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Abstract—To apply fuzzy logic, two major tasks need to be
performed: the derivation of production rules and the determina-
tion of membership functions. These tasks are often difficult and
time consuming. This paper presents an algorithmic method for
generating membership functions and fuzzy production rules; the
method includes an entropy minimization for screening analog
values. Membership functions are derived by partitioning the
variables into the desired number of fuzzy terms and production
rules are obtained from minimum entropy clustering decisions. In
the rule derivation process, rule weights are also calculated. This
algorithmic approach alleviates many problems in the application
of fuzzy logic to binary classification.

Index Terms—Algorithms, clustering, entropy, fuzzy logic, in-
ference.

I. INTRODUCTION

FUZZY logic has been applied with reasonable success
to many control problems for which only conventional

control methods had previously been utilized. In such control
problems, the value of fuzzy logic is that vague meanings
and relationships, expressed in ordinary language, can be
effectively formulated. The fuzzy inference procedure includes
the translation of an analog value into membership grades,
which are defined by the membership function of fuzzy terms.

Although fuzzy logic theory was introduced in the 1960’s,
its application to industrial control emerged in the early 1970’s
with a procedure for the control of a steam engine [1];
since then, fuzzy logic has been applied in other control
areas. Currently, fuzzy logic is involved in many industrial
and commercial applications, even in home appliances. To
apply fuzzy logic, we must define fuzzy production rules,
fuzzy terms, and membership functions. It is often difficult
and time-consuming to derive these rules and membership
functions. By devising an automatic procedure for deriving
membership functions and production rules, therefore, we
can make fuzzy logic applications much easier to produce.
Advanced applications (such as learning fuzzy control) need
an adaptive method of representing fuzzy knowledge, so
an attempt to automate fuzzy logic applications is a timely
response to an important subject.

An estimation model for fuzzy membership functions was
introduced using fuzzy ensemble membership apportionment
learning estimators [2]. However, this model estimates only
membership functions and does not produce fuzzy rules.
Recently, a “table-lookup” scheme for fuzzy rule generation
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for numerical input–output pairs was suggested [3]. This
scheme, which aims to extract a rule for each input–output
pair, however, determines the partitions of the domain interval
and membership functions in anad hoc manner. Artificial
intelligence (AI) and neural network techniques have also been
applied to extract fuzzy rules from numerical data, however,
they require that the number of divisions in the input variable
be defined in advance [4].

Clearly, an automatic process which can generate both
membership functions and production rules directly from
experienced sample data would be of considerably more value.
The primary objective of this paper is to develop an algorithm
which is capable of automating fuzzy logic applications in
binary classification and decision-making problems. Using
an algorithmic approach that utilizes the concept of entropy
minimization, membership functions are generated and, based
upon them, fuzzy production rules and rule weights can be
determined. The rule weight devised in this paper, unlike
the “relative weight” used for medicine and biology [5], is
assigned by an algorithmic process.

II. A LGORITHMIC APPLICATION OF FUZZY LOGIC

In fuzzy logic applications, membership functions, usu-
ally of triangular or trapezoidal shape, have typically been
determined by human experts. Accordingly, experience and
common sense are the two leading guidelines for determining
the membership functions. Similarly, fuzzy production rules
have been devised from expert opinion. The fundamental
problem with this approach is that the production rules derived
by the expert using experience and common sense are not
always the most suitable ones for an automatic controller.
Furthermore, there is no way to assess whether or not a
rule correctly and optimally represents most of the experi-
enced sample data. We propose to develop an algorithmic
approach which, without human intervention, can be uti-
lized universally for fuzzy logic applications in classification
problem. Guided by a theorem of maximum information
extraction, this algorithmic approach generates membership
functions and fuzzy production rules from experienced sample
data.

The automation of membership function derivation can
be considered as an attempt to draw a structuredlinguistic
variable in which the fuzzy terms and their meanings can be
characterized by an algorithm. One of the basic tools for fuzzy
logic is the linguistic variable, i.e., a variable whose values
are not numbers, but words in a natural or artificial language
[6]. A linguistic variable is characterized by a quintuple

where
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name of the variable, its “label,” or sometimes its
value ;
term set of ; that is, the set of names in;
range of ;
a syntactic rule for generating, the values of ;
a semantic rule for associating each with its
meaning.

A particular (that is, a name generated by) is called a
term. For example, if a linguistic variableis defined with the
label “age” in , then the terms of this linguistic
variable, generated by the rule , could be called “old,”
“middle,” “young,” and so on. Therefore, defines the term
set of the variable with age old, middle, young.

is the rule that assigns meanings to these terms. A
linguistic variable is calledstructuredif the term set
and the meaning can be characterized algorithmically.
For a structured variable, and can be regarded
as algorithms, which generates the terms and the meanings
associated with them.

The above description of a linguistic variable can be
rephrased as follows: determines the fuzzy terms from
a variable and determines the membership functions of
the fuzzy terms. Once the number of fuzzy terms is decided,
the only unknown item in the linguistic variable is the rule

. The algorithmic approach in this paper will decide the
rule for membership function formation; in a theoretical sense,
therefore, this paper attempts to draw a structured linguistic
variable.

In industrial control application of fuzzy logic, a set of terms
drawn from linguistic variables have been used to describe
the states of the process. In particular, the error value and the
change in error value are quantized into a number of points
covering the range in and the values are then assigned as
grades of membership in seven subsets [7], [8]. The following
seven-term set seems to be an industry standard for fuzzy
logic applications: positive big (PB); positive medium (PM);
positive small (PS); zero (ZE); negative small (NS); negative
medium (NM); and negative big (NB). Therefore, if we devise
an algorithm for assigning membership grades to the standard
terms, we can apply our scheme to any application area of
fuzzy logic. In addition, this approach provides an automatic
mechanism for generating fuzzy production rules from the
term set and the meaning .

III. ENTROPY PRINCIPLE IN CLASSIFICATION

The main idea behind the automatic generation of member-
ship functions and production rules is the concept of analog
value screening. Using the entropy principle, the analog values
of a parameter in the sample data can be clustered. Optimal
division of the analog space will yield fuzzy terms for each
parameter; the partition point (the entropy minimum point) will
decide the range of the membership functions. Using the same
screening method, but with binary parameter values, fuzzy
production rules can be drawn. Because the rule extraction
process is performed over each individual fuzzy term, the final
production rule will consist of the integration of independent
rules.

We first discuss the entropy concept relative to the clas-
sification of two-class (“true” and “false”) samples. When
we look at the samples in the “true” class, for example, we
try to discover what it is that makes them “true.” In other
words, we try to find similarities among the parameters for
“true” cases, which distinguish them from samples which
are “false.” This means that we try to find attributes or
groups of attributes possessed by “true” samples and not by
“false” samples. These attributes or groups of attributes then
become part of the boundary separating the “true” samples
from the “false” samples. To optimally separate “true” and
“false” samples, we usually use a measure of information.
The quantity of information gain or loss is a basic element for
entropy calculation for analog screening.

The main purpose of entropy minimization analysis in infor-
mation theory is to determine the gain or loss of information
in a given data set. This information quantity compares the
contents of available data to some prior state of expectation.
The higher one’s prior estimate of the probability for an
outcome, the lower the information gained by observing its
occurrence. In general, on the basis of what we already know,
the more probable the event is, the lesser the information
content is if and when the event occurs. In other words, when
information gain is minimized, we reach (at an optimal point)
for predicting the occurrence. A quantity of information is
defined as proportional to the negative of the logarithm of
probability [9].

If we assume that the probability that theth sample is
true is and if we actually observe the sample in the
future and discover that it is true, then we gain the following
information:

If we discover that it is false, on the other hand, we still gain
the following information:

Entropy is defined as the expected value of information. The
entropy of a set of possible outcomes of a trial in which one
and only one outcome is true is expressed as the summation of
the products of all probabilities and their logarithms. Thus, the
expected value of the information to be gained by observing

can be expressed as follows (with ):

The entropy of all the samples is expressed by

(1)

This entropy is smallest when the amount of information
that we can expect to gain from further observation is least.
Therefore, given all available information, it is possible to
cluster using the minimum entropy principle. In entropy min-
imum state, all of the information has been extracted from
the available sample data. This observation is very important
to the algorithmic approach: when samples are the only
source of information, maximum extraction of information is
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Fig. 1. Illustration of threshold value calculation.

essential for an automated process. Therefore, in classification
problems, the entropy principle is a useful tool for optimal
clustering. In the next section, we will discuss the basis for
this algorithmic approach, viz., analog screening.

IV. A NALOG SCREENING WITH ENTROPY PRINCIPLE

The clustering point in samples is called a threshold value
between classes. If we divide once-clustered samples, again
using the same entropy principle, we can subcluster the
samples. The thresholds optimally divide the sample space;
the divided regions will yield the fuzzy terms. Membership
functions are shaped from the thresholds. To draw fuzzy
production rules, minimum entropy clustering with changes
in the entropy equation can be applied. To begin, we consider
the entropy equation for sample clustering.

Assume that we are seeking a threshold value for samples
in the range to for a two-class problem (see Fig. 1).
By moving an imaginary threshold valuebetween and

we can calculate the entropy for each value offor
region and region , which is [10]

(2)

where

fraction of all samples in the region;
fraction of all samples in the region;

.

Entropies of the and regions and can be
expressed by [cf. (1)]

(3)

(4)

where

probability that the Class sample is in the region;
corresponding conditional probability for the region.

We calculate the entropies of (3) and (4) using relatively
unbiased estimates of , , , and . The
relatively unbiased estimates for and are

(5)

(6)

where

number of Class samples located in the region;
total number of samples located in the region;
total number of samples in theand regions.

The variables and area priori weights; both are set to
one, which permits the simplification

(7)

(8)

Equations for and can be derived similarly. Using
the estimates and the entropy equation, we calculate the
entropy for each value of . A value of whose entropy is
the minimum, is the optimal threshold
value in the range of .

Along with the entropy calculation, there is the problem
of assigning a probability in cases where only one digit (or
variable) has been observed “true” onof occasions. What
makes it difficult to assign a probability is the feeling that what
is observed is more likely than what is not and that what is
observed more often is more likely than what is observed less
often. This probability can be expressed as

As becomes larger and larger, comes closer and closer
to . But it is not clear in what sense is approaching a
limit, which we presume to exist and call. In such cases,
it is possible to use the mean probability to represent .
Mean probability in the class separation is defined by [10]

(9)

where

number of distinguishable “true” states;
number of distinguishable “false” states.

This mean probability when there are only two classes
and becomes

(10)

The mean probability is used in the entropy equation for
production rule derivation and in rule weight calculation.
The process for the analog screening of threshold values for
membership functions and the production rule derivation will
be explored in detail in the next section.

V. MEMBERSHIP FUNCTION AND

PRODUCTION RULE GENERATION

A. Membership Function Generation

Using the entropy equations (3) and (4) with the estimates
given by (7) and (8), we calculate the entropy for all the’s.
The value of , which yields the minimum entropy, is taken to
be the threshold value of the two partitions. We call this
the first threshold and indicate by . This threshold value
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is calculated in the range of and . If we replace the
variables and by and , respectively, then
we can indicate by . With only one
threshold value, there can be two nonoverlapping fuzzy terms
with rectangular-shaped membership functions [see Fig. 2(a)]

NG (negative)

PO (positive)

We can draw another threshold line to subdivide each side
more precisely. Using the same procedure for entropy calcu-
lation, we can compute secondary threshold values from the
positive and negative sides (as shown below)

Assuming trapezoid shapes at the both ends with threshold
values calculated above, we now have three terms: PO, ZE
(zero), and NG [see Fig. 2(b)]

NG

ZE

PO

To generate the seven fuzzy terms (the final partition), we need
one more level of thresholds. We can calculate four tertiary
threshold values; each of them separates the three terms more
precisely. The third level threshold values are

Again, assuming trapezoidal shapes at both ends, we have a to-
tal of seven membership functions arrived at by mechanically
connecting the threshold positions, as shown in Fig. 2(c). We
label them (from the left) NB, NM, NS, ZE, PS, PM, and PB.
These relationships, up to the fourth level, are illustrated in
Fig. 3.

Therefore, up to the fourth level we can draw the following
general threshold formula for theth threshold in the th level

. For :

• if ;
• if ;
• otherwise, , where

.

For , with :

• if ;
• if ;
• otherwise, , where

.

Also, we may draw the following relationship between the
threshold level and the number of fuzzy terms (and member-
ship functions):

(11)

(a)

(b)

(c)

Fig. 2. Repeated partitions and corresponding fuzzy terms. (a) The first
partition. (b) The second partition. (c) The third partition.

(a)

(b)

Fig. 3. Illustration of membership functions when two threshold values are
identical. (a)X11 = X32 case. (b)X11 = X33 case.

where

number of fuzzy terms;
threshold level (primary, secondary, tertiary, etc.).

To generate the “universal” seven fuzzy terms, we always go
down to the third threshold level. However, for well-separated
samples, three levels of threshold calculation may cause an
over partition of the sample space. With our algorithmic
generation of membership functions, it is possible for two
thresholds to share the same value. In this case, samples are
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Fig. 4. Flow chart for production rule derivation.

well classified with the primary and secondary thresholds alone
and further clustering is redundant for separation purposes.
However, this situation does not cause a problem, as illustrated
in Fig. 4. The fuzzy membership functions are drawn as
before, but with a slight change in their shape. The thick lines
in Fig. 4(a) cover NS and ZE in the case of and,
in Fig. 4(b), ZE and PS for .

These membership functions are not realistic and must
be interpreted with care. In other words, the membership
functions do not give a true picture of the real situation. ZE,
for instance, does not correspond to the true zero value of the
input; reality and expert opinion are totally ignored for the
determination of the membership functions. This artificiality,
however, does not lead to any problem for rule generation
or inference. In reality, membership functions are meaningful
only when they accurately represent the sample data from
which the production rules are derived.

B. Fuzzy Production Rule Generation

Fuzzy production rules relate input and output variables. The
production rules for two class problems will be generated from
the acquired seven fuzzy terms using the entropy principle.
Since the entropy minimization principle has been proven
effective for decision rule derivation with binary values [9],
we will transform the analog values of the samples into
binary values. This binary transformation will be performed
separately for each fuzzy term from NB to PB. If the analog
value has the highest membership grade in a term, it will be
assigned value one; if not, it will be assigned value zero. This
procedure produces, therefore, seven sets of binary data. Rule

derivation is performed for each term and, for each term, each
step of the rule is derived with an association rule weight,
which gives the reliability of the rule.

The rules for each fuzzy term resemble a decision tree in
which the branch points indicate the divided search route. The
rule for each fuzzy term has the form “If , else if , else if

, end if.” Therefore, a general production rule from sample
data will appear as the one shown in Appendix F. There is
a rule for each fuzzy term and each rule of the “if , else
if , , end” form allows only one fuzzy term. This rule
formation is somewhat different from the conventional one,
which may include as many fuzzy terms as chosen (seven in
our case) in a single rule.

Membership function generation is a result of a repeated
calculation of thresholds for optimal separation and production
rule generation will also choose an optimal rule from numerous
candidates. The entropy of a production rule for a fuzzy term,
using the mean probability of (9) and (10), is

(12)

where

total number of steps, i.e., the total number of separating
points in the decision rule;
number of samples covered by stepof all possible
samples;

a constant.

Theoretically, therefore, we check all possible rules and
calculate their entropy to select a rule whose entropy is
smallest. As can be seen from (12), however, there are simply
too many combinations of variables or rules to check. For an

digit binary number, there are combinations; if we have,
for example, 15 digit binary numbers, there are
different ways. Even allowing that we usually do not have
that many samples, we still have too many combinations
to investigate. If we have 68 samples of 15 digit binary
numbers (the same number of samples used in the example
in Section VII), for instance, the actual number of ways is

. A practical way to apply the entropy principle
for production rule derivation is obviously needed.

To simplify the evaluation production rules, we tried to find
some easily derivable relations among the entropy equations.
From (12), we can see that the closeris to one or zero,
the smaller the entropy is. Also, from (9) and (10), it is
apparent that the biggeris, the bigger is. Therefore, if we
can find the biggest , we can find the rule with minimum
entropy; to do this, we will use the concept ofdigit index. The
digit index is defined as the ratio of correct separation of two
classes using only a single digit (or feature). In other words,
the index is a measure which locates the digit that assures the
minimum number of wrong classifications.

For digit index determination, we first calculate a quantity
called thedigit count. We count the number of one’s in the
Class 1 samples and the number of zero’s in the Class 2
samples, or vice versa. Then we divide each number by the
total number of samples in each class. The result is the so-
called digit count . If we have digits (or features), then,
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Fig. 5. Illustration of the pivot and balance defuzzification.

TABLE I
PRODUCTION RULE SAMPLE DATA

sample # variable 1 variable 2 variable 3 class 1
1 0.210 1.477 2.420 1
2 0.180 1.435 5.012 1
3 0.203 1.184 5.245 1
4 0.106 1.154 6.012 1
5 0.202 1.057 7.034 1
6 0.185 -0.673 4.992 1
7 -0.170 4.628 3.420 2
8 0.724 1.114 5.940 2
9 0.035 3.944 5.120 2
10 0.167 4.262 3.420 2
11 0.169 4.000 6.011 2
12 0.045 1.251 5.093 2
13 0.017 3.904 9.024 2
14 -0.001 4.703 4.062 2
15 -0.118 4.640 5.872 2

by this calculation, we can havedigit counts; is the digit
count for the digit . Next, we add all the digit counts of each
class. If this value is close to 1.0, that digit (or feature) is not
important for separation: the one’s and zero’s have the same
weight in both classes. If the value is not close to 1.0, there
are less one’s or zero’s in a class. We formalize this idea by
defining digit (or feature) index as follows:

(13)

To generate production rules, we use the digit (or feature)
whose index is the maximum. Then, we apply the rule to the
samples and eliminate those samples which satisfy the rule.
For example, if we chose the rule as “ for Class 1” (
indicates “don’t care”), then we delete all the samples (of both
classes) whose value for the first digit is one. We repeat the
following sequence until all the samples are accounted for:
digit index calculation; formation of the rule; elimination of
the samples which satisfy the rule. Fig. 5 shows a flow chart
of this simplified generation procedure.

C. Production Rule and Rule Weight

Procedures which include a mix of fuzzy logic and neural
networks have been developed to provide adaptability to fuzzy
logic applications. A crucial aspect of adaptive fuzzy logic is

TABLE II
BINARY TABLE FOR THE FUZZY TERM PS

sample # D1 D2 D3 class
1 1 0 0 1
2 1 0 1 1
3 1 0 1 1
4 0 0 1 1
5 1 0 0 1
6 1 0 1 1
7 0 1 0 2
8 0 0 1 2
9 0 1 1 2
10 1 1 0 2
11 1 1 1 2
12 0 0 1 2
13 0 1 0 2
14 0 1 0 2
15 0 1 1 2

TABLE III
PROCESS OFDRAWING THE DIGIT INDEX

D1
Class1 Class2

D2
Class1 Class2

D3
Class1 Class2

# of 1/0 5 7 0 2 4 4
digit
count

5/6+ 7/9 0/6+ 2/9 4/6+ 4/9

digit
index

0.61 0.78 0.11

TABLE IV

sample # D1 D2 D3 Class
1 1 0 0 1
2 1 0 1 1
3 1 0 1 1
4 0 0 1 1
5 1 0 0 1
6 1 0 1 1
8 0 0 1 2
12 0 0 1 2

centered on the change of the shape of membership functions
or the determination of rule weights [11]. The determination
of rule weights will be discussed below in conjunction with a
discussion of production rule derivation.

The production rule generated by the simplified procedure
from sample data is optimal but not perfect; the rule inevitably
yields incorrect separation at each step. At each step, therefore,
we calculate the reliability or weight using the mean probabil-
ity of the two-case problem given by (10). As an illustration,
we discuss an example adopted from [9] and changed to
simulate an imaginary fault identification situation. We have
fifteen three-variable samples to be classified into two classes.
We will derive a production rule for fuzzy term PS and the
region of the terms PS is assumed to be for the
first variable, for the second, and
for the third. The sample data are shown in Table I.

For binary conversion, the samples in each variable are
translated into binary values (D’s) depending whether they are
the members of the term PS. If the sample values are within
the range of the PS, they are translated to 1, otherwise, 0.
Thus, the following binary table for the fuzzy term PS will be
resulted as indicated in Table II.
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Now, we follow the steps to produce rules for the fuzzy
term PS.

Step 1: First, we find the digit count and the digit index.
For the samples of each digit (D1, D2, and D3), we count the
number of 1’s in the Class 1 samples and the number of 0’s
in the Class 2 samples. Then we divide the number of 1’s by
the number of samples in Class 1, and the number of 0’s by
the number of samples in Class 2. The process of drawing the
digit index is shown in Table III.

From the above process, the second digit has the largest
digit index, so we start the separation process with the second
digit. Therefore, we have “ for Class 2” as the first
step of the rule. Then (from Class 2) and
(from both classes) and the mean probability, using (10), is

. This value is taken
to be the weight of the first rule step. Eliminating the samples
having 1 for their second variable, we have Table IV.

Step 2: The process of drawing the digit index is shown
in Table V.

We see that the digit index is biggest for the first variable
so “ for Class 1” becomes the second step of the rule.
Then and and, therefore, the weight of the step
2 of the rule is . The remaining samples are
shown in Table VI.

Step 3: The process of drawing the digit index is shown in
Table VII.

As we see that all the digit indexes are same, we can choose
“ for Class 2.” Then, and and, therefore,
the rule weight for step 3 of the rule is .

After the third step, rule derivation stops. The production
rule for fuzzy term PS consists of three steps. This fuzzy
production rule can be written as shown at the bottom of the
page.

The above procedure must be performed for each of the
other six fuzzy terms; the final production rule will be a set
of seven independent production rules.

VI. I NFERENCE AND DEFUZZIFICATION

FOR ALGORITHMIC APPROACH

So far, we have discussed the algorithmic procedure for
membership function and production rule generation. How-
ever, this algorithmic approach is not complete unless suitable
inference and defuzzification methods can also be provided.

A. Inference

Inference is a mechanism by means of which a conclusion
is drawn from sample data and production rules. It is designed
to evaluate the rules whose conditional parts are satisfied.
A popular inference method is “max” in which the final
membership grade for an output is the union of the fuzzy
membership grades which are the outputs of the individual

TABLE V

D1
Class1 Class2

D2
Class1 Class2

D3
Class1 Class2

# of 1/0 5 2 0 2 4 0
digit count 5/6+ 2/2 0/6+ 2/2 4/6+ 0/2
digit index 0.83 0.00 0.33

TABLE VI
REMAINING SAMPLES

sample # D1 D2 D3 Class
4 0 0 1 1
8 0 0 1 2
12 0 0 1 2

TABLE VII

D1
Class1 Class2

D2
Class1 Class2

D3
Class1 Class2

# of 1/0 0 2 0 2 1 0
digit count 0/1+ 2/2 0/1+ 2/2 1/1+ 0/2
digit index 0.00 0.00 0.00

production rules. The values of the membership grades are
determined by the degrees of membership in the conditional
part of the rules [6]. If OR is used to form the conditional
part, the grade value is determined by the maximum of the
membership grades; if AND is used, it is determined by the
minimum of the grades. However, this inference method does
not take into consideration cases where the rules are assigned
weights; to accommodate production rules with rule weights,
therefore, a new inference method is required.

Two methods of inference will be described. Either method
is applied to each of the seven sets of production rules—one
for each fuzzy term. The following explanation applies to all
the fuzzy terms and corresponding production rules. The first
method is to check for a matched (nonzero) premise from a
first fuzzy term, for example, PB. If a step (each step has the
fuzzy term PB in the conditional part) of the rule is matched,
then the firing strength, the corresponding weight, and the
class identification for the fuzzy term PB
are recorded. Then, we move to the next fuzzy term, PM,
for example. The process is applied to all the fuzzy terms.
Therefore, this method yields seven set of firing strength,
corresponding weights, and class identification represented
by , . This
method is called the “overall match” method and is illustrated
in Fig. 6(a).

The other inference method is called the “round match”
method because it is based on a “round” which checks each
step of each fuzzy term rule. Unlike the “overall match”
method, this method does not check all the steps of a fuzzy
term rule. Instead, this method checks the first step of the first
term rule, and then the first step of the second fuzzy term

IF variable 2 is PS, THEN Class 2 (weight ) (step 1)
ELSE IF variable 1 is PS, THEN Class 1 (weight ) (step 2)

ELSE IF variable 3 is PS, THEN Class 2 (weight ) (step 3)
ENDIF
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(a)

(b)

Fig. 6. Match and fire process for (a) overall match and (b) round match
method.

rule, and then the first step of the third fuzzy term rule, and
so on. Depending upon the result of the match at each step,
the round will either continue or stop. This means that if,
for example, the first steps of any one or more fuzzy rules
(for example PB rule and PM rule) are matched, the process
stops. Again, the firing strength, the corresponding weight, the
class identification and
for term PB and PM, respectively, will result. If we do not
have any matched set in the first round of the fuzzy term
rules, we move to the second round. This process will go on
until there is a matched set or all rounds are finished. The
process is illustrated in Fig. 6(b).

B. Defuzzification

Usually, more than one fuzzy rule may be matched and
fired at one time, so there should be a conflict resolution
measure. This output decoding method is called defuzzifica-
tion. Defuzzification is the process of converting the result of
the inference into a nonfuzzy value which best represents the
membership function of an inferred fuzzy classification actor.
One of the most famous method of defuzzification is center of
area method which can be represented by

(14)

TABLE VIII
TEST RESULTS (pp WITH TWO METHODS)

where

number of quantized levels of variable;
value of a variable at the quantized level
;

membership degree of fuzzy termat
the value ;
fuzzified value.

The other popular method is the mean of the maximum
method which can be represented by

(15)

where is the number of quantized values which reach their
maximum membership degrees.

For classification problems and for systems with rule
weights, however, the conventional defuzzification method
is not appropriate. Due to the nature of the problem, the
output of the classification process should not be an analog
value but a binary value, i.e., the output is not a quantity
but a discrete status [13], [14]. This unique characteristic of
classification problem and the introduction of rule weights,
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(a)

(b)

Fig. 7. Comparison of two match methods.

therefore, require the development of a new defuzzification
method, which we shall call the “lever and pivot” method.

The lever and pivot concept finds solutions in the unique
environment of the classification problem: binary output and
multiple sets of firing strength, weight, and class identification.
The basic idea of this method is to place the “weights” in the
location designated by the firing “length” and then to move
the pivot to the position which balances the lever (see Fig. 7).
A firing strength determines the distance from the center of
the lever and the weight of the step of the fired rule acts as
a measuring weight. We place the weights on the left side of
the lever if the class identification and on the right
side if . If we scale the lever so that it is centered
on zero, Class 1 includes all points on the right side of the
pivot point , and Class 2 includes all points on the negative
side. Therefore, the sign of the final defuzzified output, the
pivot point , decides the class of the sample: Class 1 if
is positive and Class 2 if negative.

The pivot point pp for defuzzification, therefore, can be
expressed by the following:

(16)

APPENDIX A
THE 15 VARIABLES

where

firing strength of the matched rule of the term
;

weight of the matched step of the fuzzy rule of the term
;

class identification of the fuzzy rule of the term1 for
Class 1 and 2 for Class 2.

VII. SAMPLE EXECUTION OF THE ALGORITHMIC APPROACH

This example, which uses actual sample data, serves two
purposes: 1) to test the algorithm’s overall functionality rel-
ative to membership function and rule generation and 2) to
test if the derived production rules are appropriate for the
actual problem. The sample data consists of 27 samples of
fault and 41 samples of normal event, which appear faulty; the
data is taken from electric power distribution networks [15].
These data were collected for discrimination studies of low
current and high impedance faults from normal events such as
switching, big motor-load connection, capacitor bank switch-
ing, and so on [16]. As the time-domain amplitude change of
the fault current are low, feature parameters are chosen from
frequency-domain variables. Harmonic parameters are selected
from 0 to 640 Hz range excluding the driving frequency of 60
Hz. To find statistical measures (or feature) of the parameters,
mean, standard deviation, and mean of the absolute value are
calculated. The length of data for measuring these statistical
measures is limited to 30 cycles of 60-Hz waveform. Fifteen
variables of the statistical measures of the harmonic contents
are shown in Appendix A.

We arranged fault data and normal data to form a training
set and a testing set; this was accomplished using diagonal
numbers from a table of random units [17]. If we meet an
even number in the table, starting from the first sample, we
put the sample into the training set; otherwise, we put it in
the testing set. We stop the process once we have half of
the fault samples in the training set. A similar procedure is
performed for normal event samples. Appendix B shows the
overall sample data with 15 variables; the truing set and the
testing set are shown in Appendix C and D, respectively.
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SAMPLE DATA (A)
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SAMPLE DATA (B)

Once training and testing samples are arranged, we derive
membership functions and production rules from the training
samples. The testing samples are used to check the perfor-
mance of the production rules. For each of the 15 variables,
three levels of thresholds are calculated for eight fuzzy terms
using the entropy minimization process; the seven threshold
values of each variable are shown in Appendix E. We then
proceed to locate left edge points, center points, and right
edge points of the membership functions. For convenience, all
the membership functions are assigned triangular shape except
for the sets at the end points, which are assigned trapezoidal
shape. For the triangular sets, the degree of membership of
the element at the center point is 1.0 and the degrees of
membership at the right and left edge points are 0.0.

For production rule generation, training samples are con-
verted into binary values for each of the fuzzy terms. Each
sample value is assigned the value “1” for the fuzzy set
in which it has highest membership degree. Digit index
calculation finds which variable is most important and how
many steps should be covered to construct fuzzy term rules.
All the mean probabilities (rule weights) are also calculated.
Appendix F shows the production rules of the training sample
data. Each fuzzy term has a rule (fuzzy term rule) with a with
a few or more steps (or branches) of the decision process.

The final step of the example is to test the production
rule (which contains seven fuzzy term rules) with the testing
sample data. The testing sample data are first fuzzified using

the fuzzy membership functions of the seven terms. Then,
using the derived rules, two inference methods are applied
simultaneously to compare results. We apply pivot balance
defuzzification to the output fuzzy sets. Table VIII shows the
results of the test. Using the “round match” method, the first
round was matched and fired for every sample and, thus, the
match stopped after the first round. A minus sign after a result
indicates that the sample was assigned to the normal (nonfault)
event class by the method.

For fault class samples, we have three incorrect classifica-
tions with the “overall match” method and only one incorrect
classification with the “step match” method. Samples in the
“overall match” method differ more between classed with
respect to values; this may have implications for the
“security” of the classification. This is illustrated in Fig. 7.
The fault samples and normal samples in the “overall match”
are placed farther away from the reference than those in the
“round match” method: the distance between the’s of fault
and normal samples is 0.87 in the “overall match” and 0.81 in
the “round match” method. The “overall match” method may
be used, therefore, for more sensitive fault identification, while
the “round match” method may be better for greater security
against false identification.

The significance of this example is not that this algorithmic
approach works well in classification problem, but that the
algorithm appropriately generates membership functions and
production rules. Our example is sufficient to show that that
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APPENDIX C
TRAINING DATA

the generated production rules with rule weights based on
the fuzzy membership functions are relevant to real world
situations.

VIII. C ONCLUSION

An algorithmic method to automate the procedure for fuzzy
logic application to binary classification is presented. This
approach is based on an entropy minimization principle to opti-
mally generate, using only sample data, membership functions,
and fuzzy production rules. Membership function generation
using the clustering principle is discussed and the production
rule derivation, along with the rule weight determination, is
illustrated. The relevance and appropriateness of the mem-
bership functions and production rules was evident from

the detailed example. In the future, an advanced algorithmic
method may be evolved for generic fuzzy logic applications.
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