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Abstract—The symbolic time series generated by a unimodal 

chaotic map starting from any initial condition creates a binary 

sequence that contains information about the initial condition. A 

binary sequence of a given length generated this way has a one-to-

one correspondence with a given range of the input signal. This 

can be used to construct analogue to digital converters (ADC). 

However, in actual circuit realizations, component imperfections 

and ambient noise result in deviations in the map function from 

the ideal, which, in turn, can cause significant error in signal 

measurement. In this paper, we propose ways of circumventing 

these problems through an algorithmic procedure that takes into 

account the non-idealities. The most common form of non-

ideality—reduction in the height of the map function—alters the 

partitions that correspond to each symbolic sequence. We show 

that it is possible to define the partitions correctly if the height of 

the map function is known. We also propose a method to estimate 

this height from the symbolic sequence obtained. We demonstrate 

the efficacy of the proposed algorithm with simulation as well as 

experiment. With this development, practical ADCs utilizing 

chaotic dynamics may become reality. 

 
Index Terms—initial condition estimation, reduced height map, 

symbolic dynamics, signal measurement 

 

I. INTRODUCTION 

HAOS in nonlinear dynamical systems has been broadly 
studied over the past few decades to understand the 

underlying deterministic principles in the apparent randomness. 
If the factors governing chaotic dynamics are better understood, 
the information of the physical states of such a dynamical 
system can be retrieved consistently. Thus, the presence of 
determinism in chaos has led to many applications in a wide 
range of areas including, but not limited to, control and 
synchronization of systems, secured communication for cipher 
key encryption and data analysis to understand complex 
patterns and cycles. In this work, we are investigating the scope 
of signal measurement using chaotic dynamics as an approach 
for analogue-to-digital (A/D) conversion. We achieve this by 
using a unimodal chaotic map as a tool to generate a symbolic 
sequence corresponding to an unknown initial signal through 
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the iterative dynamics produced by the map. Applying the 
dynamical principles of the chaotic map, we describe an 
algorithmic approach to compute the magnitude of the initial 
signal from the generated sequence. The system thus works as 
an A/D converter (ADC). 

Currently there is a wide range of architectures available for 
A/D converters of which successive approximation, delta-
sigma (ΔΣ), pipelined and modified flash ADC types are the 
most commonly used architectures. Each of these architectures 
has some benefits along with some shortcomings. The selection 
criteria for any particular type depends on the application 
specifications such as precision, speed, chip area and power 
dissipation as each type can be analysed through several 
performance metrics as proposed by Walden [1] and Robert et 

al. [2]. As summarised by Bashir et al. [3], one has to choose a 
trade-off between resolution, power dissipation, and speed for 
a flexible design architecture. For successive approximation 
type ADCs, improved resolution is achieved through higher 
level of design complexity and resource consumption, but at the 
cost of reduced speed. ΔΣ ADCs are mostly preferred for better 
precision and low power consumption; however, due to 
oversampling, it offers moderate speed. Also, higher order 
system implementation requires a large amount of area and the 
stability factors are affected by the order of modulation. 

In the flash type ADCs, the quantisation is mainly done 
through a parallel implementation of comparators and these are 
therefore well known for high speed operations; however, it is 
challenging to achieve higher bit resolution as the number of 
comparators double each time a bit resolution is increased by 1. 
Better resolution is achieved through several hybrids of flash 
architecture such as interpolation type which reduces the 
number of pre-amplification units and drastically reducing the 
chip area. Since the number of latches required is still the same 
as the classical flash architecture, additional folding stages are 
often incorporated to further reduce resources. Each folding 
stage includes a fine grain ADC and a coarse grain ADC with a 
folding circuit whose accuracy is critical and expensive. 
Another flash based architecture is pipelined ADC, which 
involves series implementation of quantisation blocks that are 
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operated in parallel. Although these ADCs improve speed, the 
resources used for the pipelined architecture increases the chip 
area as well as the cost. Thus, it is evident that, for improved 
performance, most of the ADC architectures rely heavily on 
additional quantization blocks such as increased number of 
comparators or coarse ADC/DAC as well as folding circuits 
leading to increased resource consumption, which result in 
increased chip area with greater design complexity and high 
power consumption.  

Recent advances in our understanding of chaotic dynamics 
has brightened the prospect of developing a feasible ADC that 
uses chaotic dynamics to convert a given input signal into a 
string of digital values [4,5,6], which may be able to overcome 
some of the difficulties mentioned above. Metropolis et al. [7] 
as well as Wang and Kazarinoff [8] have shown in theory that 
symbolic codes generated through unimodal chaotic maps can 
be ordered such that they have a correspondence to a point or 
an interval within a measurable state space. Therefore, if such 
codes can be obtained from a physically implemented chaotic 
system, those symbolic identities may be useful for applications 
like signal measurement. Due to the ‘stretching and folding’ 
nature of the unimodal functions, it is also possible to partition 
the phase space into intervals with unique symbolic signature. 
Since chaotic maps are simple mathematical functions which 
can be easily implemented physically, a single block of chaotic 
map can be reused iteratively to generate the dynamics and 
symbolic representations corresponding to an input signal.  

In practice, the analogue signal to be measured is fed as the 
initial condition to a hardware-implemented chaotic circuit. As 
the dynamics evolves in time, a ‘coarse grained’ symbolic code 
is generated that holds the key information of the originating 
point, parametric factors, and the footprints of the dynamics. 
For our application, we have chosen the tent map as the suitable 
chaotic function to generate symbolic dynamics because it is 
simple to implement, and has no window of periodicity within 
the ergodic range of the map parameter [9]. The symbolic 
dynamics produced by the tent map are Gray codes. This code 
can be processed using a straightforward numerical exercise to 
estimate the initial condition. However, this is possible if the 
tent map generated by the circuit is 'ideal' i.e., its domain is 
exactly [0,1]. 

When we implement the map physically, it is subjected to 
several other factors such as component imprecision and noise, 
which may significantly reduce the parametric domain of the 
map. With a reduced height tent map, converting the generated 
Gray code sequences directly into the corresponding decimal 
values leads to an incorrect mapping and therefore 
measurement accuracy suffers, as observed in [4]. If one wants 
to circumvent the problem using a lengthier symbolic time 
series, it becomes demanding in terms of resource required. A 
similar analysis has been conducted theoretically in [5], which 
showed that the use of a map with ideal parameter is preferable. 
This, however, limits the applicability because in a physical 
implementation, deviation of the parameter is inevitable, as can 
be seen from the work of Kapitaniak et al. [6] who had also 
previously attempted to measure electrical signals in a similar 
way. They observed that the measured outcomes were greatly 

affected by the errors introduced due to the offsets and 
tolerances of the components used in the physically 
implemented map, which significantly reduced the parametric 
domain of the map. 

In this paper, we develop an algorithm that enables one to 
measure a signal with reasonable accuracy even when the map 
parameter deviates from the ideal. For this, three problems had 
to be solved. Firstly, when the height of the map is less than 1, 
the map dynamics eventually gets confined within a range of 
the state space. Therefore, some sequences corresponding to the 
points that are not visited by the dynamics will not be appearing 
as well in the symbolic dynamics; those sequences are classified 
as forbidden sequences [10].  We have shown that, even though 
there are forbidden sequences, information regarding the points 
outside the bounding region can still be realised using the 
symbolic dynamics produced within the boundary. Secondly, 
due to such constraints on the dynamics, when sequences are 
converted back to the corresponding initial values, the intervals 
appear to be squeezed in with overlapping or colliding 
partitions within the bounded state space. For a reduced 
parameter, the partitions created on every stage of map 
operation, are shifted away from the ideal positions [11]. Since 
conventional techniques (while estimating the initial condition) 
assume that the subintervals created in each step of iteration to 
be equal and symmetric, correspondence between the symbolic 
sequence and the initial conditions appear to be lost. The 
algorithm we have developed accounts for this shift and enables 
one to estimate the initial condition in spite of the fact that the 
partitions of the phase space of the map are unequal in size. 
Thirdly, since in a practical scenario the map parameter can 
vary from time to time due to changes in the parameters of the 
circuit, we have developed an algorithm to estimate the map 
parameter from the obtained symbolic sequence. All such 
analysis can be carried out in the digital domain, thus making 
the potential system architecture less complicated at the 
hardware level. 

To develop the initial condition estimation algorithm, the 
dynamical properties of both the full height and the reduced 
height tent map have been thoroughly studied and applied. We 
define tent map and its dynamical features that are relevant to 
our work in section II and III, followed by the general view of 
the dynamical attractor in case of reduced parameter in section 
IV, and describe ways to determine the parameter value from 
the symbolic sequences. Also, we show, how the apparent loss 
of definition of the points are still preserved through the 
symbolic dynamics. In section V, we show how the partitioning 
of the state space is carried out according to the orientation 
preserving and reversing nature of the map and how the size of 
the sub-interval is altered corresponding to the parametric value 
of a reduced height map. In section VI, we propose a suitable 
technique to deal with the initial condition estimation problem 
in the form of an algorithm based on interval arithmetic that can 
be implemented easily into processing devices like 
microcontrollers and field programmable gate arrays (FPGA). 
To evaluate the proposed method, mathematical simulations 
with detailed analysis are presented in section VII. In section 
VIII we show the results for a physically implemented system. 
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In section IX we summarize our work and include some 
comments regarding practical applications. 

II. CONTEXT 

We consider a class of chaotic maps called unimodal maps, ℱ. If a map f ∊ ℱ such that f : I→I where I = [a,b] ⊂ ℝ, a < b 
satisfies the following conditions: 

1. f has a unique maximum fmax, in the interval I, 

2. fmax = f(xc) (where xc ∊ I is usually called the critical 

point), 

3. f is monotonically increasing in the interval [a,xc] and 

monotonically decreasing in the interval [xc,b], then f is 

unimodal.  

The class ℱ consists of certain maps that can be defined using 
a control parameter, µ , such that fµ(x) ∊ ℱ holds for x ∊ I, µ ∊ J ⊂ ℝ and fµ(x) is a map on I × J. In particular, the map considered 
for our application, the tent map T ∊ ℱ, belongs to a family of 
parametric self-maps fµ : I→I such that I = [0,1], J = [0,1], and 
T(x) can be defined as 

 𝑇(𝑥) = 𝑓𝜇(𝑥) = { 2𝜇𝑥                   0 ≤ 𝑥 ≤ 𝑥𝑐2𝜇(1 − 𝑥)        𝑥𝑐 < 𝑥 ≤ 1.      (1) 

 
where xc = 0.5 ∊ I is the critical point of the map. For the map 
to be chaotic, J = (0.5,1]. In the closed interval I ⊂ ℝ―also 
known as the state space of the map―the iterates of T(x) is 
defined as xi+1 = T(xi), i ∊ ℕ0 (where ℕ0 = {0} ⋃ ℕ) such that, 

1. x0 = T0(x) = x 

2. xi+1 = Ti+1(x0) = T(Ti(x0)) = T(xi) 

3. T(0) = T(1) = 0 

4. Tmax = T(xc) ≤ 1, where Tmax is the maximum height of 

the map, for 0 ≤ µ  ≤ 1 

5. T(Tmax) = T2(xc) ≥ 0, where T(Tmax) is the dynamic 

minimum of the long-term trajectory. 

The collective set of n iterates, i.e. the set of n points visited by 
the trajectory of a tent map can be referred to as the orbit of an 
initial condition x0 and is defined as 𝒪T(x0) = {T0(x0), T1(x0), 
T2(x0), …, Tn(x0)}. In this work the input signal sets the initial 

condition, and so the two terms will be used interchangeably. 
Also, when Tmax = 1 (for µ = 1) we call it an “ideal” case, and 
maps with Tmax ≤ 1 constitute the “non-ideal” case. 

Given that chaotic maps are sensitive to initial conditions, an 
infinitesimally small change in the initial condition may result 
in substantially diverging trajectories and due to the folding 
nature of the map, points in the closed interval I ⊂ ℝ will eventually map on to every other point in I ⊂ ℝ, or 
arbitrarily close to it [12]. Therefore, unique trajectories can be 
generated for any arbitrary point in I ⊂ ℝ. For the application 
of ADC, we choose to utilise symbolic dynamics to involve 
lesser resources. In the following section, the symbolic 
sequence generated by tent map has been described with its 
general features and functionalities that are relevant to our 
study. 

III. SYMBOLIC DYNAMICS AND CODING OF INTERVALS 

The orbit of a tent map 𝒪T(x), can be transformed into a 
symbolic sequence 𝒮n+1 of length n+1 where 𝒮n+1(T,x) 
= s(x0)s(x1)s(x2)…s(xn) such that s : [0,1]→{0,1} is defined as 

 𝑠(𝑥𝑖) = {0         𝑥𝑖 ≤ 𝑥𝑐1         𝑥𝑖 > 𝑥𝑐.              (2) 

 
Furthermore, it has been shown that, the symbolic sequences 
generated are Gray codes [13]. 

As per the desired system (Fig. 1), successful determination 
of an unknown voltage signal x0 ∊ I involves generating 
corresponding symbolic sequence 𝒮n+1(T,x) through T(x) in the 
analogue domain and the 𝒮n+1(T,x) shall be further processed in 
a digital domain. The analogue circuit [14] of the tent map can 
be incorporated in the measurement system. On 
every ith iteration, the state space I is partitioned into 

2i+1 mutually exclusive sub-intervals 𝐼𝑗𝑖 where 0 ≤ j ≤ (2i+1‒1) is 

the count of the sub-interval increasing from the left endpoint 0 
to the right endpoint 1 within I and i is the iteration count [13]. 
The input signal to the function must therefore belong to any 
one of the sub-intervals. This reduces our problem down to 
identification of the correct sub-interval for the corresponding 
input signal through its symbolic signature. The following 
properties relate the symbolic sequence 𝒮n+1(T,x) to the sub-
intervals generated by the map. 

1. Every x ∊ 𝐼𝑗𝑖 result into the same symbolic sequence 𝒮i+1(T,x) 

2. If initial conditions x ∊ 𝐼𝑗𝑖 and x̑ ∊ 𝐼𝑗+1𝑖 , then 𝒮i+1(T,x) and 𝒮i+1(T,x̑) differ by only one bit 

3. 𝐼0𝑖 ∪ 𝐼1𝑖 ∪ 𝐼2𝑖 ∪ … ∪ 𝐼2𝑖+1−1𝑖 = 𝐼 

4. 𝐼𝑗𝑖 ∩ 𝐼𝑘𝑖  = ∅ for j ≠ k 

Fig.  1. The proposed block diagram of the measurement system 
using tent map implemented in analogue domain where unknown 
signal enters as an initial condition x0 and output of each stage is fed 
back as an input for the next to complete iterations up to n times. The 
iterations can be executed through digitally controlled sample and hold 
technique. The comparator output (symbols) of each ith stage should be 
received by the digital processing block for further processing. 
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Therefore from the properties 1, 2 and 4, the symbolic 
sequence 𝒮n+1(T,x) can be interpreted as n+1 bit long unique 
symbolic identity that corresponds to a sub-interval of the size 𝐼𝑗𝑛 and so, the longer the symbolic sequence, the narrower will 

be the size of the intervals. Each such jth interval can be 
identified by the corresponding symbolic sequence 𝒮n+1. The 
order of the symbolic sequences, as shown in [13], corresponds 
to the order j = 1, 2, 3, …, 2n+1 according to which the intervals 𝐼𝑗𝑛 are ordered in I. For example, for all 𝒮3(T,x), the order of the 

possible sequences corresponding to j can be seen from Table 
I. Therefore, for 𝒮n+1(T,x), 𝐼𝑗𝑛can be written as 𝐼𝒮𝑛+1𝑛 and can be 

used as a basis to identify the originating interval of an initial 
condition. 

The initial conditions directly correspond to their originating 
intervals as long as the map retains the full height, when their 
symbolic signatures 𝒮n+1(T,x) are converted to the 
corresponding binary codes ℬ : b0b1b2...bn  

 𝑏𝑖 = {𝑠(𝑥𝑖)                   𝑖 = 0𝑏𝑖−1 ⊕ 𝑠(𝑥𝑖)    𝑖 > 0.            (3) 

 ℬ is further converted to the real values. This conversion from 𝒮n+1(T,x) to real number is referred to as Gray Ordering Number 
(GON), given by the transformation  

 GON(𝒮𝑛+1) = ∑ 𝑏𝑖−(𝑖+1)𝑛𝑖=0 .            (4) 

 
and can be ordered by its magnitude as described in [13]. Table 
I shows GONs for a 3-bit sequence generated using T2(x0) for 
inputs (x0) with a step-size of 0.125. Considering a longer 
sequence will result in identification of input signals with a 
finer step size. 

IV. DYNAMICS IN REDUCED PARAMETER CONDITIONS 

In a realistic situation, it may not be possible to hold the 
parameter µ  = 1 constant. Under such non-deal condition, when 
the map height (parameter) is reduced i.e. µ < 1, it undergoes 
certain changes in its dynamical characteristics. The property of 
the dynamical attractor of the tent map is related to its 
maximum height Tmax = T(xc). Also, due to the folding nature of 
the tent map, the minimum value of the attractor can be 
determined as Tmin = T(Tmax) = T(T(xc)). Thus Tmax = µ , and 
Tmin = 2µ(1‒µ). Over a long term dynamics, it can be observed 
that points originating from arbitrary locations of I will 
eventually be attracted towards and be trapped within I′ = 
[Tmin,Tmax] = [2µ(1‒µ),µ], where I′ < I, when µ  < 1 (Fig. 2). The 

dynamics will continue as a never-ending process within I′ 
since both fixed points 0 and 2µ/(1+2µ) are unstable for µ  > 0.5, 
and the orbit is chaotic. Also, from the available symbolic 
dynamics, the value of µ  can be realised through the symbolic 
signature corresponding to the point Tmax or Tmin. 

The properties of the dynamical maximum and minimum of 
the unimodal maps can also be studied symbolically through 
Milnor-Thurston Kneading Theory. When the critical point xc 
is iterated through a tent map, the corresponding symbolic 
sequence 𝒮n+1 is known as the Kneading Sequence 𝒦 [12] and 
can be expressed as 
 𝒦 = 𝒮n+1(T,xc) = s(T0(xc))s(T1(xc))s(T2(xc)) 

…s(Tn(xc)), n ∊ ℕ0.    (5) 
 𝒦 can be a useful tool to realise the sequences corresponding to 
Tmin and Tmax. Considering a shift operator σ such that 
s(Tn+1(x0)) = σ(s(Tn(x0))), operations of σ over 𝒦 gives 𝒮max = 
σ(𝒦) and 𝒮min = σ(σ(𝒦)) which is analogous to the properties 
Tmax = T(xc) = µ  and Tmin = T(Tmax) = T(T(xc)) = 2µ(1‒µ) 
respectively. The parameter µ  is thus recoverable using 𝒮min or 𝒮max. For initial conditions x0, we choose a certain number of m ∊ ℕ transient iterations such that, for i > m, we get xi ∊ 
[Tmin,Tmax]. The choice of m is an empirical estimate, based on 
both the initial condition and the parameter of the map, and 
when both the factors remain to be unknown, m is chosen to be 
large enough to ensure that the subsequent iterates belong to 
[Tmin,Tmax]. For x0 < Tmin, after m iterations when xm+1 ≥ Tmin, the 
corresponding symbolic sequence 𝒮n+1(T,x0) will be a string of 
m zeros followed by a sequence 𝒮n‒m+1(T,xm) ∊ [𝒮min,𝒮max]. For 
x0 > Tmax, x0 ∊ [xc,1], s(x0) = 1, and therefore T(x0) < Tmin ∊ [0,xc] 
will continue with the aforementioned behaviour. Such cases 
will have s(x0) = 1 leading a string of m‒1 zeros followed by a 
sequence 𝒮n‒m+1(T,xm+1) ∊ [𝒮min,𝒮max]. When the m transient 
symbols are discarded, the ordering of the GONs can be 
matched to the ordering of 𝒮min through 𝒮max. 

 

GONmin ≺ … ≺ GONmax  𝒮min ≺ … ≺ 𝒮max    (6) 
 
Then, theoretically speaking, there will be no 𝒮n‒m+1(T,xm) 
sequence appearing in the dynamics of T(x0) for a given µ  
whose corresponding GON can be found outside the range 
[GONmin,GONmax] and then any sequence 𝒮n+1(T,x0) outside 
[𝒮min,𝒮max], are treated as forbidden sequences [10] while all the 

(a)                                                 (b) 
Fig.  2. Cobweb diagram of map attracted within [Tmin,Tmax] for µ = 
0.75; (a) x0 = 0.000124 and (b) x0 = 0.823; n = 300. 

TABLE I 
CORRESPONDENCE BETWEEN SEQUENCES AND INPUT INTERVALS 

j 𝒮3(T,x) Binary GON 

0 000 000 0 

1 001 001 0.125 

2 011 010 0.25 

3 010 011 0.375 

4 110 100 0.5 

5 111 101 0.625 

6 101 110 0.75 

7 100 111 0.875 
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sequences within [𝒮min,𝒮max] are termed as allowed sequence. 
Thus discarding the transient m symbols from 𝒮n+1(T,x0) allows 
one to search for 𝒮min or 𝒮max in the allowed sequence domain, 
which in turn aids us to determine the reduced parameter µ  from 
the symbolic trajectories [15,16]. However, in order to 
determine the initial condition x0 successfully, the transient m 
symbols cannot be discarded because the information regarding 
a significant portion of the dynamic trajectory from the 
originating point of x0 is contained in it. The originating interval 
can therefore be determined by realising the partitions 
generated by the map iterations on the state space I with respect 
to the 0’s and 1’s in the available symbolic sequence. Thus, we 
discard m transient symbols to determine µ , but do not discard 
it when determining the initial condition x0. 

When µ  < 1, as the partitioning of the state space continues, 
the sub-intervals created are unequal (Fig. 3). The partitioned 
sub-intervals are therefore squeezed in the state space towards 
xc by a factor of µ  (described in detail in section VI). The farther 
the parameter is away from its ideal value, the greater will be 
the amount of shift in the partitions from its ideal positions. 
Therefore, the initial points are redistributed to the adjacent 
intervals, causing the points to associate with a different 
symbolic sequence. If any sequence 𝒮n+1 generated with µ  < 1 

is converted back to the real value using base 2 (i.e. by 
calculating GON using (3) and (4)), it does not converge to a 
correct solution as can be verified by Table II. In fact, even for 
a small change in parameter (µ  = 0.9), GONs deviate 
significantly from their ideal values, as can be seen in Fig. 4. 
However, the originating interval of x0 can be recovered with 
respect to the partitions if the measure of the shift is considered 
for every symbol in 𝒮n+1. Also, many-to-one mapping on 𝒮n+1 

within an interval is overcome by considering adequate number 
of samples, so that partitions of the sub-intervals are suitably 
generated and the codes differ by at least one symbol. The 
number of symbols to be considered will depend upon the 
desired resolution of x0 which has been further elaborated in 
Section VII.  As can be verified from Table II, a collection of 
points with fixed interval size for a given µ , have unique 
symbolic signatures. Therefore, as shown in the following 
sections, to correctly estimate the initial condition, the interval 
arithmetic needs to be modified and performed along the 
symbolic sequence so that the partitioning of the intervals can 
be traced with respect to µ .  

V. INTERVAL ARITHMETIC 

For any initial condition x0 with symbolic sequence 𝒮n+1, we 
know that x0 ∊ 𝐼𝒮𝑛+1𝑛

. Moreover, the ith symbol in 𝒮n+1 indicates 

whether xi belongs to the left or right of xc, i.e., to 𝐼00 or 𝐼10. Thus, 
for every s(xi) ∊ {0,1}, if xi = Ti(x0) ∊ 𝐼𝑠(𝑥𝑖)0 , considering the 

inverse relation we get x0 ∊ T i(𝐼𝑠(𝑥𝑖)0 ). Therefore, for an n+1-

bit sequence, combining this relation for every xi, the 
originating interval 𝐼𝒮𝑛+1𝑛 can be defined as  

 𝐼𝒮𝑛+1𝑛  ⋂ 𝑇−𝑖(𝐼𝑠(𝑥𝑖)𝑖𝑛𝑖=0 ).              (7) 

Fig.  3. The first two successive iterations of a reduced height (µ = 
0.75) tent map are superposed over two iterations of a full-height (µ 
= 1) tent map. In the figure, one of the partitions creating the sub-
intervals in the second iteration, can be seen to be shifted from 0.25 
in case of the full-height map to 0.33 in case of the reduced height 

map. This results in uneven sub-intervals created in the state space. 

Fig.  4. A symbolic sequence is generated, once using µ = 0.90 (solid) 
and once using µ = 1 (dashed) . The GON for the sequence is 
calculated both times and plotted against the initial condition, showing 
signification deviations from the ideal, in case of µ = 0.90. 

TABLE II. 
COMPARISON OF IDEAL AND NON-IDEAL SEQUENCE 

x0 𝒮16 for µ  = 1 𝒮16 for µ  < 1 
GON(𝒮16) 

for µ  < 1 

0. 1951 0010100100001011 0011101101001110 0.17790 

0. 1952 0010100100000100 0011101101001000 0.17796 

0. 1953 0010100100000000 0011101101011010 0.17802 

0. 1954 0010101100000111 0011101101011100 0.17808 

0. 1955 0010101100001010 0011101101010110 0.17814 

An arbitrary set of points with a step size of 0.0001, 𝒮16 generated 
using full (µ = 1) and reduced (µ = 0.95) T(x0) with GON calculated 
for the sequences generated with µ < 1. 
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To illustrate, if 𝒮n+1 = 010...s(xn) is considered, the first 
symbol indicates that the initial condition, x0 ∊ 𝐼00. After 
applying the tent map function once, the iterate T(x0) ∊ 𝐼10, 
hence, x0 ∊ T 1(𝐼10). So, considering the first two symbols, x0 ∊ 𝐼00 ∩ T 1(𝐼10)  𝐼011  ⊂ 𝐼00 [9,16]. In this manner, following all the 
symbols in the sequence, the originating sub-interval can be 
identified as 

 𝑥0 ∊ 𝐼00 ∩ 𝑇−1(𝐼10 ∩ 𝑇−1(𝐼00 … ))… ⊂ 𝐼0102 ⊂ 𝐼011 ⊂ 𝐼00.  (8)  

 
Since the map is non-invertible (every point has two 

inverses), the immediate question that arises from (7) is that 
when the inverse operation T 1 of the tent map function on an 
interval is performed, how the restriction for T 1 is chosen. This 
depends on the “orientation” of the map on the sub-interval that 
is created by the current iterate [9]. Orientation of an interval is 
determined by the slope of the function in that interval: a 
positive slope implies an orientation-preserving interval while 
a negative slope implies an orientation-reversing interval. The 
orientation reversal is responsible for the reversal of the 
lexicographic order of the symbolic signature (and thus 
generates a Gray code). Therefore, the orientation of the 
interval 𝐼𝒮𝑖+1𝑖  can be determined from the sequence 𝒮i+1 

associated with the ith iterate. 
In Fig. 5 (a) the fractal nature of the real iterates through a 

tent map can be observed, which when coarse-grained into 
symbols, result in mirroring orientation. As can be seen from 
Fig. 5 (b), if the ith iteration of the tent map occurs on an 
orientation-reversing interval, the orientation of 𝐼𝒮𝑖+1𝑖  gets 

reversed from that of 𝐼𝒮𝑖𝑖−1. Hence, up to the ith iteration, 

occurrence of the orientation-reversing iteration for an even 
number of times restores the orientation of 𝐼𝒮𝑖+1𝑖 , while an odd 

count of the same behaviour results in a reversal. Since each 
orientation-reversing iteration generates the symbol ‘1’, we can 
determine the orientation of the interval 𝐼𝒮𝑖+1𝑖  by checking if αi 

is even (preserved) or odd (reversed), where αi is given by (9). 
 𝛼𝑖 = 𝛼𝑖−1 + 𝑠(𝑥𝑖)                (9) 

 
Therefore, the restrictions of the inverse operation T 1 of the 
tent map function can be chosen as 

 

𝐼𝒮𝑖+1𝑖 = 𝑇−1(𝐼𝒮𝑖𝑖−1) = {𝐼𝒮𝑖𝑖−12𝜇                   𝛼 𝑖𝑠 𝑒𝑣𝑒𝑛1 − 𝐼𝒮𝑖𝑖−12𝜇           𝛼 𝑖𝑠 𝑜𝑑𝑑 .     (10) 

 
In the following section, it is shown how the measure of shift 

in partitions is applied to the corresponding sub-intervals 
according to their orientation, given by each symbolic state in 
the sequence starting from s(x0) to s(xn), so that the originating 
interval of the initial condition x0 can sharply be narrowed down 
from the state space I. 

VI. INITIAL CONDITION ESTIMATION 

When the map height is reduced, the magnitude of inequality 
of the resulting asymmetric sub-intervals depends on the 
measure of the µ < 1. Also, while narrowing down to the 
originating interval, the orientation of the current sub-interval 
determines whether the bigger or the smaller sub-interval needs 
to be chosen for the next step. Therefore, a decision needs to be 
taken regarding the direction in which the partition of the 
current state needs to shift (from the midpoint of the previous 
sub-interval) for each symbolic iterate in question. 

As can be seen from Fig. 6, the asymmetrical partitions 
generated by the reduced height map are shifted towards the 
critical point xc. Here, we show how the orientation of the 
forthcoming 𝐼𝒮𝑖+1𝑖  can be used to determine which direction the 

partition on 𝐼𝒮𝑖𝑖−1 shifts to, and whether the bigger or the smaller 

sub-interval contains the originating interval of x0. Using 𝒮n+1 = 
01…s(xn) this can be illustrated in the following manner. For x0 ∊ I, s(x0) = 0 ⇒ x0 ∊ 𝐼00. s(x1) = 1 ⇒ x1 ∊ 𝐼10 and therefore, x0 ∊ 𝐼00 ∩ 𝑇−1(𝐼10)  𝐼011 , which lies to the right of the newly 

Fig.  6. The shift in the partition due to the reduced parameter is 
always towards the critical point xc. The sub-interval 𝐼0101  has been 
narrowed down by the reduction in parameter from 1 to 0.75. The 
orientation of the interval is reversed by the 1 in the 2nd symbol, and 
the reversal is maintained by the 0 in the 3rd symbol. 

                         (a)                                                  (b) 
Fig.  5. (a) Fractal nature exhibited by real dynamics of the map 
(shown up to 8 iterations). (b) The fractal orientation of the sub-
intervals according to the symbols shown for up to three levels for up 
to 3 levels. Number of 1's determine the orientaion of the current sub-
interval. Odd 1's result in orientation reversing, even 1's indicate 
orientation is preserved. 
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generated partition as αi is odd for 𝐼011  (Fig. 6). Similarly, for 𝒮n+1 = 11…s(xn), despite s(x1) = 1, αi is even for 𝐼111  and 
therefore 𝐼111  ∍ x0 lies to the left of the newly generated partition. 
Continuing for n+1 symbols, the originating interval 𝐼𝒮𝑛+1 𝑛 ∍ x0 

can be obtained.  
For the potential application of signal measurement from the 

symbolic sequence, the aforementioned approach has been 
formulated into a computational algorithm. The task of 
partitioning the intervals, and the subsequent choice of the sub-
intervals has been adapted into a simplified numerical process 
for the ease of implementation in the digital processing domain. 
This is done by shifting one of the boundaries of the interval 𝐼𝒮𝑖𝑖−1 towards the other, depending on the orientation of the 

resulting sub-interval 𝐼𝒮𝑖+1𝑖 ∍ x0, by a factor of µ , in such a way 

that the sub-interval that does not contain x0 is eliminated, 
leaving the correct 𝐼𝒮𝑖+1𝑖  behind thereby leading to the 

originating interval of x0 on the nth step. 
For any given sequence 𝒮n+1, s(x0) is determined by T0(x0) i.e. 

before any iteration through the map function, as the critical 
point xc already divides the state space I into two equal halves. 
Hence the role of the first symbol s(x0) is simply to determine 
whether the algorithm must be performed on 𝐼00 or 𝐼10. Since 𝐼10 
is a mirror image of 𝐼00 about xc = 0.5, for any two symbolic 
sequences that differ only by their first symbol s(x0), their 
originating intervals also mirror each other exactly about xc. 
Therefore, for simplicity, the computations for the symbolic 

Fig.  7. The logical flow diagram of the proposed initial condition estimation (x́0) algorithm from 𝒮n+1. 
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sequence beginning with s(x0) = 1 is performed on the sub-
interval that has a reverse orientation of 𝐼00 = [0,0.5]. 

From s(x1) onwards, let us denote the boundaries of the i‒1th 
sub-interval 𝐼𝒮𝑖𝑖−1 as A(i‒1) and B(i‒1). Therefore, the 

corresponding length of the sub-interval is given by ℓ(i‒1) = 
B(i‒1) ‒ A(i‒1) and δ(i‒1) = ℓ(i‒1)/2µ  determines by how much 
one boundary needs to be shifted towards the other for creating 
the ith sub-interval. To evaluate the initial condition, the 
procedure is as follows: 

1. For the interval 𝐼00, i.e. for T0(x0), the boundaries are 
referred to as A(0) = 0 and B(0) = 0.5 and ℓ(0) = B(0) ‒ 
A(0) = 0.5 ‒ 0 = 0.5. Similarly, by the previous 

proposition, the boundaries for 𝐼10 is A(0) = 0.5 and B(0) 
= 0 and ℓ(0) = B(0) ‒ A(0) = 0 ‒ 0.5 = ‒ 0.5. The negative 
value of the length is taken care of by the orientation of 
the symbols in the sequence.  

2. From s(x1) onwards, the following step is repeated until 
s(xn). For i = 1, 2, …, n‒1: 

 αi is even, A(i) = A(i‒1) and B(i) =  A(i‒1) + δ(i‒1) 

 αi is odd, A(i) = B(i‒1) ‒ δ(i‒1) and B(i) =  B(i‒1) 
3. When the operation is performed with µ < 1, the 

estimated initial condition x0́ is scaled by a factor of µ , 
resulting in x́0 ∊ [0, µ] which needs to be scaled back into 
x́0 ∊ I = [0,1]. Also, if 𝒮n+1 had s(x0) = 1, the final sub-

interval needs to be mirrored back into 𝐼10 = [0.5,1]. 
Depending on the orientation of the sub-interval  𝐼𝒮𝑛+1𝑛  of 

the nth iteration, keeping the conditions in mind, we have 
four cases for determining the initial condition x0 ∊  𝐼𝒮𝑛+1𝑛 : 

 If αn is even and s(x0) = 0, x0́ = A(n)/µ  

 If αn is odd and s(x0) = 0, x́0 = B(n)/µ 

 If αn is even and s(x0) = 1, x0́ = 1 ‒ [A(n)/µ] 

 If αn is odd and s(x0) = 1, x́0 = 1 ‒ [B(n)/µ] 
This has been summarised into a flow diagram in Fig. 7. The 

algorithm has been employed to confirm that the initial 
conditions originating from I for a range of control parameters 
is retrieved entirely as can be verified by the results in section 
VII.  

VII. EVALUATION OF THE ALGORITHM 

The functionality of the stated algorithm has been simulated 
and tested in a math processor (MatLab) with a set of initial 
conditions covering the entire state space I = [0,1]. A detailed 
insight regarding the behaviour of the algorithm in terms of 
number of symbols used, the resolution of the initial condition, 
and change in the parameter µ , are shown through various cases 
of test scenarios. The parameters for the tests are chosen in the 
range of µ  = [0.75,1]. 

In order to generate the symbolic sequences for the tests, the 
selection of initial conditions from the state space I = [0,1] is 
done by dividing I into smaller fragments of size 1/2θ where θ ∊ ℕ0. The set of initial conditions 𝒳θ can be defined as 𝒳θ = 
{𝑥0𝑝 | 𝑥0𝑝 = p/2θ} ⊂ ℝ where 𝑥0𝑝 is the pth initial condition and 
index p = 0, 1, 2, …, 2θ implying 𝒳θ contains 2θ+1 elements. 
The set of initial conditions 𝒳8 is chosen for most of the cases 
which contains total of 257 real valued test points within I = 
[0,1]. 

The difference between the actual and the estimated initial 
condition is expressed as percent error εp = [(𝑥0𝑝 − �́�0𝑝)/I]×100= 

100(𝑥0𝑝 − �́�0𝑝) where 𝑥0𝑝 ∊ 𝒳θ is the actual input initial condition 

and �́�0𝑝 is the corresponding estimated value of the initial 
condition form symbolic sequence. The elements of 𝒳8 are 
iterated to produce a symbolic sequence of length 16. The 
sequences are used to estimate the respective initial conditions 

Fig.  8. The absolute error between the set of actual and the estimated 
initial conditions for µ = 0.75 using 16 symbols. 

(a)                                                  (b) 
Fig.  9. The (a) absolute error percentage |εp| and (b) its log(|εp|) 
calculated for initial conditions with gradually increasing length of 𝒮. 

(a)                                              (b) 
Fig.  10. The change in logarithmic maximum percent error ln(|εmax|) 
against (a) parameters 0.75, 0.85, 0.95 over a range of iterations (up to 
32 symbols) and (b)  iterations 8, 16, 32 over a range of parameters 
[0.75,1]. 
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using the algorithm and each of the errors, εp is plotted against 
its corresponding 𝑥0𝑝 (Fig. 8). 

To observe how the magnitude of error behaves when the 
number of symbols considered for estimation are increased, εp 
is calculated and plotted in Fig. 9 (a), at µ  = 0.75 for all 𝑥0𝑝, 
estimated for various length of symbols, where the length of 
symbols used for estimation was set each time from 1-32. The 
graph in Fig. 9 (a) shows an exponential drop in the maximum 
error εmax = max(|εp|) with the increase in number of iterations. 
To better observe the reduction in error over the count of 
symbols used, the logarithmic value of each |εp|, is plotted in 
(Fig. 9 (b)). 

Predictably, the εp also depend on the parameter acting on the 
map during the generation of the symbolic sequences. The 
logarithmic εmax of the state-space has been plotted and 
compared (in Fig. 10 (a)) for three different cases of parameters 
µ  = 0.75, µ  = 0.85 and µ  = 0.95 across the number of symbols 
used. It can be seen that the maximum error decreases with 
increase in parameter value. If the number of iterations is fixed, 
then εmax over a range of parameter [0.5,1], has a decreasing 
tendency. Three cases, with iterations 8, 16 and 32, is shown in 
Fig. 10 (b). The rate of decrement of εmax increases with an 
increase in the number of symbol chosen. Thus, it is easily 
observed from the error trends that an optimum choice of 
iterations for an expected range parameter value can lead to a 
feasible system. 

The accuracy of the estimated initial condition also depends 
on how fine the test points were chosen as a set of inputs in the 
first place. Performance of the algorithm is tested for nine sets 
of initial conditions with different resolutions, from 𝒳8–𝒳16. 
Fig. 11 (a and b) shows the εmax over the range of resolution for 

two cases of parameter values, µ  = 0.75 and µ  = 0.95, calculated 
using 16 symbols. The εmax shows a marked increase for the 
resolutions higher than 𝒳8. In Fig. 11 (c), εmax for µ  = 0.85 is 
also plotted, which shows similar trend. Using 32 symbols for 
calculating εmax with µ  = 0.85, as in Fig. 11 (d) however, shows 
that the accuracy improves for higher resolutions with 
increment in number of symbols considered.  

For any application, since it is expected that the number of 
iterations to be performed needs to be fixed, while choosing it, 
we must consider relating the error to the range within which 
the parameter of the implemented tent map circuit is likely to 
vary as well as the maximum resolution desired for the 
converted outcome. In the practical implementation, for an 
expected range of parameters and a fixed resolution, the choice 
of the number of iterations is directly related to the desired level 
of accuracy of the estimated outcome. The observations 
described until now can be utilised for software based 
applications. However, in a hardware oriented physical system, 
such fine structuring may not be observed because of the noise 
in the map circuit. The εmax might measure higher due to the 
signal offsets depending on the component specifications. 

VIII. HARDWARE IMPLEMENTATION 

To evaluate the proposed algorithm on a physical system, we 
have implemented a tent map hardware adapted from the circuit 
implementation described in [14] (Fig. 12). A single tent map 
unit is used for iterations with the help of a two-stage sample-
and-hold (S/H) feedback loop with a comparator in the input 
stage to generate the symbol for each iteration. The S/H loop is 
driven with anti-phase clocks using a microcontroller. A ramp 
function of 0–1 V is chosen as the set of input points to the 
circuit. We are taking symbols up to 16 bits for the estimation 
of each initial input point and operated the algorithm on the 
collected symbols. 

In order to determine the map parameter, an input signal of 
500 mV is separately iterated through the map up to 16 bits and 
parameter has been estimated to be approximately 0.90502 
using the algorithm given in IV. 

The 0–1 V ramp is input to the circuit and the estimation 
algorithm is executed using both 8 and 16 bit long sequences. 

                           (c)                                                    (d) 
Fig.  11. The increase in εmax over 𝒳8–𝒳16 for (a) µ = 0.75 and (b) µ = 
0.95. There is a marked increase in εmax after 𝒳8 (symbols used: 16). 
The accuracy improves with increasing number of symbols, as seen in 
the plots generated for (c) 16 and (d) 32 symbols used for the 
estimation (µ = 0.85). 

                       (a)                                                   (b) 

Fig.  12. Hardware implementation of tent map, as adapted from the 
circuit given in [14]. 
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The difference (εp) between the algorithm estimated outcomes 
and the actual input signals are calculated and plotted for 8 and 
16 symbols. The results are shown in Fig. 13 (a and b). 

To understand the errors better, the presence of noise in the 
physical system and the affected behaviour of the symbolic 
dynamics can be observed in further detail. When noise in the 
circuit gets multiplied over the iterations the signatures are 
affected causing the symbols to constantly flip about the critical 
point xc. A range of 0−40dB signal-to-noise-ratio (SNR) is 
studied to see how noise affect the symbolic dynamics. For 
simulation, noise is added to every iterate of an orbit 𝒪T using 
additive white Gaussian Noise (awgn(.)) function. The 
normalised mean of the number of symbols that flipped per 
iteration per decade change in noise in the entire state space I 
for 𝒳8 is shown in Fig. 14. It can be noticed that almost 50% of 
the orbits in 𝒳8 experience bit flipping due to noise, with 
gradually decreasing trend as the SNR improves. However, 
length of the noise free sequences can still be improvised with 
the aid of suitable filtering algorithms [18,19], which, at the 
moment, is beyond the scope of this article. 

IX. CONCLUSION 

In this paper, we have proposed a method of analogue-to-
digital conversion using chaotic dynamics. In this approach, the 
signal to be measured is fed as initial condition to a unimodal 
chaotic map, and the resulting dynamical evolution contains the 
information about the initial condition. This is extracted using 
the symbolic sequence generated by the dynamics. So far, the 
main problem in practical adoption of this approach was that 
non-idealities in the map function in any practical 
implementation would make the measurement erroneous. In 
this paper, we have reported an algorithmic procedure to solve 
the critical problems posed by non-idealities of the map 
function used to generate the symbolic sequence. 

We have shown that the information regarding the initial 
condition can still be recovered through a suitable interval 
arithmetic that employs non-uniform partitioning. The 
algorithm computes the shift in the partitions based on the 
actual value of the parameter of the map. Intervals visited by 
the dynamics could be traced back across the symbolic 
sequence and initial condition could be estimated with a 
reasonable accuracy. Along the way we had to solve the 
problem posed by the fact that while tracing back one has to 
apply the inverse of the map, but for each value two possible 
inverses exist. Since the parameter of the map is likely to 

fluctuate in a practical implementation, our algorithm also 
estimates the map parameter from the symbolic sequence and 
then uses that to compute the shift in the partition boundaries. 

The accuracy of measurement was broadly studied through 
both simulation and hardware implementation. The precision is 
found to be dependent on the map parameter and number of 
iterations considered. There is an optimum range for the 
number of iterations if one knows the range within which the 
map parameter is expected to vary. For the conditions 
prevailing in practical implementations, a symbol length of 16 
proved to be adequate for an effective estimation. Although 
noise in the system reduces a substantial number of meaningful 
symbols that can be accessed for processing, appropriate 
treatment for the noise can be incorporated to improve the 
quality of the symbolic trajectory. Performance can be further 
improved through optimization of the resource consumption, 
which offers scope of future work in this direction. 

In practical terms, signal measurement using chaotic maps 
will have several benefits over the conventional ADC 
techniques in terms of resource consumption. Given the 
present-day ADC techniques, a large number of comparators 
are involved corresponding to the bit precision requirement and 
the structure gets doubled each time a bit is increased, as seen 
in the flash ADCs. Also, other techniques make use of 
additional digital to analogue converters (DACs) to compare 
the output of each stage of conversion and feedback the 
difference for subsequent stages as seen in sigma-delta, 
pipelined and successive-approximation ADCs. Chaotic 
measurement approach however saves resources considerably 
as it uses the same structure iteratively and bits are generated 
about the map threshold involving a single comparator. 

                         (a)                                                    (b) 
Fig.  13. The difference between the estimated initial conditions and 
the actual initial conditions are shown for (a) 8 and (b) 16 symbols. 

Fig.   14. The number of symbols flipped by the noise for every 
iteration over the state space I is counted and normalised (by dividing 
the count by the number of initial conditions considered in 𝒳8). The 
graph shows the normalized mean count of the number of bits flipped 
across I for every length of symbolic sequence for a range of SNR 0-
40dB. 
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