
 Open access Posted Content DOI:10.1101/2020.04.11.036871

An Algorithm to Build a Multi-genome Reference — Source link

Leily Rabbani, Jonas Mueller, Detlef Weigel

Institutions: Max Planck Society

Published on: 13 Apr 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Reference genome and Genome

Related papers:

 Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints.

 DynMap: mapping short reads to multiple related genomes

 Fast and Accurate Genomic Analyses using Genome Graphs

 Methods and system for generating and comparing reduced genome data sets

 Ultrafast comparison of personal genomes

Share this paper:

View more about this paper here: https://typeset.io/papers/an-algorithm-to-build-a-multi-genome-reference-
2v8e7dgy95

https://typeset.io/
https://www.doi.org/10.1101/2020.04.11.036871
https://typeset.io/papers/an-algorithm-to-build-a-multi-genome-reference-2v8e7dgy95
https://typeset.io/authors/leily-rabbani-1smskzbbrb
https://typeset.io/authors/jonas-mueller-3s0qifvgu8
https://typeset.io/authors/detlef-weigel-47kespy84z
https://typeset.io/institutions/max-planck-society-3o0xx7lg
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/reference-genome-2csfns24
https://typeset.io/topics/genome-1ezdrtwk
https://typeset.io/papers/ultrafast-comparison-of-personal-genomes-via-precomputed-1kfeh2t0li
https://typeset.io/papers/dynmap-mapping-short-reads-to-multiple-related-genomes-532f5irzzh
https://typeset.io/papers/fast-and-accurate-genomic-analyses-using-genome-graphs-4i5th2q7t7
https://typeset.io/papers/methods-and-system-for-generating-and-comparing-reduced-17uzdt7k6r
https://typeset.io/papers/ultrafast-comparison-of-personal-genomes-4xzeldzt6w
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-algorithm-to-build-a-multi-genome-reference-2v8e7dgy95
https://twitter.com/intent/tweet?text=An%20Algorithm%20to%20Build%20a%20Multi-genome%20Reference&url=https://typeset.io/papers/an-algorithm-to-build-a-multi-genome-reference-2v8e7dgy95
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-algorithm-to-build-a-multi-genome-reference-2v8e7dgy95
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-algorithm-to-build-a-multi-genome-reference-2v8e7dgy95
https://typeset.io/papers/an-algorithm-to-build-a-multi-genome-reference-2v8e7dgy95

An Algorithm to Build a Multi-genome Reference

Leily Rabbani, Jonas Müller, Detlef Weigel

1 Abstract

Motivation

New DNA sequencing technologies have enabled the rapid analysis of many
thousands of genomes from a single species. At the same time, the con-
ventional approach of mapping sequencing reads against a single reference
genome sequence is no longer adequate. However, even where multiple high-
quality reference genomes are available, the problem remains how one would
integrate results from pairwise analyses.

Result

To overcome the limits imposed by mapping sequence reads against a sin-
gle reference genome, or serially mapping them against multiple reference
genomes, we have developed the MGR method that allows simultaneous
comparison against multiple high-quality reference genomes, in order to re-
move the bias that comes from using only a single-genome reference and
to simplify downstream analyses. To this end, we present the MGR algo-
rithm that creates a graph (MGR graph) as a multi-genome reference. To
reduce the size and complexity of the multi-genome reference, highly similar
orthologous1 and paralogous2 regions are collapsed while more substantial
differences are retained. To evaluate the performance of our model, we have
developed a genome compression tool, which can be used to estimate the
amount of shared information between genomes.

Availability

https://github.com/LeilyR/Multi-genome-Reference.git

Contact

weigel@tue.mpg.de

1Regions with shared ancestry as a result of a speciation event.
2Regions with shared ancestry as a result of a duplication event.

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Introduction

The number of fully re-sequenced genomes has increased exponentially dur-
ing the last decade. It provides scientists with vast amounts of diverse data
which presents a major challenge when attempting to completely extract
information from it. Advanced sequencing technologies not only resulted in
vast amounts of sequenced genomes but also increased the quality of them
substantially. Previously, it might have been optimal to use a high qual-
ity genome as a reference, however as the quality of re-sequenced genomes
has improved, this no longer makes sense. In addition, as has already been
shown by Schneeberger et al.,32 even when additional genomes are not com-
plete, integrating known variants in a graph helps to call variants from reads.
Recently, several alternative approaches have been proposed10,18,22,23,32 in
which variations are added to the reference to break the linearity of the
reference, creating a graph structure.
Graphs have been widely used in the history of genome analysis from assem-
bling35,37 to aligning18,26,31,39 and representing variations.4,22,23 A common
type of graph that has been used for genome assembly and analysis is the
de Bruijn graph.11,18,20,37 A de Bruijn graph is a directed graph where
nodes are substrings of length k (k −mers) and edges represent an overlap
of length k−1 between two adjacent nodes. Graphs that are produced with
this approach are dependent of the value of k. Previous methods have used
de Bruijn graphs as a reference for mapping sequencing reads18,20 or for
assembling genomes.11,37

Another commonly used graph is the sequence graph.22,23 Nguyen et al.22

have proposed a bidirectional sequence graph that can be used as a pan-
genome reference for a population of genomes. To construct it, a parametric
method is applied to a set of aligned genomes to obtain an orienting and
ordering of homologous blocks of sequences that maximally agrees with the
input genomes. More recently, Novak et al23 used a sequence graph to con-
struct a collapsed representation of a set of genomes, which was then used
as a reference to query sub-haplotypes3.
In other studies,4,19,28 the main focus has been on introducing variant sites
in a graph in order to determine which variants test genomes carry. Oth-
ers24,32 have focused on proving the ability of a graph in capturing new
variations as an alternative to a linear reference genome. Novak et al.24

have recently shown that adding the variants to the reference may improve
the estimation of an individual genome.
A further challenge as a consequence of a large number of sequencing and
re-sequencing research is finding a way to store the large amount of data that
is produced or used utilising the new sequencing technologies. As DNA se-
quences contain only four different characters, effective compression should

3Haplotype is a collection of highly correlated structural variants.

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

achieve an information content below 2 bit per base. However, standard
text compression algorithms like gzip3 fail to achieve this on real biological
sequences. Due to sequence duplication events, biological DNA sequences
contain numerous similar regions. Standard text compression tools focus
more on detecting exact repetitions and do not have adequate models for
error-prone biological duplication processes. Several studies have been done
to build a DNA specific compression tool. In some studies one or multiple
reference genomes are used to compress the genome data,2,7, 30,36,38 other
tools work de novo where encoding and decoding are independent of a ref-
erence sequence.9,33 Reference-based compressions return a higher rate of
compression since they include prior knowledge about data. However, they
have a drawback in that the same reference is always needed for decoding.
Some studies focused on compressing short sequencing reads.12,33 Whereas,
with others such as in iDoComp25 the algorithm is designed to compress a
full length genome. In fact in the latter, a reference-based method has been
used and about 60% compression was reported in most of the cases.
Here, we introduce the MGR algorithm, a global approach to create a string
graph as is defined by E. W. Myers21 where the vertices are fragments of
sequences while the edges present the order of the vertices on the genome.
Our approach generates such a graph which can be used as a reference and
represents several input genomes. As opposed to the above algorithms, we
compress several full length genomes instead of a single reference genome and
its variants. Shannon information34 is used as the cost function which makes
the algorithm independent of the choice of any arbitrary parameter value.
Higher order Markov models are used to estimate the information content of
DNA sequences as well as of pairwise sequence alignments. The algorithm
clusters sequences based on the information content of the sequences and
alignments between them and selects a representative for each cluster. This
clustering based approach allows for non-parametrically identifying impor-
tant variation which will result in different cluster centres. Non-important
variation will be encoded as differences between the representative sequence
of a cluster and its members. The created MGR graph represents the data
reliably and gives us the opportunity of traversing over it and finding a mo-
saic of genomes that fits a new sequence fragment the best. To evaluate
our approach, we also propose a DNA compression tool that can be used
to compress full length genomes by exploiting the long repetitive elements
that are not identical. Thus, it can be an excellent tool to study differences
between assembled genomes on a global scale.

3 Methods

The algorithm was implemented in C++.

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

3.1 Preparing the input data

The main goal of the algorithm is to find representative elements from each
group of similar sequences (orthologous or paralogous regions) by minimizing
Shannon information. Therefore, for the first step, similar regions within
and between sequences need to be found. To this end, a single FASTA17

file is generated containing all the input genome sequences with a unique
accession ID assigned to each input genome. This file will then be used
as an input for a pairwise aligner tool to capture similar regions in the
form of local pairwise alignments within and between input genomes. The
alignment file in the Multiple Alignment Format (MAF)1 along with the
generated FASTA file are provided to the algorithm as input for generating
a MGR graph. Figure 1 shows an overview of the MGR algorithm operating
on a given set of pairwise alignments.

CAAGCTTA

AGGAAGATC

AGATGCTGT

TATGCAGTAT

AGCAGTAAT

Seq0

Seq1

Seq2

Seq3

Seq4

AAG CT
AAG AT
ATG
ATG
A-G

AGG
AG- CTGT

CAGT
CAGT

A-T
AAT

Seq0
Seq1
Seq2
Seq3
Seq4

AAG CT
AAG AT
ATG
ATG
AG

AGG
AG CTGT

CAGT
CAGT

AT

AAT

Seq0
Seq1
Seq2
Seq3
Seq4

cluster0

cluster1

cluster2

cluster3

cluster4

cluster5

cluster6

C
C

cluster7

C

AAG
center7

center1

CT
center3

TA

AGG
center0

ATG
center2

CAGT
center4

T

AT
center5

AAT
center6

AAGCT
AAGAT

Seq0
Seq1

AGG AAG
AG - ATG

Seq1
Seq2

ATG CTGT
ATG CAGT

Seq2
Seq3

ATGCAGT A - TSeq3

A-G CAGT AATSeq4

1

2

3

4

Figure 1: General overview of the MGR algorithm

Step one: Detection of pairwise alignments. Step two: Division of alignments into non-

overlapped segments. Step three: Grouping of related sequences into different clusters.

Step four: Converting cluster centres into vertices of the graph.

3.2 Training the model

We use variable order Markov Chain (MC) models to compute the informa-
tion content of sequences and pairwise alignments. In a first order Markov
Chain model, the probability distribution of the next character depends
solely on its predecessor. Such a model can be used to estimate the infor-
mation cost of a sequence. If the probability distribution of the model is
a good representation of pairwise character successions in the sequence, it

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

will yield a low information cost. By making the probability distribution
of the next character depend on a longer context, we create a higher order
Markov Chain model. This can lower the information cost of a sequence if
the context specific probability distributions represent the data well. Long
stretches of approximate repeats, like in biological DNA sequences, can ben-
efit from using higher order Markov Chain models. However, incrementing
the order increases information content of a Markov Chain model exponen-
tially. This creates a trade-off where longer contexts need the encoding of
a high number of context specific probability distributions which lowers the
information content necessary to encode the sequence. We solve this by us-
ing a greedy approach. Starting from contexts of length one, we look at the
total cost to encode using a first order Markov Chain model and then the
sequences using this model. Then we iteratively check whether increasing
the order of the Markov Chain or just the length of a specific context lowers
the total information cost. We also optimize the number of bits used to
encode each individual probability distribution of the model contexts.
A sequence alignment can be interpreted as a series of instructions needed
to modify one reference sequence of the alignment to the other one. These
series of modification instructions can also be modelled using variable order
Markov Chain models.
The probability distributions given by these models yield a lower bound
of information cost necessary to encode each character or modification in-
struction. This is called Shannon information. It is the negative binary
logarithm of a probabilistic event. Thus, an optimal encoding algorithm
will require many bits to encode a rare event but only very few bits to en-
code a common event. Transforming probabilistic models to estimations of
encoding efficiency makes sequence and alignments comparable. The infor-
mation cost of both data types is measured using the same unit, the bit.
This yields a non-parametric approach to decide whether an alignment is
sufficiently important, or not. We check whether including the alignment
into an encoding of all the sequences would reduce the total amount of Shan-
non information. Instead of just encoding all sequences using the sequence
based variable order Markov chain models, we can incorporate a pairwise
alignment. Thus, we only need to encode one of the reference sequences of
the alignment. The other one can be defined by applying the modification
instructions contained in the alignment to the first one (see Figure 2 for the
illustration). If this approach yields a reduction of the total information
content, we include the alignment into the model.
For this decision to be made, the gain values are computed for each align-
ment. These indicate how much information can be gained by using the
alignment instead of two reference sequences separately. Formula 1 shows
this calculation where G1 is the gain of creating the reference 2 of an align-
ment and modifying it to the reference 1, instead of creating both references.
The opposite of the latter is the case for G2.

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

(A) Model on a genome (B) Model on an alignment

ACGTGCATGCCATACGTAATCGTCCAATATGC
ACGT GCATGCCATACGTAATCGTCC-ATATGC
ACG - GCATGCCATAGGTAATCGTCCAATAAGC

seq
1

seq
2

Order = 2 Order = 1

CostG|AT = −log2(P (G|AT)) Costdel|M3T = −log2(P (del|M3T))

CostSeq =
∑

costb, ∀b ∈ Seq Mod1to2 =
∑

costmod12, ∀mod12 ∈ Pal

Figure 2: Simple illustration of how the models are trained.
Red squares present the current position, where the model is trained. The highlighted
base in (B) presents the current base, where the modification between two sequences of
the pairwise alignment is read.

G1 = Cost1 −Modification2to1 G2 = Cost2 −Modification1to2 (1)

In a real encoding we cannot realize the complete amount of the information
gain computed above. To ensure lossless compression, we also need to en-
code the following instructions: 1) Stop sequence based decoding and start
alignment based encoding. 2) Index of the reference sequence on which the
alignment will be based (we do not need a position given in base pairs as
the actual implementation only uses cluster centres as other reference). 3)
Stop alignment based decoding and switch back to sequence based decod-
ing. We estimate the information cost of these encodings based on their
expected frequencies and call their sum a base cost. An alignment is kept if
its average gain is higher than a base cost; otherwise it is discarded.

3.3 Filtering homology

So far, potentially similar regions on different genomes are detected. Once
these regions are successfully found, all the alignments are then reweighed.
Weighing is done by considering how many times an alignment is confirmed
by a third reference genome (Figure 3). The number of such references is
counted for each alignment and the gain values are recalculated using this
number.
At the end only a fraction of the alignments, those with the highest gain
value, are kept. The filtering can be considered as an optional step to reduce
the input size by retaining more valuable alignments, which are the ones that
have higher potential of containing a representative piece of sequence.

6

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

G3

G2

G1

Figure 3: Searching for sequence similarities
G1, G2 and G3 are three input genomes. The blue alignment is highly overlapped with the
pink and the green alignments. That these regions are typically contiguous in a genome
is confirmed by the coloured region on G3.

3.4 Removing redundant data

After filtering the data, one needs to deal with the partially overlapped
alignments. They need to be detected and the redundancy has to be dis-
carded otherwise one piece of a sequence might be taken into account more
than once. In order to solve this conundrum, alignments are cut into smaller
non-overlapped segments.
Redundant regions are propagated over a set of alignments and this makes
the cutting process computationally expensive and time consuming. To han-
dle this, cutting is done iteratively on different levels of redundancy. In each
iteration, a graph of the overlapped alignments is generated and its 2−edge

connected sub-graph is extracted. The alignments on this sub-graph are
then cut into non-overlapped segments and saved in a data container along
with the rest of the alignments on the generated alignment graph. After
several iterations over different levels of redundancy the entire remaining
alignments are checked for any level of overlap and their redundancy is dis-
carded. To this end, alignments are grouped together if there is an overlap
between them. Therefore, there will no redundancy between different groups
of alignments but within them. At the end, each group of alignments is cut
into non-overlapped segments of sequences.
Since the partial overlap has been eliminated, pairwise alignments can be
assigned to different groups considering the complete overlap between one of
their references. Sequence segments of each group are related to each other
and are totally independent from the segments in the other groups.

3.5 Clustering sequences

Next, we cluster the sequences of each group in a way which minimizes the
information cost. The AFP clustering algorithm6 is run over each group of
independent pieces and assigns each sequence to a cluster.
One advantage of the AFP clustering algorithm is that it detects representa-
tives of each cluster as well as the associated members, the other advantage
of this algorithm over some other clustering algorithms which are commonly
used in literature is that there is no need to set the number of clusters. It

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

optimizes the total information cost to create all representatives as well as
the information cost of alignment derived modification instructions to create
cluster members from their representatives.
For each input genome sequence a series of all the centres and non-aligned
regions that are not in any cluster is created. At the end, if there are non-
aligned segments with the exact same content, within or between different
input genomes, they will be grouped together and form a new cluster.

3.6 Building a multi-genome reference

A directed string graph as is proposed by Myers21 is created as an output
of the program. The output graph G = (V,E) is constructed over a set
of vertices V which represent the (not always exactly) repeated pieces on
different genomes. Two vertices v1, v2 ∈ V are connected with an edge
e ∈ E, if and only if they are next to one another on at least one of the input
genomes (Figure 1). This graph can be used as a multi-genome reference to
remove the bias against a single reference.
The output graph is saved as a DOT5 and a GFA15 file format that shows
all the adjacent vertices. The content of all the centres are also saved as
a FASTA17 file, along with a text file that contains the extra information
about the origin of each centre. Moreover, each cluster is saved on a MAF1

file as a multi sequence alignment between the centre and all its members.

3.7 Data compression

The constructed graph is then used to compress all the input genome se-
quences. During training, the model parameters, including the cost of creat-
ing each letter on a sequence as well as the cost of each modification pattern
of an alignment are written on a file. After clustering, the indices of all the
centres are added to the same file and the centres’ content are arithmeti-
cally encoded.14 In this step, using the clustering result, all the sequences
are arithmetically encoded and the encoded result is written on the same
file. For this purpose, each base on a sequence is encoded as long as there
is no alignment on that position of a sequence. As soon as an alignment is
reached, the index of its corresponding centre and the modification instruc-
tions for modifying each base of the centre to the corresponding base on
the input sequence are encoded. The higher the compression rate the better
the model fits the input data. Thus, it can be used as a measurement to
evaluate the trained models.

4 Result

Several sets of data with different numbers of input genomes of various
lengths were applied to assess the performance of the algorithm. In each

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

case, a single FASTA file has been generated by the MGR algorithm con-
taining the unique assigned accession ID to each input genome which makes
the FASTA files compatible to what the algorithm needs for the next steps.
For our experiments, we have always run LAST13 as an aligner on each
of the generated FASTA files to create local pairwise sequence alignments,
however, the MGR algorithm is not dependent on the choice of the aligner.
The local pairwise alignments between and within sequences detected by
this program were saved as a MAF file. Each of the MAF files and the their
corresponding generated FASTA files have been used as input for the MGR

algorithm. The size of the built MGR graph and the efficiency of the mod-
els, based on the obtained compression rates, were examined to measure the
performance of the algorithm.
The pilot experiment was done on several strains of E. coli with the length
of almost 5Mb per genome (Data section). Input files of different sizes were
generated to evaluate the time complexity of the method. Four FASTA files
with two, four, eight and sixteen input genomes of E. coli were built. Af-
ter creating the corresponding MAF files for each of them, the number of
alignments as well as their average length have been computed (Table 1).
Relationships between the number of alignments normalized by their aver-
age length, and the run time of the program is then used to estimate the
complexity of the algorithm (see Figure 4).
On the same set of data, the compression rate computed by the MGR algo-
rithm is compared with the compression rate obtained from a known genome
specific compression tool, MFcompress.29 Close rates to what has been
achieved by MFcompress (see Table 2) reveals the efficiency of the MGR

algorithm in capturing the repetitive regions.

Number of
input genomes

Number of
alignments

Average length
(base)

2 E. coli 38, 155 793

4 E. coli 111, 200 952

8 E. coli 247, 660 1, 500

16 E. coli 536, 637 2, 514

Table 1: The number and the average length of the pairwise alignments on 4 different
input dataset.

To ascertain the effectiveness of the program in processing larger genomes,
the next experiments were carried out on larger input files. The first con-
tained the genome of eight Saccharomyces cerevisiae strains with the length
of 12Mb per strain while the second contained chromosome one from three
different A. thaliana strains with the sequence length of 30Mb per chromo-
some (see Data section). The same procedure that has been used for the

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

Normalised number of alignments

Ti
m

e
in

 m
in

ut
es

Figure 4: Relation between the number of input alignments normalised by their length

and the running time.

Number of
input genomes

Compression
rate(MGR)

Compression
rate(MFcompress)

Vertices Edges

2 E. coli 1.25 1.35 1, 719 2, 484

4 E. coli 0.93 0.83 2, 259 3, 372

8 E. coli 0.87 0.65 5, 656 8, 782

16 E. coli 0.91 0.52 11, 557 20, 826

4 S. cerevisiae 0.83 0.81 16, 313 23, 658

3 Chr. 1 A. thaliana 0.93 1.12 10, 061 15, 534

Table 2: Comparison between the compression rate obtained from our algorithm and
MFcompress as well as the number of vertices and edges on the generated Multi-genome

reference graph

pilot experiment has been applied on each of the above mentioned datasets
to generate the compatible input files and to run the algorithm on them.
The size of the built graph in each case as well as the compression rate
obtained for each of them are shown in Table 2. In all the cases, the high
compression rate achieved reveals that the trained models fit the data well
and that capturing more repetitive regions – as in the more complex S. cere-
visiae genomes – raises the compression rate.
Moreover, to prove the simplicity of the data structure that the MGR algo-
rithm offers in presenting several genomes, the size of the built MGR graph
on two E. coli genomes has been compared with the size of created graphs
by the vg tool8 and the REVEAL program16 on the same set of data. Ta-
ble 3 shows this comparison where the number of vertices and edges are
significantly lower on the MGR graph.

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

Input
genomes

Vertices
(MGR)

Edges
(MGR)

Vertices
(Vg)

Edges
(Vg)

Vertices
(REVEAL)

Edges
(REVEAL)

2 E. coli 1, 719 2, 484 415, 701 374, 468 91, 296 121, 798

Table 3: Size of the graphs created by our tool, the vg tool and the REVEAL program
on two E. coli genomes.

5 Discussion

As previously stated, advanced sequencing technologies improved the qual-
ity as well as the quantity of sequenced genomes drastically. In conjunction
with this, it has already been shown24,27,32 that adding extra information to
a single genome results in a higher quality of mapping and detection of vari-
ations. Thus, shifting from a single reference genome to the MGR graph as a
reference not only offers a robust data structure to present several genomes
but also offers a reliable method to call the variants and to decrease the bias
against using only a single reference.
Moreover, developing such an algorithm could assist us in searching for
longer sequencing reads and for finding the best match for each read by
walking through the graph and locating the path that fits the sequencing
read the best. In contrast with the Schneeberger et al.32 approach, the
MGR algorithm does not return a single genome as the closest reference for
the mapped sequencing reads but it is incapable of finding a new genome
which is closer to a mixture of several existing genomes.
To our knowledge the MGR algorithm is one of the first algorithms which
takes advantage of several fully sequenced genomes as opposed to using
variations along with a single reference genome. Given a piece of sequence,
the MGR algorithm estimates its information content de novo or estimates
it from an already known piece of a sequence. Estimating from a known
piece can be done by looking for the information content of the changes
between the given sequence and the known piece of sequence. The higher
order Markov models used in the MGR algorithm estimate the information
content of DNA sequences as well as of pairwise sequence alignments reli-
ably. Since decisions are always made in a manner to minimize the Shannon
information34 the algorithm does not rely on arbitrary parameter choices.
As well as the above mentioned criteria, applying genome specific Markov
chain models allows us to analyze genomes with very different magnitudes
of difference together.
Another advantage of applying the MGR algorithm compared to the other
methods is that it clusters sequence pieces. Given a set of sequences, between
which pairwise alignments exist, MGR selects some of them as representa-
tives (with de novo information cost). For this, the Affinity Propagation
Clustering (AFP) algorithm6 is used, which automatically approximates the
optimal number of clusters by minimizing the total cost needed to create

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

all input elements either de novo or based on one of the representatives.
Although clustering results in the discarding of unimportant variation by
collapsing highly similar repeats, all the variation can still be accessed if
necessary. Moreover, it enables us to perform both between and within
cluster analysis and can be easily applied in global genome analysis and
represents their diversity. It is especially helpful in studying repeats. Using
clustering also resulted in a simpler representation of several genomes com-
pared to existing methods such as REVEAL16 and vg tool.8

The applied DNA compression in the MGR uses the same strategy of mini-
mizing Shannon information34 to actually compress the input sequences and
does not rely on using similarities between each DNA sequence and a cer-
tain reference genome. The compression performance of the algorithm not
only shows how efficiently the Markov chain models capture the intrinsic
properties of DNA sequences but can also be used as a metric to measure
the common information of individual genomes and shows their distances.
Thus, it can be an excellent tool to study differences between assembled
genomes on a global scale.

References

[1] Multiple alignment format.
https://genome.ucsc.edu/FAQ/FAQformat.html#format5.

[2] Sebastian Deorowicz, Agnieszka Danek, and Marcin Niemiec. Gdc 2:
Compression of large collections of genomes. Scientific reports, 5:11565,
2015.

[3] P. Deutsch. Gzip file format specification version 4.3, 1996.

[4] Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R Nelson, and
Gil McVean. Improved genome inference in the mhc using a population
reference graph. Nature genetics, 47(6):682–688, 2015.

[5] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North,
and Gordon Woodhull. Graphviz—open source graph drawing tools. In
International Symposium on Graph Drawing, pages 483–484. Springer,
2001.

[6] Brendan J Frey and Delbert Dueck. Clustering by passing messages
between data points. science, 315(5814):972–976, 2007.

[7] Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan
Birney. Efficient storage of high throughput dna sequencing data using
reference-based compression. Genome research, 21(5):734–740, 2011.

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

[8] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M
Eizenga, Eric T Dawson, William Jones, Shilpa Garg, Charles Markello,
Michael F Lin, et al. Variation graph toolkit improves read mapping
by representing genetic variation in the reference. Nature biotechnology,
2018.

[9] Faraz Hach, Ibrahim Numanagić, Can Alkan, and S Cenk Sahinalp.
Scalce: boosting sequence compression algorithms using locally consis-
tent encoding. Bioinformatics, 28(23):3051–3057, 2012.

[10] Lin Huang, Victoria Popic, and Serafim Batzoglou. Short read align-
ment with populations of genomes. Bioinformatics, 29(13):i361–i370,
2013.

[11] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil
McVean. De novo assembly and genotyping of variants using colored
de bruijn graphs. Nature genetics, 44(2):226, 2012.

[12] Daniel C Jones, Walter L Ruzzo, Xinxia Peng, and Michael G Katze.
Compression of next-generation sequencing reads aided by highly effi-
cient de novo assembly. Nucleic acids research, 40(22):e171–e171, 2012.

[13] Szymon M Kie lbasa, Raymond Wan, Kengo Sato, Paul Horton, and
Martin C Frith. Adaptive seeds tame genomic sequence comparison.
Genome research, 21(3):487–493, 2011.

[14] Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine

Learning Research, 10:1755–1758, 2009.

[15] Heng Li. A proposal of the graphical fragment assembly format.
http://lh3.github.io/2014/07/19/a-proposal-of-the-grapical\

\-fragment-assembly-format, 2014.

[16] Jasper Linthorst, Marc Hulsman, Henne Holstege, and Marcel Reinders.
Scalable multi whole-genome alignment using recursive exact matching.
bioRxiv, 2015.

[17] David J Lipman and William R Pearson. Rapid and sensitive protein
similarity searches. Science, 227(4693):1435–1441, 1985.

[18] Bo Liu, Hongzhe Guo, Michael Brudno, and Yadong Wang. debga:
read alignment with de bruijn graph-based seed and extension. Bioin-

formatics, 32(21):3224–3232, 2016.

[19] Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin Iqbal.
A natural encoding of genetic variation in a burrows-wheeler transform
to enable mapping and genome inference. In International Workshop

on Algorithms in Bioinformatics, pages 222–233. Springer, 2016.

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

[20] Shoshana Marcus, Hayan Lee, and Michael C Schatz. Splitmem: a
graphical algorithm for pan-genome analysis with suffix skips. Bioin-

formatics, 30(24):3476–3483, 2014.

[21] Eugene W Myers. The fragment assembly string graph. Bioinformatics,
21(suppl 2):ii79–ii85, 2005.

[22] Ngan Nguyen, Glenn Hickey, Daniel R Zerbino, Brian Raney, Dent
Earl, Joel Armstrong, W James Kent, David Haussler, and Benedict
Paten. Building a pan-genome reference for a population. Journal of

Computational Biology, 22(5):387–401, 2015.

[23] Adam M Novak, Erik Garrison, and Benedict Paten. A graph extension
of the positional burrows-wheeler transform and its applications. In
International Workshop on Algorithms in Bioinformatics, pages 246–
256. Springer, 2016.

[24] Adam M Novak, Glenn Hickey, Erik Garrison, Sean Blum, Abram Con-
nelly, Alexander Dilthey, Jordan Eizenga, MA Saleh Elmohamed, Sally
Guthrie, André Kahles, et al. Genome graphs. bioRxiv, page 101378,
2017.

[25] Idoia Ochoa, Mikel Hernaez, and Tsachy Weissman. idocomp: a com-
pression scheme for assembled genomes. Bioinformatics, 31(5):626–633,
2014.

[26] Benedict Paten, Mark Diekhans, Dent Earl, John St John, Jian Ma,
Bernard Suh, and David Haussler. Cactus graphs for genome compar-
isons. Journal of Computational Biology, 18(3):469–481, 2011.

[27] Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garri-
son. Genome graphs and the evolution of genome inference. Genome

research, pages gr–214155, 2017.

[28] Benedict Paten, Adam M Novak, Erik Garrison, and Glenn Hickey.
Superbubbles, ultrabubbles and cacti. In International Conference on

Research in Computational Molecular Biology, pages 173–189. Springer,
2017.

[29] Armando J Pinho and Diogo Pratas. Mfcompress: a compression tool
for fasta and multi-fasta data. Bioinformatics, 30(1):117–118, 2013.

[30] Armando J Pinho, Diogo Pratas, and Sara P Garcia. Green: a tool
for efficient compression of genome resequencing data. Nucleic acids

research, 40(4):e27–e27, 2011.

[31] Benjamin Raphael, Degui Zhi, Haixu Tang, and Pavel Pevzner. A novel
method for multiple alignment of sequences with repeated and shuffled
elements. Genome Research, 14(11):2336–2346, 2004.

14

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

[32] Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, Norman
Warthmann, Sandra Gesing, Oliver Kohlbacher, and Detlef Weigel. Si-
multaneous alignment of short reads against multiple genomes. Genome

biology, 10(9):R98, 2009.

[33] Jeremy John Selva and Xin Chen. Srcomp: Short read sequence
compression using burstsort and elias omega coding. PloS one,
8(12):e81414, 2013.

[34] Claude E Shannon and Warren Weaver. The mathematical theory of
communication. 1948.

[35] Jared T Simpson and Richard Durbin. Efficient construction of an
assembly string graph using the fm-index. Bioinformatics, 26(12):i367–
i373, 2010.

[36] Congmao Wang and Dabing Zhang. A novel compression tool for ef-
ficient storage of genome resequencing data. Nucleic Acids Research,
39(7):e45, 2011.

[37] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short
read assembly using de bruijn graphs. Genome research, 18(5):821–829,
2008.

[38] Yongpeng Zhang, Linsen Li, Yanli Yang, Xiao Yang, Shan He, and
Zexuan Zhu. Light-weight reference-based compression of fastq data.
BMC bioinformatics, 16(1):188, 2015.

[39] Yu Zhang and Michael S Waterman. An eulerian path approach to
local multiple alignment for dna sequences. Proceedings of the National

Academy of Sciences of the United States of America, 102(5):1285–1290,
2005.

Data

Data sets which were used to build a multi-genome reference over E. coli

genomes are the following 16 NCBI reference sequences.
NC 000913.3, NC 002695.1, NC 010473.1, NC 012967.1, AE014075.1, NC 004431.1,
NC 007946.1, NC 008253.1, NC 011750.1, NC 011751.1, NC 018658.1, NC 009800.1,
NC 017634.1, AE005174.2, NC 008563.1, NC 017633.1

The S.cerevisiae strains can be found here:
https://www.yeastgenome.org/strain/AWRI1631

https://www.yeastgenome.org/strain/FL100

https://www.yeastgenome.org/strain/CLIB215

https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=AEWL01#contigs

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. thaliana Data:
PRJEB37261 Ler-0 (AT7213)
PRJEB37258 Ty-1 (AT5784)
PRJEB37252 Col-0 (AT6909)

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.036871doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.11.036871
http://creativecommons.org/licenses/by-nc-nd/4.0/

