alpha^{\hat{\mathbf{v}}} \right) \right) \\ & = \frac{1}{s^{\mathbf{v}}} \left(\sum_{t \in C^{\mathbf{v}} \cap \hat{A}^{\hat{\mathbf{v}}}} \rho^{\mathbf{v}}(t) \right) \left(h^{\hat{\mathbf{v}}}(x^{\hat{\mathbf{v}}}) - \alpha^{\hat{\mathbf{v}}} - \hat{\epsilon} \right) + \frac{1}{s^{\mathbf{v}}} \alpha^{\hat{\mathbf{v}}} \left(\sum_{t \in C^{\mathbf{v}}} \rho^{\mathbf{v}}(t) \left(1 - \delta(t) \right) \right) \\ & \geq u^{\mathbf{v}} \alpha^{\hat{\mathbf{v}}} + m(h^{\hat{\mathbf{v}}}(x^{\hat{\mathbf{v}}}) - \alpha^{\hat{\mathbf{v}}} - \hat{\epsilon}), \end{split}$$

with $u^{v} = (1/s^{v}) \sum_{t \in C^{v}} \rho^{v}(t) (1 - \delta(t))$ satisfying $\lim_{v \in N} u^{v} = 1$.

Finally, joining (α) and (β) together, we obtain:

$$\begin{aligned} \alpha^{\mathsf{v}} &\geq u^{\mathsf{v}} \alpha^{\mathsf{v}} + m \left(h^{\mathsf{v}}(x^{\mathsf{v}}) - \alpha^{\mathsf{v}} - \hat{\varepsilon} \right) - \frac{\eta^{\mathsf{v}}}{s} (\sigma h^{\mathsf{v}}(x^{\mathsf{v}}) + \chi) \\ &= u^{\mathsf{v}} \alpha^{\mathsf{v}} + m \left(v^{\mathsf{v}} h^{\mathsf{v}}(x^{\mathsf{v}}) - \alpha^{\mathsf{v}} - \hat{\varepsilon} \right) - \eta^{\mathsf{v}} \frac{\chi}{s} \,, \end{aligned}$$

with $v^{v} = 1 - (\eta^{v} \sigma/sm)$, satisfying $\lim_{v \in \tilde{N}} v^{v} = 1$. As α^{v} converges towards $\tilde{\alpha}$, we deduce that:

$$\limsup_{v \in \tilde{N}} (v^{v} h^{\hat{v}}(x^{\hat{v}}) - \alpha^{\hat{v}} - \hat{\varepsilon}) \leq 0$$

hence:

 $\limsup_{v\in\tilde{N}} v^{v}h^{\hat{v}}(x^{\hat{v}}) \leq \tilde{\alpha} + \hat{\varepsilon}.$

It is easy to prove that this inequality is contradictory with:

 $h^{\mathsf{v}}(x^{\mathsf{v}}) \geq \alpha^{\mathsf{v}} + \varepsilon$ for all $\mathsf{v} \in \hat{N}$,

in the cas where $\varepsilon > \hat{\epsilon}$.

3.2. REMARK: If we suppose that $A^0 \cap S \neq \emptyset$, then, as long as we have $h^{\nu}(x^{\nu}) - \alpha^{\nu} - \hat{\varepsilon} > 0$, then we have $A^{\nu+1} \cap S \neq \emptyset$:

As a matter of fact, if we would have $A^{\nu+1} \cap S = \emptyset$, this would mean that $A^{\nu+1} \cap A^{\nu} \subset U$ and that $\hat{A}^{\nu} \subset U$; hence

$$\langle x^{\mathsf{v}}, b(t) \rangle - c(t) = 0$$
 for all $t \in A^{\mathsf{v}+1} \cap A^{\mathsf{v}}$,
 $\langle x^{\mathsf{v}}, b(t) \rangle - c(t) \ge h^{\mathsf{v}}(x^{\mathsf{v}}) - \alpha^{\mathsf{v}} - \hat{\varepsilon} > 0$ for all $t \in \hat{A}^{\mathsf{v}}$.

As we have, by (H1):

 $\langle \check{x}, b(t) \rangle - c(t) < 0$ for all $t \in A^{\nu+1}$,

we would deduce that:

 $\sum_{t\in A^{\nu+1}}\langle x^{\nu}-\check{x}, b(t)\rangle > 0,$

in contradiction with the facts that A^{v+1} is a m. c. s. of V and that $\check{x}^v - \check{x} \in V^{\perp}$.

4. EXCHANGE THEOREM

The preceding convergence theorem shows that the sets \hat{A}^{\vee} of new elements should be such that it is possible to exchange them with a subset C^{\vee} of A^{\vee} in such a way that $A^{\vee+1} = (A^{\vee} \setminus C^{\vee}) \cup \hat{A}^{\vee}$ is again a m. c. s. of V.

The next theorem shows how to operate this exchange. Subsequently we will have to do this operation, not only relatively to V but also for other linear subspaces occuring in the algorithm.

Let \mathscr{V} be a d-dimensional linear subspace of E defined by:

 $\mathscr{V} = \mathscr{L}\left(b\left(t\right) \mid t \in D\right)$

where D is a finite subset of $L \cup T$.

4.1. Exchange theorem

If A_0 is a m. c. s. of \mathscr{V} and if A_1 is a m. c. s. of

 $\mathscr{V}_{0} = \mathscr{L}(b(t) \mid t \in D \cup A_{0})$

then, there exists a bipartition of A_0 in B_0 and $C_0 \neq \emptyset$ such that:

$$\begin{aligned} \widetilde{A}_0 &= B_0 \cup A_1 \text{ is a } m. \ c. \ s. \ of \ \mathscr{V} \\ \widetilde{A}_1 &= C_0 \text{ is a } m. \ c. \ s. \ of \\ \widetilde{\mathscr{V}}_0 &= \mathscr{L}(b(t) \mid t \in D \cup \widehat{A}_0). \end{aligned}$$

This theorem has been proved in [4]. It shows that it is possible to exchange with A_1 a non-empty part C_0 of A_0 , in such a way that:

$$\tilde{A}_0 = (A_0 \setminus C_0) \cup A_1$$

is again a m. c. s. of \mathscr{V} .

4.2. Practice of the exchange

Denote by $\rho_0(t) > 0$, $t \in A_0$ and by $\lambda_0(t)$, $t \in D$ the coefficients associated with A_0 , as in paragraph 2.3:

$$(a_0) \sum_{t \in A_0} \rho_0(t) b(t) + \sum_{t \in D} \lambda_0(t) b(t) = 0,$$
$$\sum_{t \in A_0} \rho_0(t) = 1.$$

As A_1 is a m. c. s. of \mathscr{V}_0 , we denote by $\rho_1(t) > 0$, $t \in A_1$ and by $\lambda_1(t)$, $t \in D \cup A_0$, the corresponding coefficients:

(a₁)
$$\sum_{t \in A_1} \rho_1(t) b(t) + \sum_{t \in D \cup A_0} \lambda_1(t) b(t) = 0,$$

 $\sum_{t \in A_1} \rho_1(t) b(t) = 0.$

Substracting r-times the relation (a_0) from the relation (a_1) , we obtain:

$$\sum_{t \in A_0} \rho_0(t) \left(\frac{\lambda_1(t)}{\rho_0(t)} - r \right) b(t) + \sum_{t \in A_1} \rho_1(t) b(t) + \sum_{t \in D} (\lambda_1(t) - r \lambda_0(t)) b(t) = 0.$$

If we choose $r = \min_{t \in A_0} (\lambda_1(t) / \rho_0(t))$, and we define:

$$C_0 = \left\{ t \in A_0 \left| \frac{\lambda_1(t)}{\rho_0(t)} = r \right\} \quad \text{and} \quad B_0 = A_0 \searrow C_0 \right\}$$

then the preceding relation becomes:

$$(\tilde{a}_0) \quad \sum_{t \in B_0 \cup A_1} \tilde{\rho}_0(t) b(t) + \sum_{t \in D} \tilde{\lambda}_0(t) b(t) = 0,$$

with:

$$\tilde{\rho}_{0}(t) = \begin{cases} \frac{1}{q} (\lambda_{1}(t) - r \rho_{0}(t)) & \text{if } t \in B_{0}, \\ \frac{1}{q} \rho_{1}(t) & \text{if } t \in A_{1}, \end{cases}$$

$$\begin{split} \widetilde{\lambda}_0(t) &= \frac{1}{q} \rho_1(t) \quad \text{for} \quad t \in D, \\ q &= \sum_{t \in B_0} \left(\lambda_1(t) - r \rho_0(t) \right) + \sum_{t \in A_1} \rho_1(t). \end{split}$$

The coefficients $\tilde{\rho}_0(t)$, $t \in \tilde{A}_0 = B_0 \cup A_1$ are positive with the sum equal to one.

Now the relation (a_0) can be written:

$$(\tilde{a}_1) \sum_{t \in C_0} \tilde{\rho}_1(t) b(t) + \sum_{t \in D \cup B_0 \cup A_1} \tilde{\lambda}_1(t) b(t) = 0$$

with:

$$\widetilde{\rho}_{1}(t) = \frac{1}{p} \rho_{0}(t) \quad \text{for} \quad t \in C_{0},$$

$$\widetilde{\lambda}_{1}(t) = \begin{cases} \frac{1}{p} \lambda_{0}(t) & \text{if} \quad t \in D, \\ \frac{1}{p} \rho_{0}(t) & \text{if} \quad t \in B_{0}, \\ 0 & \text{if} \quad t \in A_{1}. \end{cases}$$

$$p=\sum_{t\in C_0}\rho_0(t)$$

The coefficients $\tilde{\rho}_1(t)$, $t \in \tilde{A}_1 = C_0$ are positive with the sum equal to 1.

5. STRING OF M. C. S.

5.1. Successive minimization

The convergence theorem $(\S3)$ and the exchange theorem $(\S4)$ lead us to consider the following sub-problem:

$$(\mathbf{SP}^{\mathsf{v}}) \quad \beta^{\mathsf{v}} = \inf_{x \in W^{\mathsf{v}}} h^{\mathsf{v}}(x)$$

with

$$h^{\mathsf{v}}(x) = \max(f(x); g(x) + \alpha^{\mathsf{v}})$$
$$= \sup_{t \in T} (\langle x, b(t), \rangle - c(t) + \delta(t) \alpha^{\mathsf{v}}).$$

This sub-problem can be solved by the algorithm described in [4]:

R.A.I.R.O. Analyse numérique/Numerical Analysis

Let A_1^v be a m. c. s. of V, with $k_1^v + 1$ elements,

 $V^{\mathsf{v}} = V_0^{\mathsf{v}} = \mathscr{L}(b(t) \mid t \in L \cup A^{\mathsf{v}}),$

and denote by h_1^{v} the polyhedral functional defined by:

$$h_1^{\mathsf{v}}(x) = \max_{t \in A_1^{\mathsf{v}}} (\langle x, b(t) \rangle - c(t) + \delta(t) \alpha^{\mathsf{v}}).$$

We consider the minimization of $h_1^v(x)$ for $x \in W^v = W_0^v$.

Put:

 $\alpha_1^{\mathsf{v}} = \min_{x \in W_0^{\mathsf{v}}} h_1^{\mathsf{v}}(x).$

The set W_1^{\vee} of solutions, can be written:

$$W_1^{\mathsf{v}} = \left\{ x \in W_0^{\mathsf{v}} \middle| \langle x, b(t) \rangle - c(t) + \delta(t) \alpha^{\mathsf{v}} = \alpha_1^{\mathsf{v}}, t \in A_1^{\mathsf{v}} \right\}.$$

It is an affine variety, which is parallel to $(V_1^{\gamma})^{\perp}$, where

$$V_1^{\mathsf{v}} = \mathscr{L}\left(b\left(t\right) \mid t \in L \cup A_0^{\mathsf{v}} \cup A_1^{\mathsf{v}}\right)$$

is a $l + k_0^{v} + k_1^{v}$ -dimensional linear subspace of E.

The same construction can be repeated relatively to $V_1^v: A_2^v$ is a m. c. s. of V_1^v , with $k_2^v + 1$ elements, h_2^v is the associated functional, α_2^v the amount of its minimum on W_1^v , W_2^v the set of solutions, and $V_2^v = \mathcal{L}(b(t) | t \in L \cup A_0^v \cup A_1^v \cup A_2^v)$, the dimension of which is $l + \sum_{i=0}^2 k_i^v$.

We continue this construction until we have $V_{m}^{\nu} = E$, hence W_{m}^{ν} is reduced to a single point.

5.2. String of m.c.s.

The preceding construction leads us to the notion of a string of m. c. s. (shortly "string"):

A finite sequence $\mathscr{C} = (A_0, \ldots, A_m)$ of subsets $A_i \subset T$ will be called a *string*, if, setting $V_{-1} = V$, we have:

 $A_i \text{ is a } m. c.s. \text{ of } V_{i-1},$ $V_i = \mathcal{L}(b(t) \mid t \in L; t \in A_j, j = 0, \dots, i),$ $i = 1, \dots, m,$ $V_m = E.$ vol. 12, n° 4, 1978

If the subset A_j contains $k_j + 1$ elements (j = 0, ..., m), then the dimension of V_i is $l + \sum_{j=0}^{i} k_j$. Associated with each A_i of the string \mathscr{C} , we can define the coefficients $\rho_i(t) > 0, t \in A_i$ and $\lambda_i(t), t \in L \cup \left(\bigcup_{j=0}^{i-1} A_j\right)$ such that: $\sum_{t \in A_i} \rho_i(t) b(t) + \sum_{t \in L} \lambda_i(t) b(t) + \sum_{j=0}^{i-1} \sum_{t \in A_j} \lambda_i(t) b(t) = 0,$ $\sum_{t \in A_i} \rho_i(t) = 1.$

5.3. Solution associated with a string

A string $\mathscr{C} = (A_0, \ldots, A_m)$ will be said correct if $A_0 \cap S \neq \emptyset$. Put:

$$\begin{cases} f_i(x) = \max_{\substack{t \in A_i \cap S \\ t \in A_i \cap U}} (\langle x, b(t) \rangle - c(t)) \\ g_i(x) = \max_{\substack{t \in A_i \cap U \\ t \in A_i \cap U}} (\langle x, b(t) \rangle - c(t)) \end{cases}$$
 $i = 0, \ldots, m.$

We consider the sequence of successive minimization problems associated with a correct string \mathscr{C} :

$$\alpha_0 = \min_{\substack{x \in W \\ g_0(x) \leq 0}} f_0(x)$$

the set of solutions W_0 of which is an affine variety parallel to V_0^{\perp} , and

$$\alpha_i = \min_{x \in W_{i-1}} \max (f_i(x); g_i(x) + \alpha_0),$$

 $i=1,\ldots,m$, the set of solutions W_i of which is an affine variety parallel to V_i^{\perp} .

As $V_m = E$, the affine variety W_m is reduced to a single point $x = x_{\mathscr{C}}$ that we will call the solution associated with the string \mathscr{C} . As $x = x_{\mathscr{C}}$ is a solution of the successive minimization problems, by theorem 2.4 above and theorem 2.3 of [4], it is characterized by the following conditions:

$$\langle x, b(t) \rangle = c(t), \quad t \in L \quad (l \text{ conditions})$$

 $\langle x, b(t) \rangle + \delta(t) \alpha_0 - \alpha_i = c(t), \quad t \in A_i \quad (k_i + 1 \text{ conditions}),$
 $i = 0, \dots, m.$

R.A.I.R.O. Analyse numérique/Numerical Analysis

We can use these n+m+1 linear equations for computing the n+m+1 unknown $x_1, \ldots, x_n, \alpha_0, \ldots, \alpha_m$. By construction, this linear algebraic system has a unique solution.

5.4. Exchange operation in a string

Let $\mathscr{C} = (A_0, \ldots, A_m)$ be a string and (V_0, \ldots, V_m) the corresponding linear subspaces. We see that A_{j-1} is a m. c. s. of $\mathscr{V} = V_{j-2}$ and that A_j is a m. c. s. of the linear subspace:

$$\mathscr{V}_{0} = \mathscr{L}(b(t) \mid t \in D \cup A_{j-1}) = V_{j-1},$$

with $D = L \cup \bigcup_{i=0}^{j-2} A_{i}.$

Thus we have the same situation as in theorem 4.1.

There exists a bipartition of A_{i-1} in B_{i-1} and $C_{i-1} \neq \emptyset$ such that, letting:

$$\tilde{A}_{j-1} = B_{j-1} \cup A_j$$
 and $\tilde{A}_j = C_{j-1}$,

then $\widetilde{\mathscr{C}} = (A_0, \ldots, \widetilde{A}_{j-1}, \widetilde{A}_j, \ldots, A_m)$ is again a string.

We will say that we have exchanged A_{j-1} and A_j in the string \mathscr{C} .

5.5. Regular string

A string $\mathscr{C} = (A_0, \ldots, A_m)$ will be said *regular* if each of the subsets A_i , $i=0,\ldots,m$, has at least two elements. Thus, if \mathscr{C} is regular, the dimension of V_i is strictly greater than the dimension of V_{i-1} $(i=0,\ldots,m)$ and the integer *m* is necessarily smaller or equal to n-l-1.

If \mathscr{C} is an arbitrary string, we obtain a regular string by taking away all the m. c. s. that are reduced to a single point. If A_0 is not reduced to a single point, this operation does not change the solution associated with the string as well as the amounts α_i corresponding to the remaining m. c. s. A_i .

6. ALGORITHM

If $\varepsilon > 0$ is the desired accuracy, let ε_i be positive numbers satisfying:

 $(\star) \quad \varepsilon_0 = \varepsilon, \quad \varepsilon_{i+1} < \frac{\varepsilon_i}{2}, \qquad i = 0, \ldots, n_0.$

6.1. Description of the algorithm

Suppose that, at the iteration v, we have a correct and regular string $\mathscr{C}^{v} = \{A_{0}^{v}, \ldots, A_{m^{v}}^{v}\}$, and denote by x^{v} the associated solution and by $\alpha_{0}^{v}, \ldots, \alpha_{m^{v}}^{v}$ the corresponding amounts.

Determine $t^{v} \in T$ such that

 $h^{\mathsf{v}}(x^{\mathsf{v}}) - (\langle x^{\mathsf{v}}, b(t^{\mathsf{v}}) \rangle - c(t^{\mathsf{v}}) + \delta(t^{\mathsf{v}}) \alpha_{0}^{\mathsf{v}}) \leq \varepsilon_{m^{\mathsf{v}}+1}$

with

$$h^{\mathsf{v}}(x) = \sup_{t \in T} \left(\langle x, b(t) \rangle - c(t) + \delta(t) \alpha_0^{\mathsf{v}} \right)$$

and put:

$$\begin{split} A^{\mathsf{v}}_{m^{\mathsf{v}}+1} &= \big\{ t^{\mathsf{v}} \big\}, \\ \alpha^{\mathsf{v}}_{m^{\mathsf{v}}+1} &= \big\langle x^{\mathsf{v}}, b(t^{\mathsf{v}}) \big\rangle - c(t^{\mathsf{v}}) + \delta(t^{\mathsf{v}}) \alpha^{\mathsf{v}}_{0}. \end{split}$$

We define the integer j^{v} by:

 $j^{\mathsf{v}} = \min(j \mid 0 \leq j \leq m^{\mathsf{v}} + 1; \alpha_{m^{\mathsf{v}}+1}^{\mathsf{v}} + \varepsilon_{m^{\mathsf{v}}+1} \leq \alpha_{j}^{\mathsf{v}} + \varepsilon_{j})$

[the fact that the above inequality is satisfied for a given integer j means that the corresponding sub-problem (see 5.1 and 5.3) has been sufficiently solved].

We will consider three cases according to the value of j^{v} :

First case:

 $j^{\mathbf{v}} = m^{\mathbf{v}} + 1.$

We introduce the new point t^{v} in the string \mathscr{C}^{v} .

Using the exchange theorem, in the string:

$$(A_0^{\mathsf{v}},\ldots,A_{m^{\mathsf{v}}}^{\mathsf{v}},A_{m^{\mathsf{v}}+1}^{\mathsf{v}} = \{t^{\mathsf{v}}\})$$

we exchange $A_{m^{\vee}}^{\nu}$ and $A_{m^{\vee}+1}^{\nu}$. Then, we obtain:

either $(A_0^{\mathsf{v}},\ldots,\widetilde{A}_{m^{\mathsf{v}}}^{\mathsf{v}},A_{m^{\mathsf{v}}+1})$

in which \widetilde{A}_{m}^{ν} contains t^{ν} but is not reduced to this single point,

or
$$(A_{0}^{\prime}, \ldots, A_{m}^{\prime}-1, \{t^{\nu}\}, A_{m}^{\nu}),$$

what occurs in the case $b(t^{v}) \in V_{m^{v-1}}^{v}$.

In this latter case, we exchange again $A_{m^{v}-1}^{v}$ and $\{t^{v}\}$, and so on, until we finally obtain:

either $\widetilde{\mathscr{C}}^{\nu} = (A_0^{\nu}, \ldots, \widetilde{A}_{i'-1}^{\nu}, \widetilde{A}_{i'}^{\nu}, \ldots, A_{m^{\nu}}^{\nu}) \quad (i^{\nu} \geq 1),$

in which $\tilde{A}_{t'-1}^{v}$ contains t^{v} but is not reduced to this single point,

or
$$(\{t^{v}\}, A^{v}_{0}, \ldots, A^{v}_{m^{v}}).$$

R.A I.R.O. Analyse numérique/Numerical Analysis

But in this latter case, this means that x^{v} is an $\varepsilon_{m^{v}+1}$ -solution of (P), with $\varepsilon_{m^{v}-1} < \varepsilon$: As a matter of fact, $A_{m^{v}+1}^{v} = \{t^{v}\}$ is then a m.c.s. of V. By the remark 3.2, we will have $t^{v} \in S$ and thus:

 $\alpha'_{m^{\prime}+1} = \langle x^{\prime}, b(t^{\nu}) \rangle - c(t^{\nu})$ will satisfy:

 $\alpha_{m^{\nu}+1}^{\nu} \leq \alpha.$

By the choice of t^{v} , we have:

$$h^{\mathsf{v}}(x^{\mathsf{v}}) \leq \alpha_{m^{\mathsf{v}}+1} + \varepsilon_{m^{\mathsf{v}}+1},$$

what implies that $h^{\nu}(x^{\nu}) \leq \alpha + \varepsilon_{m^{\nu}+1}$, i. e. x^{ν} is a $\varepsilon_{m^{\nu}+1}$ -solution of (P) and we stop the algorithm.

Second case:

 $1 \leq j^{\mathsf{v}} \leq m^{\mathsf{v}}$.

Using again the exchange theorem, we then exchange $A_{j^{\nu}-1}^{\nu}$ and $A_{j^{\nu}}^{\nu}$ in the string \mathscr{C}^{ν} (see § 5.4). This leads to the new string:

$$\widetilde{\mathscr{C}}^{\mathsf{v}} = (A_0^{\mathsf{v}}, \ldots, \widetilde{A}_{j^{\mathsf{v}}-1}^{\mathsf{v}}, \widetilde{A}_{j^{\mathsf{v}}}^{\mathsf{v}}, \ldots, A_{m^{\mathsf{v}}}^{\mathsf{v}}).$$

Note that $\widetilde{A}_{j'-1}^{\nu}$ cannot be reduced to a single point, for it contains $A_{j'}^{\nu}$ and the string \mathscr{C}^{ν} has been supposed to be regular.

Third case:

$$j^{\prime} = 0.$$

Then, we have:

 $h^{\mathsf{v}}(x^{\mathsf{v}}) \leq \alpha_{m^{\mathsf{v}}+1}^{\mathsf{v}} + \varepsilon_{m^{\mathsf{v}}+1} \leq \alpha_{0}^{\mathsf{v}} + \varepsilon_{0}$

and this means that x^{v} is an ε_{0} -solution of (P) and we stop the algorithm. In short, if we put:

$$k^{\mathsf{v}} = \begin{cases} i^{\mathsf{v}} & \text{if } j^{\mathsf{v}} = m^{\mathsf{v}} + 1, \\ j^{\mathsf{v}} & \text{if } 0 \leq j^{\mathsf{v}} \leq m^{\mathsf{v}}, \end{cases}$$

we see that we stop the computation (the accuracy ε being obtained) when $k^{\nu} = 0$. In the other cases, the last exchange executed concerns the m. c. s. the indices of which are $k^{\nu} - 1$ and k^{ν} . The m. c. s. A_i^{ν} , $i = 0, \ldots, k^{\nu} - 2$ are not modified.

It can happen that the new m.c.s. \tilde{A}_{k}^{\vee} is reduced to a single point. In that case, we suppress it in the string (see § 5.5). Thus, we obtain a new regular string:

$$\mathscr{C}^{v+1} = (A_0^{v+1}, \ldots, A_{m^{v+1}}^{v+1})$$

in which m^{v+1} can be equal to $m^v - 1$, m^v or $m^v + 1$.

By the remark 3.2, the string $\mathscr{C}^{\nu+1}$ is also correct $(A_0^{\nu+1} \cap S \neq \emptyset)$.

6.2. Properties of the algorithm

Suppose that $k^{v} \geq 1$. Then we have:

(a) $A_k^{\nu+1} = A_k^{\nu}, \alpha_k^{\nu+1} = \alpha_k^{\nu}, k = 0, \dots, k^{\nu} - 2.$ (b) For all $t \in \hat{A}^{\nu} = A_{k^{\nu}-1}^{\nu+1} \setminus A_{k^{\nu}-1}^{\nu}$:

 $h^{\mathsf{v}}(x^{\mathsf{v}}) - (\langle x^{\mathsf{v}}, b(t) \rangle - c(t) + \delta(t) \alpha_0^{\mathsf{v}}) \leq \varepsilon_{k^{\mathsf{v}}}.$

(c) $\alpha_{k^{\nu}-1}^{\nu+1} \ge \alpha_{k^{\nu}-1}^{\nu} + \gamma^{\nu}(\varepsilon_{k^{\nu}-1} - \varepsilon_{k^{\nu}})$, where γ^{ν} is a positive number given by:

$$\gamma^{v} = \begin{cases} \frac{1}{s^{v+1}} \sum_{t \in \hat{A}^{v}} \rho_{k^{v}-1}^{v+1}(t) & \text{if } k^{v} = 1, \\ \sum_{t \in \hat{A}^{v}} \rho_{k^{v}-1}^{v+1}(t) & \text{if } k^{v} \ge 2. \end{cases}$$

Proof: The point (a) follows directly from the definition of the algorithm. (b) We will consider two cases:

first case:

$$j^{\mathsf{v}} = m^{\mathsf{v}} + 1; \qquad k^{\mathsf{v}} = i^{\mathsf{v}}.$$

As we exchange $A_{k^{\nu}-1}^{\nu}$ and $\{t^{\nu}\}$, we have: $A_{k^{\nu}-1}^{\nu+1} \setminus A_{k^{\nu}-1}^{\nu} = \{t^{\nu}\}$ and by the choice of t^{ν} , we have:

$$\langle x^{\mathsf{v}}, b(t^{\mathsf{v}}) \rangle - c(t^{\mathsf{v}}) + \delta(t^{\mathsf{v}}) \alpha_0 \geq h^{\mathsf{v}}(x^{\mathsf{v}}) - \varepsilon_{m^{\mathsf{v}}+1} \geq h^{\mathsf{v}}(x^{\mathsf{v}}) - \varepsilon_{k^{\mathsf{v}}}.$$

second case:

 $1 \leq j \leq m^{\nu}; \qquad k^{\nu} = j^{\nu}.$

We exchange $A_{k^{\nu}-1}^{\nu}$ and $A_{k^{\nu}}^{\nu}$. Thus we have $\hat{A}^{\nu} = A_{k^{\nu}}^{\nu}$. Now, for all $t \in A_{k^{\nu}}^{\nu}$, we have:

$$\langle x^{\mathsf{v}}, b(t) \rangle - c(t) + \delta(t) \alpha_0^{\mathsf{v}} = \alpha_{k^{\mathsf{v}}}^{\mathsf{v}}$$

and by definition of $k^{v} = j^{v}$:

$$\alpha_{k^{\nu}}^{\nu} + \varepsilon_{k^{\nu}} \ge \alpha_{m^{\nu}+1}^{\nu} + \varepsilon_{m^{\nu}+1} \ge h^{\nu}(x^{\nu}).$$

(c) The proof is similar to the first part of the proof of theorem 3.1. We will not give it here.

R.A.I.R.O. Analyse numérique/Numerical Analysis

6.3. Starting the algorithm

Generally, we wish to start the algorithm with an initial string \mathscr{C}^0 consisting of a single m. c. s. A_0^0 of V (with exactly n-l+1 elements). The determination of A_0^0 can be difficult (even impossible). In the case, it is possible to modify the problem (P) without changing its amount and one part of its solutions in such a way that the determination of A_0^0 for the new problem is very easy.

Suppose we know $x_0 \in E$ and $r \in \mathbf{R}$ such that the problem (P) has at least a solution \overline{x} satisfying: $\|\overline{x} - x_0\| \leq r$ and let $\theta \in \mathbf{R}$ be constant such that $\theta < \alpha$. Consider then the function:

$$z(x) = \eta \| x - x_0 \| + \theta$$

where $\eta > 0$ satisfies the condition $\theta + \eta r \leq \alpha$, and the new minimization problem:

$$(\tilde{P}) \quad \tilde{\alpha} = \inf_{\substack{x \in W \\ g(x) \leq 0}} \tilde{f}(x)$$

where $\tilde{f}(x) = \max(f(x); z(x))$.

It is easy to prove that $\alpha = \tilde{\alpha}$ and that the set of solutions of (\tilde{P}) is exactly equal to the set of solution \bar{x} of (P) satisfying the condition:

$$\|\tilde{x}-x_0\| \leq \frac{\alpha-\theta}{\eta}.$$

Note that the function z(x) can be written

$$z(x) = \sup_{x' \in S'} (\langle x, \eta x' \rangle + \theta - \eta \langle x_0, x' \rangle)$$

where S' is the unit sphere of E. Thus, the function \tilde{f} has the same form as f, replacing \tilde{b} and \tilde{c} by suitable extensions \tilde{b} and \tilde{c} to $S \cup S'$. It is easy to choose A_0^0 in S'.

7. CONVERGENCE OF THE ALGORITHM

Before proving the convergence, we need a theoretical convergence result which is very similar to theorem 3.1 but corresponds to the form of the subproblems (see § 5.1).

7.1. An auxiliary convergence result

Suppose that \mathscr{W} is an affine variety which is parallel to \mathscr{V}^{\perp} (where \mathscr{V} is defined as in paragraph 2) and consider the following minimization problem:

(SP)
$$\beta = \inf_{x \in \mathscr{W}} h_0(x),$$

vol. 12, n° 4, 1978

with

$$h_0(x) = \max (f(x); g(x) + \alpha_0)$$
$$= \sup_{t \in T} (\langle x, b(t) \rangle - c(t) + \delta(t) \alpha_0)$$

Let A^v , $v=0, 1, \ldots$, be an infinite sequence of m. c. s. of \mathscr{V} and let f^v and g^v be the corresponding functionals (as in § 3). Put:

$$\alpha^{\mathsf{v}} = \min_{x \in \mathscr{W}} \max\left(f^{\mathsf{v}}(x); g^{\mathsf{v}}(x) + \alpha_{0}\right) \leq \beta$$

and denote by \mathcal{W}^{v} the set of solutions.

If we suppose again that the set:

$$\hat{N} = \left\{ v \in \mathbf{N} \mid A^{\nu+1} \neq A^{\nu} \right\}$$

is infinite (put $\hat{A} = A^{\nu+1} \setminus A^{\nu}$, for $\nu \in \hat{N}$) then we have the following result:

THEOREM: If, for all $v \in \hat{N}$, there exists $x^{v} \in \mathcal{W}^{v}$ such that:

$$h_0(x^{\nu}) - (\langle x^{\nu}, b(t) \rangle - c(t) + \delta(t) \alpha_0) \leq \hat{\varepsilon}$$

for all $t \in \hat{A}^{\vee}$, then for any $\varepsilon > \hat{\varepsilon}$, there exists $\mu \in \hat{N}$ such that:

$$h_0(x^{\mu}) - \alpha^{\mu} < \varepsilon$$

[this implies that x^{μ} is an ε -solution of (SP)].

This result is in fact a particular case of theorem 6.1 in [4].

7.2. Convergence of the algorithm

THEOREM: For an arbitrary positive number ε , the algorithm described in paragraph 6, after a finite number μ of iterations, leads to an element $x^{\mu} \in W$ which is an ε -solution of (P).

More precisely, for a given accuracy $\varepsilon > 0$, there exists an integer μ (depending on ε) such that the element $x^{\mu} \in W$ and the first m. c. s. A_0^{μ} of the string \mathscr{C}^{μ} satisfy:

$$f(x^{\mu}) \leq \alpha_0^{\mu} + \varepsilon$$
 and $g(x^{\mu}) \leq \varepsilon$,

where $\alpha_0^{\mu} = \alpha_{A_{\beta}}$ is the corresponding amount (see § 2.4). As $\alpha_0^{\mu} \leq \alpha$, this implies that x^{μ} is an ε -solution of (P).

Proof: We only have to prove that the algorithm stops, i. e. that there exists μ such that $k^{\mu} = 0$.

Suppose that we have $k^{\nu} \ge 1$, for all ν and show that this leads to a contradiction:

Let $\tilde{k} = \liminf_{v \to \infty} k^{v}$, $(1 \le \tilde{k} \le n_0 + 1)$. There exists v_0 such that for all $v \ge v_0$, we have $k^{v} \ge \tilde{k}$; and the set:

$$\tilde{N} = \left\{ v \in \mathbf{N} \, \middle| \, v \ge v_0, \, k^v = \tilde{k} \right\}$$

is infinite.

Hence, for $v \ge v_0$, we have $A_k^v = A_k$ and $V_k^v = V_k$ (independent of v) for $k=0,\ldots, \tilde{k}-2$.

By the definition of the algorithm, we have:

$$\begin{aligned} &\alpha_{m^{\nu}+1}^{\nu} + \varepsilon_{m^{\nu}+1} > \alpha_{\tilde{k}-1}^{\nu} + \varepsilon_{\tilde{k}-1} \quad \text{for all } \nu \in \widetilde{N}. \\ &\text{As } \widetilde{k} \leq m^{\nu} + 1 \text{, we have } \varepsilon_{m^{\nu}+1} \leq \varepsilon_{\tilde{k}} \text{, hence:} \end{aligned}$$

(i) $\alpha_{m^{\nu}+1}^{\nu} - \alpha_{\tilde{k}-1}^{\nu} > \varepsilon_{\tilde{k}-1} - \varepsilon_{\tilde{k}}$ for all $\nu \in \tilde{N}$.

Put $V_{\tilde{k}-2} = \mathscr{V}$. Thus $A_{\tilde{k}-1}^{\nu}$ is a m.c.s. of \mathscr{V} . For all $\nu \ge \nu_0$, such that $\nu \notin \tilde{N}$, we have $A_{\tilde{k}-1}^{\nu+1} = A_{\tilde{k}-1}^{\nu}$ and for all $\nu \in \tilde{N}$, by 6.2 *b*, we have:

$$h^{\mathsf{v}}(x^{\mathsf{v}}) - [\langle x^{\mathsf{v}}, b(t) \rangle - c(t) + \delta(t) \alpha_0^{\mathsf{v}}] \leq \varepsilon_{\tilde{k}}$$

for all $t \in \hat{A}^{\vee} = A_{\tilde{k}-1}^{\vee+1} \setminus A_{\tilde{k}-1}^{\vee}$.

The choice of the ε_i [see condition (\star) in § 6] implies that $\varepsilon_{\tilde{k}-1} - \varepsilon_{\tilde{k}} > \varepsilon_{\tilde{k}}$. Using theorem 3.1 in the case $\tilde{k} = 1$ and theorem 7.1 in the case $\tilde{k} > 1$ (with $\hat{\varepsilon} = \varepsilon_{\tilde{k}}$ and $\varepsilon = \varepsilon_{\tilde{k}-1} - \varepsilon_{\tilde{k}}$) there exists $\mu \in \tilde{N}$ such that:

$$h^{\mu}(x^{\mu}) - \alpha^{\mu}_{\tilde{k}-1} \leq \varepsilon_{\tilde{k}-1} - \varepsilon_{\tilde{k}}.$$

As we have $\alpha_{m^{\mu}+1}^{\mu} \leq h^{\mu}(x^{\mu})$, we obtain:

(ii)
$$\alpha_{m^{\mu}+1}^{\mu} - \alpha_{\tilde{k}-1}^{\mu} \leq \varepsilon_{\tilde{k}-1} - \varepsilon_{\tilde{k}}.$$

The two inequalities (i) and (ii) are contradictory.

REFERENCES

- 1. C. CARASSO, L'algorithme d'échange en optimisation convexe, Thèse, Grenoble, 1973.
- 2. C. CARASSO, Un algorithme de minimisation de fonctions convexes avec ou sans contraintes : l'algorithme d'échange. 7th I.F.I.P. Conference on Optimization Techniques, Springer-Verlag, 1975, 2, pp. 268-282.

- 3 C CARASSO and P J LAURENT, Un algorithme pour la minimisation d'une fonctionnelle convexe sur une variété affine Séminaire d'Analyse numerique, Grenoble, 18 octobre 1973
- 4 C CARASSO and P J LAURENT, Un algorithme de minimisation en chaîne en optimisation convexe Séminaire d'Analyse numérique, Grenoble, 29 janvier 1976 SIAM J Control and Optimization, vol 16, No 2, 1978 pp 209-235
- 5 C CARASSO and P J LAURENT, Un algorithme general pour l'approximation au sens de Tchebycheff de fonctions bornées sur un ensemble quelconque Approximations-Kolloquium, Bonn, June 8-12, 1976, Lecture Notes in Math, No 556, Springer-Verlag, Berlin, 1976
- 6 E W CHENEY and A A GOLDSTEIN, Newton's Method for Convex Programming and Tchebyscheff Approximation, Num Math, vol 1, 1959, pp 253-268
- 7 A A GOLDSTEIN, Constructive Real Analysis, Harper's Series in Modern Mathematics, Harper and Row, 1967
- 8 P J LAURENT, Approximation et Optimisation, Hermann Paris, 1972
- 9 P J LAURENT, Exchange Algorithm in Convex Analysis Conference on Approximation theory, The Univ of Texas, Austin, 1973, Acad Press
- 10 R T ROCKAFELLAR, Convex Analysis, Princ Univ Press 1970
- 11 E L STIEFEL, Uber diskrete und lineare Tschebyscheff-Approximationen, Num Math, vol 1, 1959, pp 1-28
- 12 E L STIEFEL Numerical Methods of Tschebycheff Approximation In On numerical Approximation, R Langer, Ed, Univ of Wisconsin, 1959, pp 217-232
- 13 E L STIEFEL, Note on Jordan Elimination, Linear Programming and Tchebycheff Approximation, Num Math, vol 2, 1960, pp 1-17
- 14 H J TOPFER, Tschebyscheff-Approximation bei nicht erfullter Haarscher Bedingung, Zeits für angew Math und Mech, vol 45, 1965, T 81-T 82
- 15 H J TOPFER, Tschebyscheff-Approximation und Austauschverfahren bei nicht erfullter Haarscher Bedingung Tagung, Oberwolfach, 1965 I S N M 7, Birkhauser Verlag 1967, pp 71-89