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RAIR O Analyse numérique/Numerical Analysis
(vol 12, n® 4, 1978, p 377 & 400)

AN ALGORITHM OF SUCCESSIVE MINIMIZATION
IN CONVEX PROGRAMMING (")

by P. J. Laurent (*) and C. Carasso (?)

Abstract — A general exchange algorithm is given for the mimmization of a convex function with
equality and wnequality constraints. It 1s a generahzation of the Cheney-Goldsten algorithm, but
Sollowing an idea gwen by Topfer, a fimite sequence of sub-problems the dimension of which s decreasing,
1s considered at each iteration Given a positive number €, under very general conditions, it 1s proved
that the method, after a fimte number of iterations, leads to an “‘g-solution”

In 1959, Cheney and Goldstein [6] (see also Goldstein [7]) proposed an
algorithm for solving the problem of minimizing a convex function:

f(x)=max< > h(t)x:c(t))
1

1es§ 1=

under the constraints:
Y b(t)x, < c(r) forall telU,
1=1

where S and U are two disjoint compact sets and by, . . ., b,, ¢ are continuous
real functions defined on Su U.

At each iteration v of this algorithm, a polyhedral approximation of the
problem is associated to a suitable subset A consisting of n+ 1 points of SU U.
Using the exchange theorem (Stiefel [11, 12, 13]; see also [8, 9]) a new element
t'eSu U is introduced: A" =(A\ ) U t*.

We propose here a new algorithm which is an extension of the Cheney-
Goldstein algorithm for solving the same problem but under much weaker
assumptions: the sets § and U are arbitrary and the mappings by, . . ., b,, c are

(*} Requ decembre 1977
(*) Mathematiques apphguees | M A G Universite Scaientifique et Médicale de Grenoble
() U E R de Sciences, Umversité de Saint-Etienne, Samnt-Etienne
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378 P. J. LAURENT, C. CARASSO

only supposed to be bounded. Moreover, no Haar condition is introduced. At
each iteration, we consider a sequence of nested minimization problems. The
algorithm is based on an extension of the exchange theorem in which the
exchanged quantities are not just a single point (see [3, 4]).

The idea of the algorithm is similar to the recursive method introduced by
Topfer [14], [15] (see also [3]) for problems of Tchebycheff best approximation.

In the case of a best approximation problem the algorithm becomes an
extension of the Rémés algorithm (see [5]). For other applications, see [2].

1. PROBLEM AND ASSUMPTIONS

We denote by E the n-dimensional Euclidean space and by { x, x" > the usual
inner-product of x and x' in E.

1.1. The minimization problem

We denote by L a finite set with [ elements (! < n)and by S and U two arbitrary
sets. Suppose that L. S and U have no common point and let T=Su U.

Let b and ¢ be two bounded mappings from L u T 1into E and R respectively
(. e., b(T) and ¢(7T) are bounded).

We define the functionals f and g by:
f(x)=Sup(x, b(1) ) —c (1)),

tes

g(x)=Sup(Kx, b(t)> —c(1)).

telU

It is easy to see that f and g are continuous convex functionals defined on E
with values in R,

We define the affine variety W by:
W= {xeE|{x,b(t)>=c(1), teL}.

Itis convenient to suppose that the b(¢), t € L arelinearly independant and that
they span a I-dimensional subspace:
V=%2(b()|teL).

Thus, the affine variety W is parallel to ¥+, the orthogonal complement of V,
and has the dimension n—1.

The problem (P) consists in minimizing f(x) with x satisfying:
{x, b(1)>=c(1) for telL

R.A.LR.O. Analyse numénque/Numerical Analysis



SUCCESSIVIT MINIMIZATION IN CONVFX PROGRAMMING 379

and
{x, b(t)) Sc(t) for teU.

i.e, xe Wand g(x) £0.
Put:

(P} a= Inf flx)
xeW
gix)s0

and suppose that o is finite.

An element xeE is called a solution of (P) if:
xeW, g(x)=<0 and [f(x)=o.

An element x € E will be called an g-solution of (P) (with £ > 0) if:
xeW, g(x)<e and f(X)<o+te.

For a given € > O (arbitrarily small), the algorithm that we are going to
describe, will give, after a finite number of iterations (depending on €), an
e-solution of (P). The effective use of the method requires that for numbers &
satisfying | < & < & (where 1) is a positive number such that n < £/2" ") and for
any x e W, it is possible to determine

seS such that {(x, b(s)> —c(s)= f(x)—¢&
and
ue U such that {x, b(u)> —c(u) = g(x)—¢.

The exact values of f(x) and g (x) are not directly used: only an upper bound in the
calculation of the supremum is necessary.

1.2. Assumptions

We assume that:

(H1) thereexist Xe Wand ® > Osuchthat{x, b(f)>—c(t) £ —o,forallte U,
(this implies the regularity of the constraints);

(H2) the set:
K={xeE|{x, b(t)>=0, teL;<{x,b()> <0, teT}
is a linear subspace.

vol. 12, n° 4, 1978



380 P. J. LAURENT, C. CARASSO

Note that the preceding set K is equal to the recession cone of all non-empty level
sets:

Si={xeW|f(x) S g(x) <0}.

Thus, the condition (H2) implies the existence of solutions for the probleme (P).
The condition (H2) is also equivalent to:

(H2) Oerico(b(I)+7V,

where rico (b(T)) denotes the relative interior of the convex hull of b (7).
As a consequence of (H2), there exist c€R and t e R such that for all xe W

(M) Sup|{(x, b()>| < oSup<{x, b(t)) +.

teT teT
1.3. Application to best approximation problems

The preceding formulation includes the general problem of best
approximation in a finite dimensional subspace with equality and inequality
constraints. In this case, the function to minimize is:

B

fx)=

n

z XiVi— Yo
i=1
where yo, y1,. . ., , are n+1 given elements of a normed linear space Y, the

norm of which is denoted by || y||, for ye Y. It is possible to find a subset § = ¥’
(the topological dual of Y) such that f can be written in the following form:

JX)=Sup((x, b(y)>—c(¥)),

y'esS
with
b=y, ¥)- - -, w ¥
c(y)=o, ¥),

where (y, y') represents the value at y of the continuous linear functional y'e Y'.
For example, take for § the unit sphere of Y’ or the set of its extremal points.

2. MINIMAL CONVEX SUPPORT (m. c. s.)

Subsequently, we will need the notion of minimal convex support of a linear
subspace of E. This notion will be used not only relatively to ¥ but also for other
linear subspaces occuring in the algorithm.

R.AIR.O. Analyse numérique/Numerical Analysis



SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING 381

Let 4 be a d-dimensional linear subspace of E spanned by the elements b(t),
te D (not necessarely independant), where D is a finite subset of LU T.

2.1. Convex support of a linear subspace
A non-empty and finite subset 4 = T will be called a convex support of ¥ if

there exist coefficients p(t) 2 0, t€ 4 satisfying Y p(f)=1 such that:

teA

Y. p() b()ev

teA

[i. e. if co (b(A) ¥ #D].

2.2. Minimal convex support of a linear subspace

A convex support A of ¥~ will be called minimal if there does not exist a convex
support of ¥~ that is strictly included in A.

A subset A={ty,..., t.} consisting of k+1 points of T is a minimal
convex support (m. c. s.) of ¥” if and only if:
(a) there exist positive coefficients p(t), te A satisfying * p(f)=1 such that
ted
Y p(b()eV;

teA

(b) the subspace Q(b(t)I te D u A) spanned by the b(t), teD u A4, has the
dimension d + k.

Every convex support contains at least a m.c.s., and using Caratheodory’s
theorem, one shows that a m.c.s. contains at most n—d + 1 elements.

2.3. Coefficients associated with a m.c.s.

One also proves that A = Tisam.c.s. if and only if there exist unique positive
coefficients p,(t), te 4, satisfying:

Y p b(ey  and Y pu()=1.

ted ted

These coefficients p, (t), t € A, will be called the coefficients associated with the
m.c.s. A. It will also be useful to introduce coefficients A, (t), t e D, such that:

ZA Pa(b )+ Y Ay ()b(1)=0

[these A ,(t) are not necessarily uniquej.

vol. 12, n°® 4, 1978



382 P. J. LAURENT, C. CARASSO

2.4. Minimization associated with a m.c.s.

LetA= {t,,..., tys, }beam.c.s.of ¥, consisting of k + 1 elements such that
AnNS#Q. Put:

()= max ({x, b(t) ) —c(?)),

teAnS

ga(x)= max (Kx, b(t)>—c()

teAnU

[if A~ U=, then g,(x)= — oo] and consider the problem (P,) of minimizing
f4(x) for x belonging to W and satisfying g ,(x) < 0. Put:

P o,= min f,(x)Za.
xeW
g4(x}<0

We denote by W, the set of solutions of (P ), i. e. of elements x e W satisfying
g4(x) 20, o, =f,(x).

Then we have the following result, the proof of which is simple:

THEOREM: The amount o, of (P ) is given by:

1
o= 5 Z P4 (2) ({xo, b(8) > —c(1)),

A teA

(where x is an arbitrary element of W and s,= Y. palt)), or by:
teAnS

== (X M+ T pae).

A teL teAd
The set of solutions in given by:
W,={xeW|<{x,b(®)>—c(t)+d(Da,=a, teA},

where

_ 0 if teSs,
S(t)_{l if teU.

Thus, the set W, is an affine variety which is parallel to V3, with:
V,=Z((b@)|teLu 4),

the dimension of which is equal to I+ k. Therefore, the dimension of W, is
n—(l+k) and the solution of (P ) is unique when k=n—1.

R.AIR.O. Analyse numérique/Numerical Analysis



SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING 383

For a given € > 0, the algorithm that we are going to describe, will build a
finite sequence A%, A!,. .., A* of m.c.s. of ¥ and of associated solutions x°,

x*,. .., x*(x'e W ) such that the corresponding amounts o°, a',..., o*

(a¥=o01,.) build a non-decreasing sequence such that:
xteW, g(x*)<e and f(x*) < a*+e.

As o* £ a, the element x* will be an g-solution of (P).

3. A CONVERGENCE RESULT

The convergence result that we will state in this section corresponds, for the
time being, to a theoretical algorithm, the use of which is not quite specified. We
will need it, on the one hand, as a guide for the definition of the effective
algorithm, on the other hand as a basis for proving its convergence.

Let AY, v=0, 1,..., be an infinite sequence of m.c.s. of V such that
A"NnS#P,v=0,1,...;and let f*=f,., g*=g, be the associated polyhedral
functionals (as in § 2.4.). Put:

a'= Min f*(x) S o
xeW
g =0

and denote by W¥=W,, the set of solutions. Let p"(t)=p,.(t), te A", be the

positive coefficients corresponding to 4" (asin § 2.3.)and let s"= )" p¥(¢t).
teA NS

Consider the functional h" defined by:
h* (x)=max (f (x); g(x)+a)

= Sup(Kx, b()>—c()+d ().

teT
Finally, suppose that the set:
N={veN/A""1#4"},
is infinite and let 4¥=A4"*1\ 4", for ve N.
Then, we have the following result:
3.1. Tueorem: If, for all ve N, there exists x¥ e W" such that:
B () —((x", b)) —c(t)+6(t)a") < &,

vol. 12, n° 4, 1978



384 P. J. LAURENT, C. CARASSO

for all te A", then we have:

1

AR s"—“( Y P ) (B () —a¥ —§)
teA”

(this proves that ot > o, as long as k¥ (x¥) —a¥ — & > 0) and for any & > &, there

exists pe N such that:
) —at < ¢

[what implies that x* is an e-solution of (P)}.

Proof:
First-part: By theorem 2.4, we have:

1
ol <7 Y opv () (KxY, b(1) ) —c()).
tEAv+l
For te A¥, we have: {x*, b(t)>—c(t)+8 (o’ 2 I (x")—&.
For te A¥*1 n AY, we have: {x", b(t)> —c()+d(Ha"=0a".
Hence:

1
D M A CICA G

S te AT AY

1
+5rr 2 P OE ()-8 (e —§)

te A"

1
=37 2 PO @@ -3

< o
> teAtt

CX,V+1

1
* o % PO () —g)

teAr

and finally:

1
CX,V+1 Z O(V+ qv+1 ( Z pv+1(t)) (hv(xv)—ocv—é).
. e A

Second part: The following lemma is a property of the positive coefficients that
are associated with a sequence of m.c.s. We will only use the fact that 4",
v=0,1,...,is a sequence of m.c.s. such that N is infinite.

LemMa: There exist an infinite subset N in N and a bipartition of A” in B¥ and
C¥# Q for ve N such that:

1° lim ( ) p"(5)=0;

veN teB"
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2° there exists m > 0 such that p*(t) = m, for all teC¥ and all ve N;

3° CVisnotincludedin A”, for allve N, where v~ denotes the integer preceding
vin N.

The proof of this lemma has been given in [4].

Third part: Suppose that we have 1" (x*)—a" > ¢, for all ve N (with & > &) and
prove that this leads to a contradiction.

As a consequence of the first part, we then have:
1
't > oc“+§v—+7( Y p'* () (e—¢) forall veN,
te &

hence, o’ is a non decreasing sequence such that ' < a.
Let (& < o) be its limit.

First we show that there exists a positive constant s such that

s'= Y p()=s5>0.

ted"nS

It is equivalent to prove that C¥ n S# @ for all veN, sufficiently large.
By theorem 2.4, we have:

(X, b)) —c()=a"—d ()" for teAd’
and by (H1):
(X, b(®)>—c() - (with ®>0) for te A"

The mappings b and ¢ being bounded and «” converging to a., it is possible to find
a constant & such that:

[{x*—%,b(y|<E forall teA andall ve N.

Suppose_that there exists an infinite subset N < N such that C*~ S #Q,
forall ve N and prove that this leads to a contradiction. Consider

Y p'(<x"—%, b(1)) and decompose the sum according to B* and C".

te 4’

Letting n¥= 3 p¥(t), we have:

teB®
| Y <=2 bid[<mm

withlimn'=0.
veN

vol. 12, n° 4, 1978



386 P. J. LAURENT, C. CARASSO

On the other hand, as C¥ = U, we have { x",b(t) > —c(t)=0,forall t e C¥, and
letting Y= ) p*(¢), we obtain:

teC"

Y p ()< x*—%, b(§)> 20w forall veN,

teC”

with lim 0¥=1 and ® > 0.
veN .

Thus, for ve ﬁf sufficiently large, we would have ) p¥()<{x"—X,b(1)> >0,

what is in contradiction with the facts that A ;é Aa m.c.s. of ¥V and that
x¥—%e VL.

Using the result of the second part, we see that for all ve N, the set C is not
included in A¥~ . Therefore, there exist elements of C® that have been introduced
between the iteration v~ and the iteration v. Let e N be the last iteration
satisfying v— < ¥ < v for which at least one element of C¥ has been introduced.

By theorem 2.4, we have:

1 .
=2 2 () KXY, b(1)) — c(v)

te A"
with s¥ = s > 0.
We decompose again the sum according to B' and C*:
() Sum corresponding to B".
As a consequence of (H2), [see (M) in §.1.2], for all te T, we have:
|<x%, b()>]| < oSup(x", b(t)) +1.

teT

As the mapping c is bounded and the sequence a" is also bounded, we can find
a constant y such that:

| <x%, b(8)>—c(t)] £ o h*(x")+7,
for all te T. Hence, we have:
1 . 1 .
- Y pY(t) Kx', b(8)>—c(1) é;nv(chv(xv)er)-
teB*

(B) Sum corresponding to C".
For teC'mnA* # @:{x", b(t)>—c(t) = h*(x) -8 ()’ —&.
For te C*\ A% (x*, b(t)> —c()=0a'-8(s) o’

R.AIR.O. Analyse numérique/Numerical Analysis
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Hence, we have:

S T 00K bO>—c()

teC”

250 T 00 (6 -8()o’~9)

teC* nA’

+ Y P’ -8(t)a’)
1 teC"™\\ A" 1
=50 T 00 ()=’ =8+ 5o’ (F p'() 1-8(1)

teC'n A¥ teC”

2 uwa'+mh’(x)—a’ —8),

with u'=(1/s") }* p*(z) (1-3(t)) satisfying limu*=1.

teC veN

Finally, joining («) and (B) together, we obtain:

o 2u e’ +mh(x°) —o’ —£)— %(ch°(x°)+x)

X

=uo'+m@’ h°(x°)—cx‘7—€)—nvg,

with v¥=1—(n" 6/sm), satisfying lim v¥=1.
veN

As a¥ converges towards o, we deduce that:

lim sup (v" K (x")—a’—£) <0

veN
hence:
lim sup v"h*(x") < a+&.

veN

It is easy to prove that this inequality is contradictory with:
R(x)Zao'+e forall veN,

in the cas where € > &.

387

3.2. Remark: If we suppose that A° S @, then, as long as we have

b (x*)—a*—£& > 0, then we have 4¥*' N S# Q:

As a matter of fact, if we would have 4¥*1 n S= Q, this would mean that

A"*1 A AY < U and that 4* < U; hence
{x", b()>—c()=0 forall tedA**'nAY,
(XM, b()>—c()Zh'(x)—a"—E>0 forall teAv.
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388 P. J. LAURENT, C. CARASSO
As we have, by (H1):

{x, b(D>—c() <0 for all teAd"*!,

we would deduce that:

Y (x'—%b(5)) >0,

teAYtt

in contradiction with the facts that 4¥*! is a m. c. s. of ¥ and that X¥—%e V2.

4. EXCHANGE THEOREM

The preceding convergence theorem shows that the sets AY of new elements
should be such that it is possible to exchange them with a subset C¥ of A¥insuch a
way that 4V*1=(4"\ C*)uU A" is again am. c.s. of V.

The next theorem shows how to operate this exchange. Subsequently we will
have to do this operation, not only relatively to ¥ but also for other linear
subspaces occuring in the algorithm.

Let ¥ be a d-dimensional linear subspace of E defined by:
¥ =% (b(1)| te D)

where D is a finite subset of LU T.

4.1. Exchange theorem
IfAgisam.c.s.of V" and if Ay isam. c. s. of
"Vo=$(b(t)|teDqu)

then, there exists a bipartition of Ay in By and Cy# Q such that:

PN

o=BouAd,isam.c.s.of ¥,

]

1=Coisam. c.s.of

A

This theorem has been proved in [4]. It shows that it is possible to exchange
with A4, a non-empty part C, of 4y, in such a way that:

Ay=(40\\ Co)u A4,
is again a m. c¢. s. of ¥,

R.A.LR.O. Analyse numérique/Numerical Analysis
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4.2. Practice of the exchange
Denote by po (1) > 0, te Ag and by &, (2), t € D the coefficients associated with
Ag, as in paragraph 2.3:

(@) 3, po ()b()+ Y ho()b()=0,

teA, teD

Y po(t)=1.

tedy

AsAjisam.c.s.of ¥, wedenoteby p; (t) > 0,1€ 4, andby A, (t),teD L Ao,
the corresponding coefficients:

(@) Y pi(b(O+ Y A()b(1)=0,

teAd; teDuU 4,

2. p1(b()=0.

teA,

Substracting r-times the relation (ao) from the relation (a,), we obtain:

5 p(,(r)(’““) —r)b(t)+ S o1 (95 (0

ted, Po(?) ted,

+ 3 (A () —rho (£) b(£)=0.

teD

If we choose r= min (A, (£)/po (), and we define:
teAdy

A(f)
po(t)

C(): {ter

r } and B 0= AO \ Co
then the preceding relation becomes:

@) ¥ Po@b(d+ Y Xo()b(1)=0,

teBou 4, teD
with:

1 .
‘—(M(t)~rpo(t)) if teB,,
~ q
Po(t)= 1

'Epl(t) if ted,

vol. 12, n° 4, 1978
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~ 1
Ko(t)=5p1(t) for teD,

g= 3 A (@O—rpo(t)+ Y pa(®).

teB, teA,

The coefficients p,(t), te A, =B, U 4, are positive with the sum equal to one.
Now the relation (@) can be written:

@ Yp@b@+ ¥ X@b@®=0
teC, teDuUByU A,
with:

- 1
p1(t)= >Po () for teC,,

1
“holt) if teD,
P

Ai()= 1 .
(—po(t) if teB,,
p
0 if teA,.
p= 3 pold).
teCy

The coefficients p, (t), te A, = C, are positive with the sum equal to 1.

5. STRING OF M. C. S.

5.1. Successive minimization

The convergence theorem (§3) and the exchange theorem (§4) lead us to
consider the following sub-problem:

(SPY) BY= Inf h¥(x)

xeWwV
with
kY (x)=max (f(x); g (x)+a")

= Sup(Kx, b(2),> —c()+3() ).

teT
This sub-problem can be solved by the algorithm described in [4]:

R.AIR.O. Analyse numérique/Numerical Analysis



SUCCESSIVE MINIMIZATION IN CONVEX PROGRAMMING 391

Let AY be a m. c. s. of ¥, with k] +1 elements,
V=V =2 (b(t)|teLu AY),

and denote by h} the polyhedral functional defined by:
1{(x)=max (K x, b(t)> —c(t)+ () ).
te A}

We consider the minimization of A} (x) for xe W¥=Wj.
Put:

o} = min hj (x).
xe Wy
The set W7 of solutions, can be written:

Wi={xeWs|<{x, b(t)>—c()+3(Ha’=ay, te A} }.

It is an affine variety, which is parallel to (¥})*, where
N=2 b teLu Ay U A))

is a [+ kj + k}-dimensional linear subspace of E.

The same construction can be repeated relatively to V}: A} isam.c.s. of V7,
with k%+1 elements, h} is the associated functional, o3 the amount
of its minimum on W}, Wy the set of solutions, and

2
=2 (b(t)| te L L Ay L A} U A}), the dimension of which is I+ " k}.

i=0
We continue this construction until we have V.= E, hence W, is reduced to a
single point.

5.2. String of m.c.s.

The preceding construction leads us to the notion of a string of m. c. s. (shortly
“string”):

A finite sequence ¥ =(Ao, . . ., 4,) of subsets 4; = T will be called a string, if,
setting V_; =V, we have:

A;isam.c.s. of Vi_,,
Vi=2(b(1)|teL; ted;, j=0,...,1),
i=1,...,m,

Va.=E.
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If the subset 4; contains k; 4 1 elements (j=0, . . ., m), then the dimension of V; is

I+ 3 k;. Associated with each A; of the string %, we can define the coefficients
j=0

i—1
pi(t) >0, ted; and A;(2), tel u( U Aj) such that:
j=0

T pBbH+ T LObO+ T T M(D)b(H)=0,

te A, tel i=0 ted;

Y pi()=1.

te A,

5.3. Solution associated with a string

A string ¥=(A,,. . ., 4,,) will be said correct if A,nS# Q. Put:

Ji )= max ((x, b(6)>—c(?)

ted4,nS

gi (x)= max ((x, b(t)) —c (1)

We consider the sequence of successive minimization problems associated

with a correct string %-

o= min fo(x)
xeW
Go(x) £0

the set of solutions W, of which is an affine variety parallel to Vg, and

o;= min max (f;(x); g (x) + o),
xeW,_,
i=1,. .., m, the set of solutions W; of which is an affine variety parallel to V;".

As V,,=E, the affine variety W, is reduced to a single point x = x, that we will
call the solution associated with the string €. As x=1Xx, is a solution of the
successive minimization problems, by theorem 2 .4 above and theorem 2.3 of
[4], it is characterized by the following conditions:

{x, b(t)> =c(t), telL (I conditions)
{x, b(t))> +3()ag—oy=c(t), teA; (k;+1 conditions),
i=0,...,m
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We can use these n+m+1 linear equations for computing the n+m+1
unknown x4,. .., X,, %, . . ., &,. By construction, this linear algebraic system
has a unique solution.

5.4. Exchange operation in a string

Let #=(Ay,. .., 4,) be astring and (V,,. . ., V,,) the corresponding linear
subspaces. Weseethat 4,_;isam.c.s.of ¥"=V,_,andthat A;isam.c.s.of the
linear subspace:

Vo= (b(t)|teDUA,_)=V,_,,

Jj—2
with D=Ly |} 4,.

=0
Thus we have the same situation as in theorem 4 . 1.
There exists a bipartition of 4,_, in B,_; and C,_; # @ such that, letting:

ZJ_1=BJ_1UAJ and ZJ:C]—I:

then €=(Ado,. .., 4,_1, 4,,. . ., 4,) is again a string.
We will say that we have exchanged 4,_ and A, in the string 4.

5.5. Regular string

A string ¥=(4,,. .., 4,,) will be said regular if each of the subsets 4,
i=0,. .., m, has at least two elements. Thus, if ¢ is regular, the dimension of ¥,
is strictly greater than the dimension of ¥,_, (i=0,. . ., m) and the integer m is
necessarily smaller or equal to n—1—1.

If & is an arbitrary string, we obtain a regular string by taking away all the
m.c.s. that are reduced to a single point. If A, is not reduced to a single point,
this operation does not change the solution associated with the string as well as
the amounts «, corresponding to the remaining m.c.s. 4,.

6. ALGORITHM

If £ > 0 is the desired accuracy, let g, be positive numbers satisfying:
81

2 i=0,...,n0.

(x) go=¢, g41 <

6.1. Description of the algorithm

Suppose that, at the iteration v, we have a correct and regular string
¢ ={Ag...., A,}, and denote by x* the associated solution and by
af,. . ., o, the corresponding amounts.
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Determine t¥e T such that

R () = (Y, b() 5 —c(t)+8 (1) 08) = €04

with
B (x)= Sup(<{x, b(1) > —c()+8 () )
teT
and put:
A:1’+1= {t\’},
U 1= XY, DY) D> — (8" + 8 (") o}
We define the integer j* by:
J=min(0<j<m+1; 0+, S 0f+E)

[the fact that the above inequality is satisfied for a given integer j means that the
corresponding sub-problem (see 5.1 and 5.3) has been sufficiently solved].

We will consider three cases according to the value of j*:
First case:

J =m'+1.

We introduce the new point ¢¥ in the string €".
Using the exchange theorem, in the string:

(AY,. . ., Al A= {2'])

we exchange A, and A,,,. Then, we obtain:

either (AY,.... A, Ap,y)
in which A, contains t* but is not reduced to this single point,

\
or ( ;:,- s, A, {[V}, A;vn‘)y

what occurs in the case b(t)€ Vm-1.

In this latter case, we exchange again A -1 and {1}, and so on, until we
finally obtain:
either G =(AY,..., A, AL,.. ., Ay ("=,
in which A, _, contains ¥ but is not reduced to this single point,
or ({t'}, Ay,.. .. 4,)
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But in this latter case, this means that xV is an ¢, -solution of (P},
with ¢,._, <e: As a matter of fact, 4y,,,= {¢'} is then a m.c.s. of V. By the
remark 3.2, we will have t'e § and thus:

Oy = X B(M) Y —c(tY)

will satisfy:

oc,v,,v+1 <o

By the choice of . we have:
Y (X*) £ o1+ Eprg )
what implies that h¥ (x*) < a+¢
the algorithm.

i.e.x"is a g, ;-solution of (P} and we stop

m'+1s

Second case:

1<iv<sm.

Using again the exchange theorem, we then exchange A, _, and A.in the string
%" (see § 5.4). This leads to the new string:

v v

(ZV=(A0,. .., va—lr Z}i, ey A,\;v)

Note that Zjvv_l cannot be reduced to a single point, for it contains A]Vw and the
string " has been supposed to be regular.

Third case:
j =0.
Then, we have:
v
hv (xv) é am”-}-l + 8m“~+—1 é 0(6 + 80

and this means that x"is an g,-solution of (P) and we stop the algorithm. In short,
if we put:

we see that we stop the computation (the accuracy ¢ being obtained) when k¥ =0.
In the other cases, the last exchange executed concerns the m. c.s. the indices of
which are k¥ —1 and k*. The m.c.s. 4), i=0,. .., k'—2 are not modified.
It can happen that the new m. c.s. A, is reduced to a single point. In that case,
we suppress it in the string (see § 5.5). Thus, we obtain a new regular string:
v+ 1

gv+1 =(A8+1, e ey Am»-n)
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v+1

mm which m**! can be equal to m"—1, m* or m"+ 1.

By the remark 3.2, the string 4" ! is also correct (44" N S# Q).

6.2. Properties of the algorithm

Suppose that k¥ = 1. Then we have:

(@) Ay l=A), @t =a), k=0,. .., k=2,
v+ 1

(b) Forall te A¥=A,. |\ Ap_,:
R (xM) —(xY, b(1) ) —c())+3 (1) op) £ &
(0) cher_i = o+ 7" (g1 —&,), Where y" is a positive number given by:

1 v+1 oy
oFT Y Pie—i () if k=1,

'YV:’ re A

Y Py () if k2.

te A

Proof: The point (a) follows directly from the definition of the algorithm.
(b) We will consider two cases:

first case:
FEmil k=0

As we exchange A;._, and {¢'}, we have: A, }\ 4,_,= {#'} and by the
choice of t¥, we have:
(XY, b)Y —c(@®)+8 (1) o = B (X)) —&yy = B (XY) — €.

second case:

1<jsm; k=)

We exchange A._, and A}.. Thus we have 4¥=Aj,. Now, for all t€ 4., we
have:

(xY, b)) —c(+3(t) =0y
and by definition of k" =j":
aZv+8kv g OC,‘:,VH +8mv+1 g hv (XV).

(¢) The proofis similar to the first part of the proof of theorem 3 . 1. We will not
give it here.
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6.3. Starting the algorithm

Generally, we wish to start the algorithm with an initial string 4° consisting of
asingle m. c.s. A of ¥V (with exactly n— [+ 1 elements). The determination of 49
can be difficult (even impossible). In the case, it is possible to modify the problem
(P) without changing its amount and one part of its solutions in such a way that
* the determination of 43 for the new problem is very easy.

Suppose we know x,€ E and reR such that the problem (P) has at least a

solution x satisfying: || x—x,|| < and let 6 R be constant such that 6 < a.
Consider then the function:

z(x)=m|x—x0|+0
where 1 > O satisfies the condition 6+ m# =< «, and the new minimization

problem:
(P) a= Inf f(x)

xeW
gx)=0

where f (x) =max ( f(x); z(x)).
It is easy to prove that « =3 and that the set of solutions of (P) is exactly equal
to the set of solution x of (P) satisfying the condition:

- —0
1% x| = 22

Note that the function z(x) can be written
z(x)= Sup({x, Nnx'>+0—-m{xg, x' D)

Vel

where S’ is the unit sphere of E. Thus, the function S has the same form as f,
replacing b and ¢ by suitable extensions b and ¢ to S U §’. It is easy to choose A3
in S’

7. CONVERGENCE OF THE ALGORITHM

Before proving the convergence, we need a theoretical convergence result
which is very similar to theorem 3.1 but corresponds to the form of the sub-
problems (see § 5.1).

7.1. An auxiliary convergence result

Suppose that #" is an affine variety which is parallel to ¥+ (where ¥ is defined
as in paragraph 2) and consider the following minimization problem:

(SP) B= Inf hy (x),

xey
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with
ho (x)=max ( f(x); g(x)+ )

= Sup({x, b(8) > —c(1)+38(1) a)-

teT

Let A¥,v=0,1,.. ., be aninfinite sequence of m.c.s. of ¥" and let f* and g* be
the corresponding functionals (as in § 3). Put:

o¥= min max (f*(x); g*(x)+ o) £ B
xeW

and denote by %" the set of solutions.
If we suppose again that the set:

N={veN|4"*1#4"}

is infinite (put A=A\ _AY, for ve N) then we have the following result:
THEOREM: If, for all ve N, there exists x*eW™ such that:

ho (X = ((x%, b(8) ) —c () +8(Dag) = €

for all te A", then for any & > &, there exists pe N such that:

ho(x")—o* < g

[this implies that x* is an e-solution of (SP)].

This result is in fact a particular case of theorem 6.1 in [4].

7.2. Convergence of the algorithm

THEOREM: For an arbitrary positive number e, the algorithm described in
paragraph 6, after a finite number p of iterations, leads to an element x* e W which
is an g-solution of (P).

More precisely, for a given accuracy £ > 0, there exists an integer p{depending
on g) such that the element x* € W and the first m. . s. A} of the string €* satisfy:

fOM Zab+e and g (x") =Zce,

where off =a,, is the corresponding amount (see § 2.4). As af < o, this implies
that x* is an e-solution of (P).

Proof: We only have to prove that the algorithm stops, i.e. that there exists p
such that k*=0,
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Suppose that we have k¥ = 1, for all v and show that this leads to a
contradiction:

Let k= lim infk", (1 £ k < ny+1). There exists v, such that for all v > v,, we

v oo

have k¥ > k: and the set:
N= {veN|v = Vo, kV=E}

is infinite.

Hence, for v=v,, we have 4;=A4, and V;=V, (independant of v) for
k=0,..., k-2.

By the definition of the algorithm, we have:
Upoy1+ 8 > 0p  +6;_; forall veN.
As kK < m'+1, we have ¢, , < ¢, hence:
() ooy —0p , >&_;—& forall veN.
Put V;_,= ¥ .Thus 4;_,isam.c.s.of #". Forall v = v, such that v ¢ N, we
have Ay ;=A;_, and for all ve N, by 6.2 b, we have:
R ()= [{x", b(8) ) —c()+3()ag] < &
for all te A¥=A} N\ AL_,.
The choice of the ¢; [see condition (x) in § 6] implies that ¢;_, —e; > g;. Using

theorem 3.1 in the case k=1 and theorem 7 . 1 in the case k > 1 (with & =¢;and
e=¢g;_,—¢;) there exists pe N such that:

M (XM —op_y < gy — &

As we have o

w1 = h*(x¥), we obtain:
. u i
(ll) Qe 41 — Ay g €1~ &

The two inequalities (i) and (ii) are contradictory.
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