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An Algorithm to Construct Genetically Similar Subsets of Families
with the Use of Self-Reported Ethnicity Information
Andrew D. Skol,1 Rui Xiao,1 Michael Boehnke,1 and Veterans Affairs Cooperative Study 366
Investigators*

1Department of Biostatistics, University of Michigan, Ann Arbor

We present a simple algorithm that uses self-reported ethnicity information, pedigree structure, and affection status
to group families into genetically more homogeneous subsets. This algorithm should prove useful to researchers
who wish to perform genetic analyses on more-homogeneous subsets when they suspect that ignoring heterogeneity
could lead to false-positive results or loss of power. We applied our algorithm to the self-reported ethnicity infor-
mation of 159 families from the Veterans Affairs Cooperative Study of schizophrenia. We compared these estimates
of population membership with those obtained using the program structure in an analysis of 378 microsatellite
markers. We found excellent concordance between family classifications determined using self-reported ethnicity
information and our algorithm and those determined using genetic marker data and structure; 158 of the 159
families had concordant classifications. In addition, the degree of admixture estimated using our algorithm and
self-reported ethnicity information correlated well with that predicted using the genotype information.

Introduction

Many genetic studies of psychiatric illness and other
complex disorders are performed with samples from eth-
nically stratified populations. Linkage and case-control
association analyses are sensitive to population hetero-
geneity of disease etiology and marker allele frequencies
(Curtis and Sham 1996; Deng 2001). Using an averaged
allele-frequency distribution can result in an overes-
timate or underestimate of the degree of sharing between
affected relatives when parental genotypes are not avail-
able (Curtis and Sham 1996). Given possible heteroge-
neity between populations, it may be advisable to per-
form analyses separately for the families from each
population, in addition to performing a joint analysis in
which all families are analyzed together.

In genetic studies of psychiatric disease, a common
instrument used to determine a subject’s psychiatric di-
agnosis is the Diagnostic Interview for Genetic Studies
(DIGS) (Nurnberger et al. 1994). The interview includes
a question regarding the ethnicity of the subject’s par-
ents (appendix A). Generally, studies that have used
the DIGS or a similar instrument and have performed
analyses separately by ethnic or racial group have not
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disclosed how they defined or determined group mem-
bership of families, but they likely used imprecise def-
initions and ad hoc methods to assign them (Cloninger
et al. 1998; Funke et al. 2004). Here, we propose an
algorithm that uses the information from the DIGS,
family structure, affection status, and a simple decision
rule to determine group membership for each family for
the purposes of genetic analysis.

The effectiveness of using self-reported ethnicity
data to generate genetically homogeneous samples is as
dependent on the subjects’ interpretation of the inter-
viewer’s ethnicity question as it is on how genetically
heterogeneous the ethnicities are. Sankar and Cho
(2002) offer a useful discussion on the need for re-
searchers, when they are performing studies that incor-
porate ethnicity as an explanatory variable, to under-
stand the factors that influence which ethnic groups a
subject identifies with.

To assess the performance of our algorithm, we ap-
plied it to data from a recently completed genetic linkage
study of schizophrenia (Tsuang et al. 2000; Faraone et
al., in press). We compared the estimates of ancestral
background obtained by using our algorithm and the
DIGS data with those obtained by using the program
structure and the analysis of data on 378 microsatellite
markers (Pritchard et al. 2000; Falush et al. 2003),
which estimates population membership with the use
of genotype data. When we used a simple rule that
classified a family as European American (EA) or Af-
rican American (AA) when the probability of the family
belonging to that population was estimated to be 150%,
158 of the 159 families were classified concordantly by
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our algorithm and by structure ( ). In addition,k p 0.99
families that were estimated to be admixed by our al-
gorithm were also shown to have substantial admixture
by structure analysis.

Methods

The purpose of our algorithm is to divide samples into
genetically more homogenous groups of families. This
goal was motivated by a desire to perform linkage and
family-based association analyses of our Veterans Affairs
(VA) schizophrenia data. When parental genotypes are
unavailable, evidence for linkage is sensitive to misspe-
cification of parental allele frequencies (Curtis and Sham
1996; Deng 2001), hence the importance of separating
families into homogeneous subsets. Populations that
historically have been separated by large distances or
geographical boundaries are often genetically hetero-
geneous, and the longer these populations have been
isolated and the more varied their environments, the
more heterogeneous they are likely to be (Zhivotovsky
et al. 2003). The ethnic or racial groups that individuals
are operationally assigned to in epidemiological contexts
are usually correlated with the continental region of a
person’s ancestors in the immediate pre-Columbian era,
and so the percentages of ancestry tracing to different
continental regions are reasonable variables to use to try
to construct more-homogenous subsets of families.

Our algorithm summarizes self-reported ethnicity in-
formation from family members into a family-specific
ancestral-group classification in four steps. First, we
convert each pedigree member’s response to the DIGS
ethnicity question into maternal and paternal ancestry
classification vectors. Second, we estimate the ancestry
classification vectors of the pedigree’s founders from the
information of their descendants. Third, we calculate
the family ancestry classification vector as a weighted
average of the founders’ vectors, where a founder’s
weight is the sum of the kinship coefficients (Wright
1984) between the founder and affected individuals.
Fourth, we assign a summary family ancestry based on
values in the family’s classification vector.

We present our algorithm with the assumption that
the ethnicity information is coming from the DIGS,
since this is a likely source of diagnostic and ethnicity
information for psychiatric genetic studies. It should be
straightforward to adjust our algorithm to use infor-
mation from other sources of self-reported ethnicity.

Step 1: Convert DIGS Ethnicity Responses into Vectors
of Ancestry Proportions

The DIGS question regarding ethnic makeup is given
in appendix A. The question asks about the ethnicity of
the subject’s parents. We store the subject’s responses to

the question in two vectors, one for each parent. The
elements of these vectors contain, in principle, the prob-
ability that a randomly chosen gene from the parent
traces to a particular continental population. Since our
VA sample is almost exclusively of European or African
origin, we categorized the ethnicities listed in appendix
A into AA (15), EA (1–7), and other (OT) (8–14 and
16). Each respondent is assigned a maternal and paternal
ancestry vector, each composed of the proportion of re-
sponses corresponding to AA, EA, and OT. Each pedi-
gree member that did not complete the DIGS is assigned
a single ancestry vector initialized to [0, 0, 0]. Unlike
those who complete the DIGS, these nonrespondents
do not require maternal and paternal ancestry vectors;
rather, they require only a single vector, since informa-
tion inferred about their ancestral makeup is an amal-
gam of their parents’ information and cannot be decom-
posed into parent-specific information.

Figure 1A contains a sample pedigree. Figure 1B
shows the response of the pedigree members to the DIGS
ethnicity question and the resulting parental ancestry
vectors. For example, individual 8 reported maternal
and paternal ethnicities of 15, 15, 1 and 15, 15, 14,
respectively, resulting in ancestry vectors [.67, .33, 0]
and [.67, 0, .33].

Step 2: Infer the Founders’ Ancestry Vectors

In this step, we estimate the ancestry vectors of the
founders from the information provided by their de-
scendants. We repeat the following five actions until the
founders are reached. First, we identify all individuals
with parents but no offspring in the current version of
the pedigree. The second, third, fourth, and fifth actions
are performed only on these individuals. Second, the
ancestry vectors are normalized, if necessary, by dividing
each vector element by the sum of the elements; this will
not be required for individuals with no offspring in the
original pedigree or those who completed the DIGS.
Third, each ancestry vector is multiplied by a weight.
For our sample, affected individuals, because of possible
impaired cognition, communication, and social inter-
action, are considered to have less reliable responses
and are given smaller weights than unaffected individ-
uals. We assign weight 1 to the ancestry vectors of un-
affected offspring and weight 0.001 to those of affected
offspring. This scheme allows use of the affected off-
spring responses when no unaffected offspring infor-
mation is available and virtually ignores this information
when responses from unaffected offspring are available.
Fourth, for each individual who completed the DIGS,
the maternal (or paternal) ancestry vector is added to
the mother’s (or father’s) vector, provided that the
mother (or father) did not complete the DIGS. For ex-
ample, if a mother and her son both completed the DIGS,
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Figure 1 Example of the ethnicity algorithm applied to a family.
A, Pedigree diagram. B, Responses to DIGS and the corresponding
ancestry vectors for pedigree members. Individuals 1, 2, 3, and 6 are
founders. The three elements of the ancestry vectors are the AA, EA,
and OT proportions, in that order. C, Kinship coefficients between
founders and affected family members.

then the information the son reports about his mother’s
ethnicity is ignored, and only the information the mother
provided is used. For individuals who do not complete
the DIGS, their ancestry vector is added to their mother’s
(or father’s) vector, provided that she (or he) did not
complete the DIGS. Note that a respondent, who has
both maternal and paternal ancestry vectors, provides
parent-specific ethnicity information, whereas a nonres-
pondent, who has only a single race vector, provides, at
best, an average of his or her parents’ ethnicity infor-
mation, for both parents. Fifth, the individuals processed
from the current pedigree are removed, and we return
to the first action. When the founders are reached, their
ancestry vectors are normalized. If a founder completed
the DIGS, the maternal and paternal ancestry vectors
are averaged.

We demonstrate this procedure for the pedigree in
figure 1A. We begin with individuals 7, 8, and 9, whose

self-reported maternal and paternal ancestry vectors are
given in figure 1B. None of these individuals require the
normalization step. We multiply the maternal and pa-
ternal ancestry vectors of individuals 7, 8, and 9 by
0.001, since they are affected. We add the weighted ma-
ternal and paternal ancestry vectors of individual 9 to
the ancestry vectors of her mother and father, individuals
5 and 6. Both parents’ ancestry vectors become [.001,
0, 0]. The information for individuals 7 and 8 is added
to the ancestry vector of their father (individual 3) but
not to that of their mother (individual 4), because she
completed the DIGS. Summing the paternal ancestry vec-
tors of individuals 7 and 8 gives us individual 3’s up-
dated vector, 0.001 [.5, .25, .25] � 0.001[.67, 0, .33] p

. We remove individuals 7, 8, and0.001 [1.17, .25, .58]
9 from the pedigree structure and find the individuals
with no offspring in the reduced pedigree—individuals
4 and 5. Individual 4’s vector does not need to be nor-
malized; individual 5’s normalized vector is [1, 0, 0]. We
multiply individual 4’s ancestry vectors by 0.001 and
add the vectors of individuals 4 and 5 to those of their
parents’ (individuals 1 and 2). Individual 1’s ancestry vec-
tor becomes 0.001[.5, 0, .5] � [1, 0, 0] p [1.0005, 0,
.0005]; individual 2’s becomes 0.001[1, 0, 0] � [1, 0, 0]
p [1.001, 0, 0]. Removing individuals 4 and 5 from the
pedigree structure leaves only founders. Founders 1, 2,
3, and 6’s normalized vectors are [1, 0, 0], [1, 0, 0],
[.58, .13, .29], and [1, 0, 0], respectively.

In the example, affected individuals’ information was
downweighted. Had we chosen to weight each individ-
ual’s information equally, the information provided by
individual 4 would have been weighted the same as that
from her brother, individual 5. This would have given
classification vectors [.75, 0, .25] and [1, 0, 0] for founders
1 and 2, respectively, rather than [1, 0, 0] for each.

Step 3: Calculate the Family’s Ancestry Classification
Vector

We calculate the family’s classification vector as a
weighted average of the founders’ ancestry vectors. For
weights, we sum the kinship coefficients between the
founder and all affected family members. The kinship
coefficient between relatives x and y ( ) is the prob-fxy

ability that an allele selected at random from an arbitrary
locus in x and an allele selected at random from the
same locus in y are identical by descent. For a family
with F founders and A affected pedigree members, we
write the family’s race classification vector as

� f ri i
i�FR p ,� fi
i�F

where and is the classification vector forf p � f ri ij ij�A
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Table 1

Responses to DIGS
Ethnicity Question
(with Counts 110)

Reported
Ethnicities Count

15, –, –, – 584
3, –, –, – 128
1, –, –, – 102
14, 15, –, – 62
1, 3, –, – 62
15, 15, 15, 15 51
3, 3, –, – 35
1, 1, –, – 30
4, 4, 4, 4 19
14, –, –, – 14
3, 14, –, – 13
1, 15, –, – 12
1, 4, –, – 11

Figure 2 Distribution of family ancestry vectors estimated from
self-reported data. Each of the 159 points represents a family. The
proportion AA (or EA or OT) of a family ancestry classification vector
can be found by drawing a perpendicular line from the point to the
AA (or EA or OT) projection line (i.e., the line emanating from the
AA [or EA or OT] vertex). The proportion of the line intersected equals
the proportion AA (or EA or OT) estimated. This is illustrated for one
of the points.

founder i. The values for and can be found in figuref rij i

1B and 1C. For our example, the family ancestry clas-
sification vector is [.82, .03, .15]. Generally, analyses will
be most sensitive to misspecification of the allele fre-
quencies of the affected members’ parents. For this rea-
son, we chose the above weights so that emphasis would
be placed on the founders that contribute the most ge-
netically to the affected individuals.

Step 4: Assign Family Ancestry

We assign a family to an ancestry if the family’s vector
element for that ancestry exceeds a cutoff value. For our
VA study, we assigned an ancestry of AA (or EA) if the
AA (or EA) element of the family ancestry vector was
10.50. The ancestry vector of the family in figure 1 has
an AA element of 0.82, leading us to assign the family
an AA classification.

Application

We applied our algorithm to the data of 159 families
from our VA Cooperative Studies schizophrenia-study
sample. The families had an average of 2.7 affected in-
dividuals (range 2–6) and 4.6 genotyped individuals
(range 2–14) per family. The markers used were pri-
marily from the ABI Prism Linkage Mapping set, version
2.5, HD5 (Applied Biosystems; see Web Resources).

Comparison with structure

The program structure (Pritchard et al. 2000; Falush
et al. 2003) implements a Bayesian approach to estimate
the proportion of each individual’s genome derived from
each of K populations, where K is user specified. Also,
structure estimates the joint distribution of the marker
allele frequencies of the K populations, the admixture
of each individual, and the population origin of each

allele by use of Markov chain–Monte Carlo simulation.
Details of the algorithm can be found in Falush et al.
(2003). We ran structure on our autosomal genome scan
data of 378 microsatellite markers, using andK p 2

. We ran the analyses once using all 732 genotypedK p 3
individuals from the 159 families and again using only
the 187 genotyped founders. The use of only founders
is consistent with structure’s assumption that sample in-
dividuals are unrelated. The use of all individuals takes
advantage of all available information and so is better
able to overcome structure’s prior distribution that in-
dividuals are an equal admixture of the K populations,
but it overestimates the actual information present.

When we used all genotyped individuals in the struc-
ture analysis, we estimated family race vectors by av-
eraging the estimated proportion of population mem-
bership for the affected members. When we used only
founders, we estimated family ancestry vectors using the
estimates from structure and our algorithm as described
above.

Results

Table 1 displays the frequency with which the most com-
mon ethnicity responses were given. Figure 2 shows the
ancestry vectors for the 159 schizophrenia-affected VA
families after the DIGS responses were submitted to our
algorithm. The majority of families cluster at the EA and
AA vertices—51 on each. When the families classified
as EA were admixed, it was always with OT (specifically,
Native American/Native Alaskan), whereas families clas-
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Figure 3 Population membership estimates for individuals de-
rived by structure with the assumption of two populations. Each ver-
tical bar represents the proportion of the individual’s genome estimated
to be from group 1 (African ancestry). The white area represents the
proportion from group 2 (European ancestry). A, Estimates with the
use of founders only. B, Estimates with the use of all family members
(and with familial relationships ignored).

Table 2

Family Race Vector Estimates from Self-Reported
Information for Families with EA or AA Proportion 150%

SAMPLE

MEAN (� SD) RACE

VECTOR ESTIMATE

(%)

AA EA OT

EA 1 50% 0 � 0 96 � 9 4 � 9
50% ! EA ! 100% 0 � 0 80 � 11 20 � 11
AA 1 50% 92 � 15 2 � 8 6 � 9
50% ! AA ! 100% 63 � 22 19 � 12 18 � 12

sified as AA reported admixture of EA, OT, or a com-
bination of EA and OT. There was more variation in
the ancestry vectors of families that were predominantly
AA than in those that were predominantly EA (fig. 2
and table 2), where we define a family as predominantly
EA (or AA) if the EA (or AA) element of the family
vector is 10.50 and !1. Predominantly EA families av-
eraged 20% OT admixture. Predominantly AA families
averaged nearly equal proportions of EA and OT of
∼18% each; for these families, the admixture tends to
be either entirely OT or a mixture of OT and EA.

Figure 3 contains bar plots showing structure’s esti-
mates of the proportion of the two populations from
which an individual’s genome is derived, when K p 2
populations were assumed. The bars for individuals
from AA families, as classified via self-reported infor-
mation, are on the left. The impressive concordance
between a family’s ancestry assignment and the pro-
portion admixture from each continental group strongly
suggests that the groups identified by structure represent
European and African populations. When structure was
run with , no evidence for an additional popu-K p 3
lation was seen. This suggests either that the ethnicities
labeled OT are genetically homogeneous to the African
or European population or that too little OT genetic
information is available for structure to distinguish the
OT group from the African and European populations.
It is possible that, if structure could allow the allele
frequencies of two populations to be correlated and the
third uncorrelated, we would be able to detect hetero-
geneity between the OT samples and the others, or it
may be that too little information is available to distin-
guish genetic differences between the OT group and the
EA and AA groups. Figure 3A shows the results for
founders only; figure 3B, for all individuals. Table 3
reports the average admixture proportions estimated by
structure when all individuals or only founders are used.
It is clear from both figures 3 and 4 and table 3 that
the AA sample is much more admixed than the EA
sample is—EA and AA families have, on average, 1%
and 18% admixture, respectively. The proportion of EA

genes in AA individuals is highly variable. In addition,
we found that the proportion of admixture estimated
is greater when only founders are used than when all
available genotyped subjects are used, which is consis-
tent with more data being required to overcome struc-
ture’s prior that individuals are an equal admixture of
each population.

We next compared the family race vector estimates
from our algorithm with the use of the self-reported
data to those estimated by structure with the use of
genotype information (table 4 and fig. 4). Families re-
porting more admixture tend to be more genetically
admixed according to structure. This concordance be-
tween self-reported and genetic evidence is shown in
more detail in figure 4, which plots the EA proportion
estimated using our algorithm and self-reported infor-
mation versus that estimated using the genotype infor-
mation and structure. The Spearman rank correlation
between the EA proportion estimated using structure
and that estimated using our algorithm is 0.85. When
we measured the correlation within only those fami-
lies that are predominantly EA according to structure
( ), we found a surprisingly small correlation ofEA 1 0.5
just 0.06, whereas correlation within families that are
predominantly AA, according to structure, is 0.85.
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Table 3

Family Race Vector Estimates from
structure for Families with EA or AA
Proportion 150%

structure
SAMPLE

MEAN (� SD) RACE

VECTOR ESTIMATE

(%)

AA EA

:EA 1 50%
All members 1 � 2 99 � 2
Founders only 4 � 11 96 � 11

:AA 1 50%
All members 81 � 8 19 � 8
Founders only 66 � 6 34 � 6

Table 4

Comparison of EA and AA
Proportions Estimated by
structure versus Self-Reported
Ethnicity Data

SELF-REPORTED

ESTIMATE

structure
ESTIMATE

(%)

AA EA

EA p 100% 1 99
50% ! EA ! 100% 2 98
50% ! AA ! 100% 67 33
AA p 100% 82 18

Discussion

We presented a simple algorithm that transforms self-
reported population affiliation, pedigree structure, af-
fection status, and perceived validity of the self-reported
information into a family ancestry classification. Our
algorithm should prove useful to researchers who wish
to perform linkage analyses or other family-based anal-
yses when population heterogeneity is a potential factor
that could lead to excess false positives or loss of power.
Although our algorithm was designed for ethnicity data
reported from the DIGS, in which subjects report their
parents’ ethnicities, it can easily be adapted to other
information formats, such as those in which individuals
report their own ethnicities. If such data are collected,
our algorithm could be implemented by assuming that
the individual responded that both parents’ ethnicities
are the same as his or her own.

If a large amount of genotype information is already
available from the families, our algorithm can be used
in concert with structure as we demonstrated above. If
no or little genotype information is available and a sub-
set of families with ethnicity information is available to
choose from (e.g., National Institute of Mental Health
[NIMH] Schizophrenia Genetics Initiative; see Web Re-
sources), our algorithm could be applied to select a col-
lection of families that have a desired distribution of
ethnic backgrounds.

We found almost perfect concordance between pop-
ulation assignments determined with the use of our al-
gorithm and those determined with structure; 158 of
159 families were classified concordantly ( ).k p 0.99
We also discovered that, for predominantly AA families,
the amount of admixture predicted from the self-re-
ported information was consistent with that found by
structure (Spearman correlation coefficient p 0.85). In
addition, structure’s estimate that AA individuals have,
on average, 18% EA admixture is relatively consistent
with the findings of Parra et al. (1998) and Shriver et

al. (2003), who found that an AA sample from the
Washington, D.C., area had genetic contribution esti-
mates of 79%, 18%, and 3% from AA, EA, and Na-
tive American populations, respectively. In contrast, for
predominantly EA families, we found little correlation
( ). Figure 4 shows that there is little variationr p 0.06
in the proportion of EA predicted using structure and
substantially more variation in that predicted from the
self-reported information. To understand why the var-
iability is so much greater in the self-reported EA pro-
portion, recall that the admixture predicted from the
self-reported data is entirely due to ethnicities catego-
rized as OT. In our predominantly EA families, the eth-
nicity leading to an OT classification was Native Amer-
ican/Native Alaskan. At least two explanations exist for
why the amounts of Native American/Native Alaskan
ancestry estimated via self-reported versus genetic data
differ. One possibility is that, even if all individuals ac-
curately reported the amount of Native American an-
cestry, little genotype data exists in our sample to allow
structure to distinguish a Native American population
from the others; recall that running structure with

populations did not show evidence of an addi-K p 3
tional ancestral group. A second possibility is that
individuals overreported the amount of their Native
American ancestry. Regardless of the reason, because
there is less heterogeneity between Native Americans
and European Americans than there is between Native
Americans and African Americans (Risch et al. 2002),
Native American ancestry is more likely to be identified
by structure as European, resulting in an underesti-
mation of the heterogeneity in individuals with Native
American/Native Alaskan ancestry.

Our algorithm likely performed as well as it did in
part because the major groups into which we classified
ethnicities—AA and EA—are quite genetically dispa-
rate. We also expect our algorithm might work well
with Hispanic American data. Distinguishing more sub-
tle ethnic differences may prove challenging and will
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Figure 4 Comparison of family ancestry estimates calculated from genotype versus self-reported information. The vertical axis represents
the proportion of a family’s EA ancestry estimated by structure. The horizontal axis represents the proportion of a family’s EA ancestry estimated
by our algorithm.

likely depend on how recently the groups of interest
became isolated or admixed. For example, it is possible
that individuals from some Hispanic population can
accurately report the amount of Native American and
European admixture of their ancestors (Bonilla et al.
2004). In this instance, our algorithm should perform
well. However, it is less clear how our algorithm would
perform if we were trying to discern the subtle regional
ethnic subdivisions of the Icelandic population (Hel-
gason et al. 2005). Subjects from this population are
less likely to be aware of these more subtle divisions
and so would likely provide less precise responses to
ethnicity questions that try to capture the ethnic differ-
ences that exist between regions. Additionally, there is
likely to be much less genetic variation between subjects
from the different regions, leading to groups that, even
if respondents report accurately, would be difficult to
distinguish, even with methods such as those employed
by structure (Rosenberg et al. 2002).

There are a number of ways in which our algorithm
could be extended or modified. We could weight off-
spring information on the basis of the number of gen-
erations since the information was initially reported,
where information from more recent generations would
be weighted more heavily than information originating
from more distant generations. This would penalize in-
formation coming from distant relatives—a reasonable
action, given that half the information about an indi-
vidual is lost in each generation.

Recall that, in our algorithm, information about a

father (or mother) provided by his (or her) offspring
would be ignored if the father (or mother) provided
information about his (or her) own parents. One could
argue that the offspring’s information should be used.
This could be accommodated by adding weighted race
vectors of the offspring to the parent’s race vector. How-
ever, we feel that ignoring the offspring’s information
is logical, since, in general, self-reported information has
better reliability than “secondhand” information. Fur-
ther, as noted above, parents report information about
both of their parents, whereas offspring report about
the aggregate of their parents. One scenario in which
this approach would be prudent is when an affected
parent and at least one of his or her unaffected children
complete the DIGS. This would then allow the infor-
mation from the unaffected child to supersede, or at
least contribute, to the possibly less reliable information
from the parent.

We assigned families to AA and EA populations on
the basis of the simple rule that the AA or EA element
of the family ancestry vector must exceed 0.5. If re-
searchers wish to be more discriminating, they could
increase the threshold for being assigned to an ancestral
group to a value 10.5. The decision rule could also
employ a measure of the variance of the family ancestry
vector using a cross-validation–type method.

We chose to calculate a weighted average of the foun-
ders’ classification vectors to determine a family-specific
ancestral group. An alternative to identifying an ances-
try for each family is to determine the most likely pop-
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ulation to which each founder belongs. This would al-
low us to use population allele-frequency estimates that
are appropriate for each founder and, in principle,
would allow an even more accurate calculation of the
pedigree likelihood. However, no widely used linkage
analysis package allows the use of different allele-fre-
quency estimates for a pedigree’s founders.

Our algorithm could also be implemented to estimate
family-averaged phenotypes. This could be useful if an
investigator wishes to separate families on the basis of
some phenotype before performing another type of
analysis. Ordered subset analysis (OSA) (Hauser et al.
2004) is one such analysis. OSA sorts families by a
suspected confounding variable, and a dichotomy in the
evidence for linkage between those with high values of
the variable and those with low values is tested.

In summary, we have developed a simple, practical,
and flexible algorithm that allows researchers to assign
family-specific ancestries when only self-reported eth-
nicity information is available, such as when the DIGS
is used. In addition to including the relationships among
family members, the algorithm can incorporate the con-
fidence the investigator has in the accuracy of the col-
lected information. Further, this algorithm is not re-
stricted to ethnicity data—it can also be applied to any
quantitative or categorical traits.
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Appendix A

DIGS Ethnicity Question

Question: “What is the ethnic background of your
biological parents?”

Interviewer instruction: “Code up to four ethnicities
on maternal and paternal sides, if possible.”

Note that interviewers were directed to ask the ques-
tion as written and to provide explanations and prompt-
ing if necessary. For example, if the respondent replies
“white” or “black,” then the interviewer might say,

“Let’s start with your mother; what is her ethnic back-
ground? What is the ethnic background of her parents?
Do you know the ethnic background of their parents?”
These questions would then be repeated for the paternal
side. Multiple entries of the same ethnicity value within
the mother’s (or father’s) response column implies that
both of the mother’s (or father’s) parents identified them-
selves, at least partially, with this ethnicity.

Response was recorded with the following ethnicities:

01 p Anglo-Saxon
02 p Northern European (e.g., Norwegian)
03 p West European (e.g., French, German)
04 p East European, Slavic
05 p Russian
06 p Mediterranean
07 p Ashkenazi Jew
08 p Sephardic Jew
09 p Hispanic (not Puerto Rican)
10 p Puerto Rican Hispanic
11 p Mexican Hispanic
12 p Asian
13 p Arab
14 p Native American/Alaskan Native
15 p African American
16 p Other, Specify:_______UU p Unknown

MOTHER FATHER
a)_______ e)_______
b)_______ f)_______
c)_______ g)_______
d)_______ h)_______

Web Resources

The URLs for data presented herein are as follows:

Applied Biosystems, http://home.appliedbiosystems.com/ (for
ABI Prism Linkage Mapping set, version 2.5, HD5)

NIMH Schizophrenia Genetics Initiative, http://zork.wustl
.edu/nimh/sz.html
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