
An Algorithm to Estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Man i p u I ato zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr Dynamics Pa ra mete rs 

Pradeep K. Khosla and Takeo Kanade 

CMU-RI-TR-87-7 

Department of Electrical and Computer Engineering 
The Robotics Institute 

Carnegie Mellon University 
Pittsburgh, Pennsylvania 15213 

March 1987 

Copyright zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ 1987 Carnegie Mellon University 

This research is based upon the work supported by the National Science Foundation under Grant 
ECS-8320364. 



1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Contents 

1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction 
2. Properties of Robot Dynamics Model for Parameter Estimation 

2.1. Newton-Euler Formulation 
2.2. Transformation of Inertia Tensor 
2.3. Torque/Force Error Model 
2.4. Example: Cylindrical Robot 

3.1. Off-Line Identification Procedure 
3.2. On-line Identification Procedure 
3.3. Identifiable Parameters 
3.4. Parameter Identifiers 

4.1. Cylindrical Robot 
4.2. CMU Direct-Drive Arm II 

5. Experimental Implementation 
5.1. Obtaining the Joint Acceleration 
5.2. Trajectory Selection 
5.3. Ekperimental Results 

3. Sequential Identification Procedures for an N-DOF Robot 

4. Simulation Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. Conclusion 

1 
2 
2 

5 

6 
7 
9 
9 

10 
10 

11 
13 
13 
13 

15 
15 

18 

18 
21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. .  



iii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
List of Figures 

Figure 1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInput-error structure for parameter identification 

Figure 2: Output-error structure for parameter identification 

Figure 3: Kinematic configuration of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMU Direct-Drive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArm 11 

12 

u 

16 



V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

List of Tables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKinematic and Dynamic Parameters 

Table 2 Simulation Results for the Cylindrical Robot 

Table 3: Simulation Results for the CMU DD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnn I1 

Table 4: Experimental Results for the CMU DD Arm I1 

Table 5: Experimental Results (cont’d) 

Table 6: Experimental Results (cont’d) 

4 

13 

17 

19 

20 

21 



vii 

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This paper presents algorithms for identifying parameters of an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN degrees-of-freedom 

robotic manipulator. First, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe outline the fundamental properties of the Newton-Euler 
formulation of robot dynamics from the view point of parameter identification. We then 
show that the Newton-Euler model, which is nonlinear in the dynamic parameters, can be 
transformed into an equivalent modified model which is linear in dynamic parameters. We 
develop both on-line and off-line parameter estimation procedures. To illustrate our 
approach, we identify the dynamic parameters of the cylindrical robot, and the three 
degree-of-freedom positioning system of the CMU DirecbDrive Arm II. The experimental 
implementation of our algorithm to estimate the dynamics parameters of the six degrees- 
of-freedom CMU DD Arm II is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso presented. 



1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The robot control problem centers around the computation of the actuating 

torques/forces to produce the desired motion of the end-effector. The model-based control 
schemes such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the computed-torque [14] and resolved-acceleration [12] controllers 
accomplish this objective by incorporating the complete dynamic model of the 
manipulator in the control law. Since the fundamental assumption here is that the robot 
dynamics are modeled accurately, precise knowledge of the kinematic and dynamic 
parameters of the robot is required. In practice, it is also necessary to identify on-line the 
mass and inertial characteristics of the payload in order to achieve accurate trajectory 
tracking with varying payload. 

This paper presents an algorithm to estimate the dynamics parameters of a robot from 
the measurements of its inputs (actuating torques/forces) and outputs (joint positions, 
velocities and accelerations). To facilitate the identification procedure, we modify the 
Newton-Euler formulation so that it becomes linear in the dynamic parameters. We 
introduce the torque/force error model for parameter identification based on this modified 
Newton-Euler formulation of the robot dynamics. The torque/force error model is then 
cast into the series (input-error) and parallel (output-error) identifier structures for on-line 
and off-line parameter estimation, respectively. 

Earlier work in identification of robot dynamics concentrated on estimating the mass of 
the payload. Paul [16] presented two techniques with the assumption that the 
manipulator is at rest. His first method used the joint torques/forces, and the second 
method a wrist torque/force sensor. Coiffet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] extended this technique, for a manipulator 
at rest, to estimate also the center-of-mass of the payload. By using special test torques 
and moving only one degree-of-freedom at a time, the moments-of-inertia of the payload 
can also be estimated. Recently, general purpose algorithms to estimate the dynamics 
parameters have been proposed [Q, 15, I]. 

Our general-purpose algorithm is suited for both on-line and off-line applications: in off- 
line identification only one link of the robot is commanded to move for the purpose of 
parameter estimation, whereas in on-line identification the parameters are estimated while 
the robot is in motion performing the task in hand. We can adopt the strategy of 
estimating off-line the dynamics parameters of the robot and then estimating on-line the 
inertial characteristics of the payload. This procedure improves the robustness of the 
estimation, decreases the computational requirements, and adapts to varying payloads. 
We demonstrate our identification algorithm through simulation experiments on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
cylindrical robot, and the positioning system (i.e., the first three degrees-of-freedom) of the 
CMU Direct-Drive Arm II [7]. We have implemented our identification algorithm to 
estimate the dynamics parameters of the six degrees-of-freedom CMU DD Arm II and the 
experimental results are presented in this paper. 
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This paper is organized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows: In section 2, we review the Newton-Euler formulation 

and identify its properties applicable to robot parameter identification. We then derive, in 
section 3, our identification procedures for a general-purpose N degree-of-freedom robot. 
In section 4, we evaluate the performance of our algorithm on the two case study robots. 
The experimental results for the six degrees-of-freedom CMU DD Arm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 are presented in 
section 5 and finally, in section 6, we draw our conclusions. 

2. Properties of Robot Dynamics Model for Parameter Estimation 

Robot dynamics describe the temporal interactions of the joint motions in response to 
the inertial, centrifugal, Coriolis, gravitational, and actuating torques/forces. Robot 
dynamics are highly coupled and nonlinear second-order differential equations. The 
identification problem is to estimate all of the kinematic and dynamic parameters that 
affect the link torques/forces. The Denavit-Hartenberg parameters constitute the 
kinematic parameters, and the link masses, link inertias, and center-of-mass vectors are 
the dynamic parametere. 

Two formulations have been used to model robot dynamics [16,2, 131: closed-form 
Lagrange formulation and recursive Newton-Euler formulation. While the former leads to 
physical insight, the latter is computationally more efficient and suited for real-time 
control applications. We will base our development of parameter identification algorithms 
on the Newton-Euler formulation. We first summarize the 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N) recursive Newton-Euler 
dynamic equations and show that it is nonlinear in the dynamic and kinematic 
parameters. We then show that transforming the classical link inertia tensor (expressed 
about the center of mass of the link) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the link coordinate frame results in a modified 
Newton-Euler formulation which is linear in all dynamic parameters. This modified linear 
formulation is more attaractive from the identification point-of-view. 

2.1. Newton-Euler Formulation 
The Newton-Euler formulation shown in equations (1)-(9) computes the inverse 

dynamics (ie., joint torques/forces from joint positions, velocities, and accelerations) based 
on two sets of recursions: the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAforward and backward recursions. The forward recursions 
(1)-(4) transform the kinematic varables from the base to the end-effector. The initial 
conditions (for i =O)  assume that the manipulator is at rest in the gravitational field. The 
backward recursions (5)-(9) transform the forces and moments from the end-effector to the 
base, and culminate with the calculation of the joint torques/forces. 

AT,I[ wi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zodi+l~ rotational 

wi+l={ A T  r + l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi translational 



3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.. A ~ + ~ [ w ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT '  + zoei+l + wi~(sotji+l)l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArotational 

AL1 ;; translational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wo=wo=vo=o 

;o=bz 9, BJ gravitational acceleration 

Gi*+XSi + wix(w;xs i )  + ;i 

F;=m .;.* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t t  

N i = I i d i  + w i X ( I t u i )  

fi=Ai+lfi+l + Fi 

nj=Ai+lni+l + piXfi + Ni + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeiXFi 

ni T T  (A ieJ rotational 

fj (Ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) translational T T  ..={ (9) 

fN+l: external force at the end-effector. 
nN+l: external moment at the end-effector. 

The computational requirements of the general-purpose and customized recursive 
Newton-Euler algorithms for various types of manipulators, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas manipulators with 
parallel/perpendicular joint axes, spherical wrists, or sparse center-of-mass vectors and 
inertia tensors, have been detailed by Kandae, Khosla and Tanaka [7]. 

From equations (1)-(9), we note the following properties: 

1. The Newton-Euler model is linear in the classical link inertia tensors I j .  

This property follows directly from the backward recursions in equations (5)-(9). The 
joint torque/force 7; in (9) is linear in the moment ni. In the recursion for the moment 
ni in (8), the net moment Nj exerted on link i appears additively. Finally, the moment 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: Kinematic and Dynamic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAParameters 

Total mass of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 

Joint torque/force at joint i 

Angular velocity and acceleration of the i-th coordinate frame 

Linear velocity and acceleration of the i-th courdinate frame zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi 

7. 
a 

wi and wi 

vi and ii 
vi* and ii* Linear velocity and acceleration of the center-of-mass of link i 

Fi and Ni Net force and moment exerted on link i 

fi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni Force and moment exerted on link i by link i-1 

Position of the i-th coordinate frame with respect to the (i-1)-th coordinate p i  
frame: pi=[ai tii Sinai cii cosalT 

Position of the center-of-mass of link i: si=(siz sip s;J T 

l o  =[o 0 1]T 

Ai Orthogonal rotation matrix which transforms a vector in the i-th coordinate 
frame to a coordinate frame which is parallel to the (i-1)-th coordinate frame: 

cosei -cosai sinei Sinai sinei 

A.= a sine; cosa; cose; --Sinai cost$ 

0 Sinai cosa; 

for i=1,2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - ,N, where AN+1 E. 

Classical inertia tensor of link i about the center-of-mass of link i (and parallel 
to the i-th coordinate frame); with principal inertias I;,,, I. and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIizz; and 
cross-inertias IiZz and I;#=. 

Ii 

ml 
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N, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) is linear in the classical link inertia tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;. 

2. For rotational joints, the Newton-Euler model is nonlinear in the center-of-mass 
vectors si. 

From equations (4) and ( S ) ,  the net force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFi  is linear in the center-of-mass vector si. 
The vector cross product s i X F i  in (8) is thereby nonlinear (quadratic) in si. Hence, 
the torque ri for a rotational joint in (9) is nonlinear in the center-of-mass vector si. It 
must be noted that for translational joints the center-of-mass vectors appear linearly, 

3. The Newton-Euler model is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnonlinear in the kinematic parameter vectors pi. 

From equations (3)-(5) and (7), the link force f i  is linear in the vector, p.. The vector 
cross product p . X f i  in (8) is thereby nonlinear in pi .  Hence, the torquefforce ri in (9) 
is nonlinear in the vector, pi .  

4. The dynamic equations of links i+l through N are independent of the mass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi and the 
classical inertia tensor I i  of link i. 

This physically intuitive property is an immediate consequence of the backward 
recursions. 

In summary, the classical link inertia tensors Ii and the link masses mi appear linearly in 
the Newton-Euler dynamics model, but the link masses are multiplied by linear and/or 
quadratic functions of the center-of-mass vectors si and nonlinear functions of the joint 
position variables Bi. In contrast, the Lagrange formulation, which utilizes the pseudo- 
inertia matrices, has been shown to be linear in the dynamic parameters [15]. The pseudo- 
inertia matrices are formed by first expressing the classical inertia tensors about the link 
coordinate frames and then combining their elements linearly. We thus infer that if the 
Newton-Euler model in equations (1)-(9) is reformulated such that the link inertia tensors 
are expressed about the link coordinate frames instead of the link center-of-mass 
coordinate frame, the modified Newton-Euler formulation will be also linear in the center 
of the mass vectors si. 

2.2. Transformation of Inertia Tensor 
Let Ci=(z4 Y;,:~) be a DenavitHartenberg coordinate frame for link i and let 

Ci zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (zi*, yi , zi ) be a coordinate frame which is fixed at the center-of-mass of link i and 
whose axes are parallel with those of Ci. From the definition, si is the translational vector 
from the origin of the link coordinate frame Ci to to the origin of the center-of-the-mass 
coordinate frame Ci . 

* 

If I. is the classical link inertia tensor about the center-of-mass of link i, the 
corresponding inertia tensor I ’ i  about the link i coordinate frame Ci is computed 

a 
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according to the parallel-axis theorem or Steiner's law: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'.=Ii+mi(si t eiE-sisi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 

where E is the 3 X3 identity matrix. This transformation of the inertia tensor includes the 
quadratic terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB ~ .  When we substitute this in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6)  in the Newton-Euler 
formulation, the quadratic terms from s,XF, in (8) are absorbed in the transformation, 
thus resulting in the modified Newton-Euler dynamic formulation which is linear in 
center-of-mass vectors [9,8]. 

Properties 1 and 2 together with this transformation lay the foundation for our 
identification algorithms, and Property 4 will be used to derive our off-line identification 
algorithm. 

2.3. Torque/Force Error Model 
In general, identification of all the link masses, dynamics parameters and the kinematic 

parameters is a problem of nonlinear estimation. If we assume that we have nominal 
values of those parameters, say from engineering drawings, we can linearize the 
torque/force equation of each link about the nominal values of the kinematic and dynamic 
parameters to obtain the torque/force error model [15]: 

where 7, is the applied torque/force to link i, T: is the value of the torque/force, as 
computed by an inverse dynamics model using the nominal values [13], E,  is the input 
torque/force error of link i, A$, is the correction vector of unknown parameters that 
affect the torque/force of link i, and 4; is the nonlinear vector function of the kinematic 
and dynamic parameters and the output measurements (joint positions, velocities and 
accelerations). The torque/force error model in equation (11) relates the error 
torque/force of link i to corresponding modeling inaccuracies in the kinematic and 
dynamic parameters. 

If we know the kinematic parameters (e.g., by measuring them) and the Newton-Euler 
model is transformed according to equation (lo), then identification of the remaining 
dynamic parameters is a problem of linear estimation. The subject of estimating the 
kinematic parameters has been the focus of much research, and many algorithms have 
been proposed [17,3,6,18]. In the sequel, we will assume that the kinematic parameters 
of the manipulator are known and the problem is one of estimating the dynamics 
parameters. Consequently, in (11) is a function of only the known kinematic 
parameters and robot output measurements. Equation (11) is thus a linear equation with 
pi unknowns, ie., pi=dim(A$;). Because of the property 4, in section 2.3, we can step 
sequentially through the links, from the tip to thc base, and identify the dynamic 
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parameters that affect the link torques/forces of each link. It must be noted, however, 
that all the parameters may not be always identifiable, nor need be identified. That is, the 
number of independent dynamic parameters is less than or equal to the total number of 
dynamic parameters of a robot. This is explained in greater detail in section 3.3. 

2.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExample: Cylindrical Robot 
We will illustrate the approach presented so far by using a three degrees-of-freedom 

cylindrical robot. We first develop its Newton-Euler dynamics model. After observing its 
properties, we apply the transformation of inertia tensor to obtain the equivalent modified 
Newton-Euler model. Finally the torque/force error model is developed. 

The cylindrical robot consists of three degrees-of-freedom: a rotation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 a vertical 
translation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, and a radial translation d3. The DenavitcHartenberg parameters of the 
cylindrical robot are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!' 

Link e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa a d 
~~ 

O0 0 0 
-goo 0 d2 

O0 0 d3 

1 el 
2 0 
3 0 

The coordinate vector of the cylindrical robot is thus q=[e, d ,  df. We assume that the 
classical link inertias of the three l i s  are diagonal and that only the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaI2, a2y and 832 

components of the center-of-mass vectors are non-zero. These assumptions do not suffer 
from any loss of generdity, and the cylindrical robot preserves all of the inherent coupling 
and nonlinear characteristics of robot dynamics. 

We expand the Newton-Euler recursions (1)-(9) to obtain the complete dynamics model 
of the cylindrical robot: 

r3 = m3d3-m3(s3z+d3)t3 ' 2  

We observe that equations (12)-(14) are linear in the classical link inertia tensor 

in (14). Also the dynamic parameters of link i do not affect the torques/forces of links z + 1  

components, but nonlinear in the link center-of-mass vectors due to the presence of m3s3z 2 
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through 3. 

Now the nonlinear transform in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(10) for this cylindrical robot is given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I2yy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I2vy 

Upon substituting (15)-(17) into (12)-(14), we obtain the modified dynamics model: 

.. 
r3 = m3d3-m3(s3t+d3)t2 

We note that the nonlinearity m3a3; in (14) has been absorbed by the transformation 
(15), and that I and lltt are retained. From this observation, we understand that once 
the nonlinearities associated with link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi are identified in the dynamics model, we may 
proceed to transform the inertias of only link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. 

,2w 

Now the torque/force error models for the cylindrical robot are given by: 

In the above model the number of independent dynamic parameters are, p3=2 ( m 3 ~ 3 2  and 
m3: unknown), p2=1 (ma: unknown), and p l = l  (because we can only identify the sum of 
the three inertias in (23), and the product m3~3z and m3 have already been identified in 
(21) ) .  We measure the input torque/force to link i and the position, velocity and 
acceleration of link i at N sampling instants (where N > pi), compute the nominal values 
of 7: (according to the inverse dynamics model in (18)-(20)), and apply the linear least- 
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squares algorithm to estimate the dynamic parameters of link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Sequential Identification Procedures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor an N-DOF Robot 

In this section, we present the identification procedures for an N degree-of-freedom 
robot. We use the property 4 of the Newton-Euler formulation to simplify the derivation 
of the torque/force equations for the N links of the manipulator. We treat the parameter 
identification problem sequentially, starting from link N (the tip) and proceeding to link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
(the base), and estimate the dynamic parameters of each link individually. The identified 
dynamic parameters of link i become known parameters in the torque/force equation of 
link i-1. This sequential procedure reduces the number of dynamic parameters which 
must be estimated from the torque/force error model of each link, and thus results in a 
robust identfication procedure. 

The identification of the dynamics parameters can be accomplished either off-line or on- 
line. In the off-line procedure, we collect all the input-output data prior to analysis and 
do not impose any limits on the computation time. In contrast, the on-line procedure deals 
with real-time updates of the parameters during robot operation and issue of 
computational requirements for estimation becomes important. In the following 
paragraphs, we present both the off-line and the on-line techniques for manipulator 
parameter estimation. 

3.1. Off-Line Identification Procedure 
Since the dynamic parameters of the all the links except the payload are constant, we 

can estimate these parameters off-line. If we lock the first i-1 joints mechanically (to set 
the velocities and accelerations of joints one through i-1 to zero), we reduce dramatically 
the complexity of the torque/force error model of link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. This simplification can only be 
achieved in off-line estimation. The following steps outline the off-line identification 
procedure for an N degree-of-freedom robot: 

1. Expand the Newton-Euler recursive equations to obtain the closed-form link 
torques/forces equations of the manipulator. In deriving the torque/force equation for 
link i, set the velocities and accelerations of links 1 through i-1 to zero. 

2. Convert the Newton-Euler model into the modified (linear in dynamic parameters) 
Newton-Euler model, by applying the transformation (10) which transforms the 
classsical inertias about the center-of-mass of link i to inertias about the i-th link 
frame. 

3. Generate the torque/force error model (11) by incorporating the nominal values of the 
dynamic parameters to be estimated. 

4. Calculate all of the Newton-Euler dynamic parameters in the torque/force error model 
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that affect the torque/force of link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. Since the dynamic parameters affecting the 
torques/forces of links i+l through N have already been identified, these dynamic 
parameters are known numerical quantities when working with link i. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.2. On-line Identification Procedure 
The on-line identification procedure for an N degree-of-freedom robot parallels steps 1 

through 4 above, but in deriving the torque/force equations in Step 1 we allow positions, 
velocities and accelerations of l i s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi-1 through 1 'to respond to the actuating 
torques/forces instead of setting them to zero. 

3.3. Identifiable Parameters 
Each link of a robot is characterized by a maximium of ten dynamic parameters: the 

link mass, the six classical inertias and the three elements of the center-of-mass vector. In 
practice, only a fraction of the ten parameters of link i and a fraction of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlO(N-i) 
dynamic parameters of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlinks i+l through N affect the torque/force ri of link i. We 
emphasize that we can only estimate (and need to estimate) the dynamic parameters that 
actually affect the joint torques/forces. For example, the 13== classical momentof-inertia 
parameter of the cylindrical robot does not affect the dynamic robot model in (12)-(14) 
and hence cannot be identified. 

The estimation of the classicd inertias may not be unique and only their linear 
combinations may be identified. For example, equation (23) allows us to estimate only the 
sum 1'1zz+I'2w+I' of the link inertias. Such an estimate is sufficient for computing 
the closed-form inverse dynamics in (18)-(20). If, however, the inverse dynamics are 
implemented by the original recursive Newton-Euler formulation in (1)-(9), the numerical 
values of all of the classical link inertias are required. For this purpose, we can set the 
values of first two of the three classical link inertias to zero, and set the third to the value 
of the estimated sum. Even though this particular assignment of numerical values may 
not have physical significance, it does lead to the arithmetically-correct computation of 
the torque/force. 

3w 

The closed-form dynamic model of a six degree-of-freedom robot is in general very 
complex, and the corresponding torque/force error model for on-line estimation of all the 
robot parameters including payload characteristics is of comparable complexity. To 
facilitate the estimation process, a viable strategy is to identify the parameters of all the 
links first by the off-line procedure and to estimate on-line the mass and the inertial 
charateristics of the payload. This strategy requires the real-time identification of only 
the last link of the robot. Our identification algorithm is directly amenable to the real- 
time identification of the payload characteristics for dynamic feedback control. 
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3.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAParameter Identifiers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In sections 5.1 and 5.2, we have developed the torquelforce error models. We now need 
to cast these models into parameter identifier structures. A parameter identifier consists 
of three components: the system to be identified, a postulated model, and an adaptation 
algorithm which updates the model based upon an error criterion. In our case, the system 
is the physical robot and the model is the Newton-Euler inverse arm dynamics model. The 
inputs to the robot are the joint torques/forces and the outputs are the joint positions, 
velocities, and accelerations. The input-error structure for identification is shown in 
Figure wherein the outputs of the robot are fed to the inverse arm dynamics model which 
computes the joint forques/forces. The error signal, which is the difference between the 
applied and the computed torques, drives the estimation algorithm. 

Often times it is desired to evaluate the robustness of the estimation algorithms through 
simulation studies before the experimental implementation. Although the input-error 
structure can be used for these practical studies, its implementation is computation 
intensive due to the forward arm simulation. We thus introduce the output-error 
structure, depicted in Figure 1, for simulation studies. In this structure the difference 
between the output torques/forces of the system and the model is the error signal which 
drives the identification algorithm. Since the error signal (which is the difference between 
the system and the model torques/forces) is identical in both the input-error and output- 
error identifier structures they accommodate identical estimation algorithms. This is a 
practical advantage because the applicability and performance of an on-line estimation 
algorithm can be evaluated through off-line simulation studies. 
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FORWARD 

ARM 

(SYSTEM) 

T ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- 

INVERSE 

3 ARM 

(MODEL) 

q ( t ) , q ( t ) . q ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1: Inputerror structure for parameter identification 

ADAPTATION 

ALGORITHMS 

T o (  t )  

ADAPTATION 

ALGORITHMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 

Figure 2: Output-error structure for parameter identification 
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4. Simulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We have performed simulation experiments for identifying the dynamic parameters of 

the cylindrical robot and the three degrees-of-freedom CMU DD Arm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. We commanded 
each joint to move in a sinusoidal trajectory, begining from the rest position to a ninety 
degree position and returning in one second. We sampled the trajectory at 20-ms intervals 
and used the first half of the trajectory (or 25 sample points) in our identification 
experiments. One data point consists of the measurements of the applied torque/force and 
the position, velocity and acceleration of a link. Since we estimate only the dynamics 
parameters, the problem is linear and we have applied the least-squares algorithm under 
the assumption that the input-output measurements were noise-free. This assumption is 
justified practically by the current availability of high resolution resolvers (16 
bits/revolution) and tachometers [7]. 

4.1. Cylindrical Robot 
We 

implemented the least-squares algorithms for the torque/force error model in equation (20) 

of the third link using the 25 data sets and identified the z-component of the center-of- 
mass vector of the third link g3*. We then identified the sum of the link inertias from the 
torque/force error model of the first link by again using the 25 data sets along the 
trajectory. The estimated values match exactly the true values. 

In Table 2, we summarize our simulation results for the cylindrical robot. 

Table 2: Simulation Results for the Cylindrical Robot 

(Dimensions) Value Value Value 
Link Dynamic Parameter Initial True Estimated 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm3s3= (4 0.27 1.25 1.249 

m3 (kg) 0.9 2.5 2.499 

2 m2 (kg) 2.1 5.0 5.000 

1 2.0 2.5 2.5 

4.2. CMU Direct-Drive Arm 11 
Throughout this 

experiment, we assume that the Denavit-Hartenberg or the kinematic parameters of the 
CMU DD Arm II are known. 

The configuration of the CMU DD Arm II is shown in Figure 2. 
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The torque/force error model of the 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADOF positioning system of the CMU DD Arm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 is 

described the following equations: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi=cosBi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi=sinBi. 

From these equations, we observe that: 

0 The torque of the third link is affected by all the elements of the inertia matrix and 
and s3%, of the center-of-mass vector. However, we can also by the two elements, s 

only identify seven of the eight 3.2 parameters in (24) because the inertia elements 13zz 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13=% occur as a linear combination. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 The torque of link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 is affected by two inertia elements and the mass of the third link, 
one inertia element and the mass of the second link, two elements of the center-of-mass 
vector of the second link and one element of the center-of-mass vector of the third link. 
All these parameters occur independently and can be uniquely identified. Note that 
we could identify only the linear combination 13,2-13,, from the torque/force error 
model of the third link whereas we can identify 13z2 and 13%% independently from the 
torque/force error model of the second link. 

0 The torque of the fiist link is affected by three independent dynamic parameters, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIlzz 
m1 and sl=, which can be identified uniquely. 

In summary, for the three degree-of-freedom positioning system of the CMU DD Arm II, 
we can identify seventeen of the twenty-seven unknown dynamic parameters. 

The results of our simulation experiments for the CMU DD Arm II are summarized in 
Table 3. We used the 25 data sets to identify successfully the dynamic parameters which 
affect the torques/forces of each of the three links. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Experimental Implementation 

Experimental implementation of the identification algorithm requires the knowledge of 
the applied joint torques and the measured joint positions, velocities and accelerations. 
Each joint of the DD Arm II is instrumented to measure the position and the velocity. The 
applied joint torques are assumed to be the same as the torques computed from the control 
law. This assumption is valid because we use current controlled servo motors and has also 

been verified by experimentation [8]. Further, the joint acceleration is obtained by 
differentiating the measured velocity. 

6.1. Obtaining the Joint Acceleration 
The operation of obtaining the derivative of a set of data is inherently noisy because the 

differentiator essentially behaves like a high pass-filter. And this effect is further 
accentuated if the measured data is known to have some noise. In such a circumstance a 
commonly used method is to low-pass fdter the measured data and then differentiate the 
resultant signal. This procedure serves to reduce the noise in the differentiated signal at 
the cost of incorporating a phase shift and hence the loss of fidelity, 

Another method involves using the principle of leastcsquares for solving the problem of 
differentiation 111). In this method, the differentiating filter is designed by fitting a 
second-order parabola to five conseqeutive points with the assumption that the derivative 
does not change much during the period of the observations. This assumption is especially 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Kinematic configuration of the CMU Direct-Drive Arm 11 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Simulation Results for the CMU DD Arm 11 

Initial Value True Value* Estimated Value Link Parameter 
(Dimensions) 

3 13zz (kg-m2) 0.0 0.1 0.1 

13w (kg-m2) 0.0 0.2 0.1999 

13yz (kg-m2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0 0.15 0.15 

13zy (kg-m2) 0.0 0.15 0.15 

'32~-'3=z (kg-m2) 0.0 0.1 0.1 

m3s3= (4 0.0 0.49 0.4898 

0.7 0.7002 m383z (m) 0.0 

0.3 

0.05 

0.1 

0.4 

0.0 

0.2 

4.0 

2.0 

0.5 

0.2 

0.3 

1.1 

0.55 

0.525 

5.5 

3.5 

0.4999 

0.2001 

0.3001 

1.1 

0.55 

0.5251 

5.4999 

3.501 

1 'I, <kg-m2) 1.0 1.3 1.2999 

"1SlZ (4 0.00 2.7 2.7013 

ml (kg) 10.0 13.5 13.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(*) These values are hypothetical figures for simulation, and do not 
correspond to those of the real CMU DD Arm II. 
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true since we sample the position and the velocity of the joints every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ms. As the five 
data points, in general, cannot be guaranteed to lie on a second-order curve, we obtain the 
coefficients of the parabola by using the principle of leastsquares. The resulting filter is 
described by the following difference equation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-2f(z-2T)-f(z-q+f(z+T)+2f(z+2q 
f(4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10T 

where the symbol ’ denotes the derivative and T i s  the sampling period in seconds. The 
above filter obtains the derivative of the function f(z) at the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz by using the two 
immediate neighbors on both sides and thus represents a noncausal operation for real-time 
implementation. However, if we are able to tolerate a delay of two sampliig periods then 
the filter can be made causal by shifting the data by two sampling instants to obtain: 

-2f (~-4T)- f (~-3T)+f(z-T)+2f(z)  
10T f(z-22.9 = 

In the off-line implementation of our identification algorithm, the noncausal nature of the 
filter presents no problem as all the data is known in advance. In order to obtain the joint 
acceleration from the measured joint velocity, we experimented with many methods of 
implementing differentiating filters and found the filter designed on the basis of the 
principle of least-squares to possess superior noise rejection properties. Consequently, we 
used this differentiating fdter to estimate the the acceleration of the joints. 

5.2. Trqjectory Selection 
One of the important constituents of identification is the selection of input trajectories 

for exciting the system. The input trajectory must be such that it allows complete 
identification of the system. Such a trajectory is known as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApersistently ezciting 
trajectory [SI. Choosing a persistently exciting trajectory is sufficiently complex and has 
not been addressed in this research. However, a method to determine if a chosen 
trajectory is persistently exciting is presented by Khosla [8]. In the experimental 
implementation, we used this method to ensure that the trajectories chosen for 
identification of the dynamics parameters were persistently exciting. 

5.3. Experimental Results 
We have implemented our identification algorithm together with the differentiating 

filter and obtained the estimates of the dynamics parameters of the CMU Direct-Drive 
Arm II. The modeled values of the dynamics parameters were chosen to be the initial 
estimates and the data of a sample trajectory run recorded. We then estimated the 
dynamics parameters based on our algorithm, and these are depicted in Tables 4,5, and 6. 

The identification experiments were performed with two different persistently exciting 
trajectories and two sets of initial values for the modeled dynamics parameters. In all the 
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Table 4: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExperimental Results for the CMU DD Arm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII 

Link Parameter Initial Value Estimated Value 
(Dimensions) 

0.000426 

0.0 

0.0 

0.000421 

0.0 

0.000047 

0.0 

0.0 

0.002199 

0.269 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~- 

0.002092 

0.00001 1 

0.000022 

0.001979 

0.000010 

0.000310 

-0.000090 

-0.000187 

0.008709 

0.90018 

0.002018 

0.0 

0.0 

0.00 1049 

-0.000092 

0.001 396 

0.0 

0.005130 

-0.016784 

2.817 

~ ~~ 

0.002602 

0.000302 

-0.000108 

0.001349 

-0.000070 

0.001211 

0.000981 

0.006744 

-0.019689 

3.0895 
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Table 5: Experimental Results for the CMU DD Arm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 (contd.) 

Link Parameter Initial Value Estimated Value 
(Dimensions) 

0.023775 

0.0 

0.0 

0.004055 

0.003083 

0.021652 

0.0 

0.134764 

0.043011 

0.030765 

-0.00100 

0.000302 

0.003655 

0.004207 

0.029002 

-0.002402 

0.160372 

0.081462 

0.014622 

0.0 

0.0 

0.006615 

0.001269 

0.012432 

0.0 

-0.039703 

-0.012487 

2.801 

0.015192 

0.000726 

0.000 109 

0.006209 

0.001872 

0.01 4080 

0.015242 

-0.132251 

-0.040521 

2.92106 
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Table 6: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExperimental Results for the CMU DD Arm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII (contd.) 

Link Parameter Initial Value Estimated Value 
(Dimensions) 

2 0.264736 

-1.039971 

0.008722 

7.894 

0.322156 

-1.156482 

0.008234 

8.2501 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIlZ* (kg-m2) 1.193645 1.270784 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mp12 (4 -5.925900 -6.478305 

m1 (kg) 19.753000 20.152630 

four experiments, the estimated values of the dynamics parameters were found to be 
within 5% of the values depicted in Tables 4 through 6. This variation is practically 
negligible and may be attributed to the noise in the measurements which tends to bias the 
estimates, and also to the errors in the kinematic parameters which also have a similar 
effect. 

6. Conclusion 
In this paper, we have addressed the problem of robot dynamics parameter identification 

and applied our algorithm to experimentally determine the dynamics parameters of CMU 
Direct-Drive Arm II. Since the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMU DD Arm II has negligible friction it was not modeled 
in the estimation algorithm. However, this may not be the case in non-direct drive 
manipulators and the friction would have to be modeled. If the friction is modeled as a 
linear function of the joint velocity then the estimation problem will still be linear. In 
practice the linear approximation may be inadequate and the friction might have to be 
modeled as a nonlinear function. In such a case the estimation problem becomes nonlinear 
and more complicated. 

In deriving our estimation algorithm we noted that some dynamic parameters do not 
appear in the joint torque/force equations and others appear in linear comibinations. Since 
we don’t sense the full torque/force vector at each joints, we can identify only those 
parameters which affect the joint torque/force. Based on this observation, we classify the 
parameters in three categories: those that can be uniquely identified, those that can be 
identified only in linear combinations, and those which cannot be identified. It is 
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imperative that the parameters that can be identified only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas linear combinations be 
singled out and this knowledge be incorporated in the identification procedure, so that the 
numerical procedure, such as the least-square error, to compute the parameter values, 
becomes stable and robust. Incorporating this knowledge in the inverse dynamics 
formulation also reduces its computational requirements. A systematic procedure for the 
parameter categorization is further developed by Khosla and Kanade zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[lo, 81. 
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