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Supersaturated designs are very cost-effective to scientists and engineers at the primary stage of 
scientific investigation. This article describes a method of constructing supersaturated designs from 
balanced incomplete block designs that is a generalization of the method of Lin for constructing 
these designs and a more general approach to constructing these designs. 
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Because the main objective of a screening experiment 
is to identify a few significant factors for further studies, 
scientists and engineers require designs with the minimum 
number of runs. Many saturated designs (designs with the 
number of factors m equal to n - 1, where n is the number 
of runs) have proved useful for this purpose. There are sit- 
uations, however, in which scientists and engineers cannot 
even afford the number of runs required for these designs. 

Consider an example in which a car manufacturer is con- 
ducting a passenger-impact crash test on a planned new 
four-wheel-drive (4WD) range. The objective is to find a 
subset of 54 safety features such as modified airbags, bull- 
bar, bonded windscreen, (twin front) crush cans, and so 
forth to be included in the new car’s total safety system. A 
suitable design for this test is a Hadamard matrix of order 
56 that requires 56 runs (car prototypes). The question is 
what type of design is to be used when the research and 
development of the car manufacturer allows at most half of 
the number of required cars for this test. 

Designs suitable for this example are called supersatu- 
rated designs. These designs were introduced by Booth and 
Cox (1962) and were recently studied further by Lin (1993a) 
and Wu (1993) (see also Satterthwaite 1959). These designs 
are very cost-effective with respect to the number of runs 
and as such are highly desirable in the context of industrial 
experimentation. This article describes a method of con- 
structing supersaturated designs from balanced incomplete 
block designs (BIBD’s), and a more general approach to 
constructing these designs. 

1. CRITERIA FOR COMPARING 
SUPERSATURATED DESIGNS 

Let X be an n x m design matrix of a design with n runs 
(rows) and m two-level factors (columns) each with in of 
+1’s or high-level values and in of -1’s or low-level values 
(m 2 n - 1). Let sij b e t e e ement h 1 in the ith row and jth 
column of X’X. Booth and Cox (1962) proposed as a cri- 
terion for comparing designs the minimization of ave(s2), 

where ave(s2) = ,& s&/(y). Clearly for orthogonal de- 
signs ave(s2) = 0. 

The rationale of the BoothCox criterion can be ex- 
plained by using the singular value decomposition to de- 
compose X as UR112V’, where matrices U and V are or- 
thogonal and A is diagonal. It can then be shown that 
X’X and XX’ share the same set of nonzero eigenval- 
ues Xi, X2,. . . ,X,, where T = rank(X’X) = rank(XX’). 
Moreover, tr(X’X) = tr(XX’) = CXi = mn = const. 
and tr((X’X)“) = tr((XX’)2) = XX:. Thus minimizing 
Ci.,j s:~, which is equivalent to minimizing tr((X’X)2), 
is the same as making the Xi’s as equal as possible with 
C Xi = const. This in a sense is an approximation of the 
A-optimality criterion, which requires the minimization of 
cq’, or the D-optimality criterion, which requires the 
maximization of II& (see Kiefer 1959). 

Because the sum of each column of X is 0, the sum 
of the elements of XX’ is O-that is, the sum of the off- 
diagonal elements of XX’ equal to -nm (nm is the sum of 
the diagonal elements of XX’). Thus, the sum of squares 
of the elements of XX’ (and X’X) will reach the minimum 
if XX’ is of the form (m - x:)In + zJ,, where z = -m/ 
(n - 1) [assuming that m is divisible by (n - l)], 1, is the 
identity matrix, and J, is the n x n matrix of 1’s. In this 
case ave(s2) = n(m2 + (n - 1)~~ - mn)/(m(m - 1)) = 
n2(m - n + l)/((n - l)(m - 1)). This quantity can be used 
as a lower bound for ave(s2) when m is divisible by n - 1. 
Note that for m = n - 1 this quantity becomes 0, and for 
m = 2(n - 1) this quantity becomes n2/(2n - 3). 

Another reasonable criterion for comparing supersatu- 
rated designs is to minimize the frequency of SQ = &s,,,, 
where smax = max ]sij ]. This criterion and the ave(s2) cri- 
terion typically agree on which of the two designs is better. 
There are, however, examples that show that these two cri- 
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teria can lead to different designs. Consider the follow- 
ing candidate designs for (n, m) = (24,30). Design (A) 
has 241 sij = 0, 187 sij = f4, seven aij = ~t8, and 
ave(s2) = 7.91. Design (B) has 198 sij = 0, 237 sij = f4, 
and ave(s2) = 8.72. Design (B) is not necessarily better than 
(A) because it has cleared only seven sij = f8 at the cost of 
having 43 additional nonorthogonal pairs of columns. It is, 
however, preferable for experimenters looking for designs 
with a prespecified small s,,. Designs with a prespecified 
s,,, were considered by Lin (1995). In this article, unless 
mentioned otherwise, the popular ave(s2) criterion will be 
used. 

(A) 
++++++---+-++++++--+--+--++++- 
+-++--++--++-++-++---++-++---- 
-+--++-+++----+-+---+++--+- 
++-++++++-+----+--++--+-+++-++ 
++-++--+---+---++++--------+-- 
--++-+-++----+-+-+-+++---+++-+ 
--+-+++--+-+--++-+-+--+++--+-+ 
+------+++-+++-----+--+------f 
++-+-----++---++----+++++-++-+ 
-+--+---+-++++++-+t+++++-+---- 
- - -++-+-++-++-+--++--+--++++-+ 
+++-+-+++-+-+-+-+--++--+-+-+-+ 
-+----+------+-----+---++++++- 
--+++--+---++---+-+++++++-+-++ 
-+++++--+++-++--++-----++-+--- 
+-+------++-+--++++++---++--+- 
+-+-+-++++---+++--+--+-+--+-+- 
+++--++-----+----++-+f+---+--- 
- - - ++++--++--+--+-++++-----+-- 

--+-+++-++++--+----+--+-+--+- 
+----+--+-++--+-++-+-+-+--+-++ 
-++---++++++-•--+++-+-++-+++++ 
-++y-+-+--++++++--+--+--+--+++ 
+--+-++-f---+++++++-+-+++--+++ 

(B) 
-+--++-+t+-++---++++--++--+-+- 
-+++++-++-f---+----+-+~+~++~~~ 
+-++-+++-------+++---+++--+++- 
+++-+-+--+++-+++-+----+++----- 
-++----++-+++--+--+----+---+-f 
--+-++--+-+-+-++-++++++-+--++- 
-+-+-++-+++-+++-++---+-++--+++ 
-+--+----------++---++f--+- 

--++--+-+-++++++--+++++-+-+-+ 
+-+-----+++-++-++--+-++-+++--- 
-+++---+-+-+-f---f++++--+--+-- 
++++++-----+++--------+-++++++ 
- - _ - -++---++-+----+++++++-+--+ 
--+++-+++++--+--+-+-+-+--+-+c- 
++----+--+----*---++-C+--f-++f 
++-+-+-++--+--+++++-+++-++---+ 
+---+++-++-++-------f+----+f-- 
+----+-+-++--+-+-f-+-~~~~+~~++ 
+++++++--++-+--++++++--+-+++-+ 
-+++--+-+--+-++++--++-----+-++ 
+-+-++++----+++-+-+-----+----C 
+--+----+---+++--++-+-++--+--- 
- - - +--++-++++-++-++-----+++-+- 
f---+-+++-++--+-++-++--+++++++ 

2. CONSTRUCTING SUPERSATURATED 
DESIGNS FROM BIBD’S 

Lin (1993a) provided a very simple method of construct- 
ing supersaturated designs of size (n, m) = (2t, 4t - 2) us- 
ing a half fraction of a Hadamard matrix (HFHM) of order 
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4t (t 2 3). When the Hadamard matrix is of normalized 
form-that is, when its first row and first columns are all 
Sl’s-it is known that this half fraction relates to a BIBD 
with u = 2t - 1, b = 4t - 2, r = 2t - 2, k = t - 1, and X 
= t-2 (corollary 4.1 of Hedayat and Wallis 1978). HFHM- 
based supersaturated designs with t = 4,8,10, and 14 are 
missing in table 2 of Lin (1993a) because the correspond- 
ing HFHM’s relate to BIBD’s with repeated blocks. These 
missing designs can be easily constructed if we can find 
a solution for the corresponding BIBD’s without repeated 
blocks. One solution is the cyclic solution [see sec. 3.4 of 
John and Williams (1995) for methods of constructing good 
cyclic incomplete block designs]. 

The following is the design matrix X of a supersaturated 
design of size (n, m) = (8,14) constructed from a cyclic 
BIBD of the preceding series with t = 4 and two initial 
blocks (2 3 7) and (2 3 5). Because of the cyclic nature of 
this supersaturated design, it is possible to generate X given 
just the first and the eighth columns of X, which correspond 
to the two initial blocks. 

++++++++++++++ 
-+---++---+-++ 
+-+---++---+-+ 
++-f---f+---+- 
-++-+---++---+ 
--++-+-+-++--- 

--++-+-+-++-- 
+---++---+-++- 

Table 1 lists the generating vectors of BIBD-based su- 
persaturated designs. To generate designs from vectors in 
Table 1, first transpose the first generating row vector to get 
a column vector. Second, generate the first 2t - 1 columns 
from this (2t - 1) x 1 column vector by cyclic permutation 
downward. Then repeat these two steps with the second 
generating row vector. Finally, put +l at the upper end 
of each of the generated columns. The 4t - 2 columns 
constructed this way form a design matrix X of a supersat- 
urated design of size (n, m) = (2t, 4t - 2). 

Remarks 
1. BIBD-based designs have XX’ matrix of the form 

(m + 2)In - 2J,. These designs, with ave(s2) = n2/(2r1. 
- 3) or approximately in when n is large enough, are 
ave( s2) optimal. 

2. Deleting a column of a supersaturated design results 
in deleting the corresponding row and column of the X’X 
matrix of this design. Because the sum of squares of each 
row (or column) of the X’X matrix of BIBD-based designs 
equals n(m + 2) (= 2n2), deleting a column of X results in 
a design with the same ave(s2) (and smax). It is not difficult 
to show that designs obtained by deleting a column from 
(or adding a column to) a BIBD-based design are ave(s2) 
optimal. 

3. In general, when not all m columns of a BIBD-based 
design are to be used, deleting two or more columns of 
this design might not result in a good design. A general 
algorithm to construct designs for such cases will therefore 
be considered in Section 3. 
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Table 1. Generating Vectors of B/SD-Based Supersaturated Designs 
of Size (n. m) = (2t, 4t - 2), 3 < t 5 15 

t n m Generating vectors 

71 

3 

4’ 

5 

6 

7 

8’ 

9 

IO* 

11 

12 

13* 

14* 

15 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

IO 

14 

18 

22 

26 

30 

34 

38 

42 

46 

50 

54 

58 

(+ --- +) 

(- + - + -) 
(-+ +---+) 

(-+ +-+--) 
(+ +-+---+-) 

(-+ + +--+--) 
(-+ + +--+---+) 

(+ ---- + + - + - +) 

(-+ + +-+ +--+---) 

(++-+--+-+---+) 

(+-+ + + +--+----+-) 
(-+--+ +-+---+ + +-) 

(---+-+ +-+-+-+ + +--) 

(+ +--+ +---+--+--+ +) 

(-+ +-+ + + +--+---+---+) 
(-+-+ +---+-+ + +----+ +) 

(+ + + +-+--+----+ +---+-+) 

(-++--++--+-+++----+-+) 
(+ +--+ +-+-+-----+ + + +-+--) 

(-+-+----+--+--+ + + +--+ + +) 
(-+ +-+ +--+-+ + + +--+ +-+-----) 

(-+---++++-+-++---++-+-+--) 

(--+++-+--+--+-++-+-+-+---++) 

(+---+ +-------+ +-+ + +-+--+ + + +) 

(+ +---+----+-+ + + + + +--+ +-+----+) 
(+---+--+-++---++-+++-+-+--++-) 

* t value associated with new design. 

4. Different generating arrays (obtained from differ- 
ent cyclic BIBD’s) might result in designs with the 
same ave(s2) but different s,,,. For example, for (n,m) 
= (26,50), the s,,, of BIBD-based designs can be 6, 8, 
10, and so forth. 

3. A GENERAL ALGORITHM 
A supersaturated design can be considered as a near- 

orthogonal array (NOA) with columns at two levels 
(Nguyen in press). Before describing the NOA algorithm, 
I will present some matrix results. Without loss of gen- 
erality, let the ith and 21th rows of X be two row vectors 
of the form (fl i’) and (- 1 u’), where i’ and u’ are two 
1 x (m - 1) row vectors. It is not difficult to show that 
the effect on X’X obtained by swapping of the signs of the 
first elements of these two rows of X is the same as adding 
the following matrix to the X’X matrix: 

where 0,-r is the (m - 1) x (m - 1) matrix of 0’s. 

(1) 

The NOA algorithm based on the preceding matrix re- 
sults has two steps: 

1. Construct a starting design by allocating randomly 
half of the entries of each column of X to fl and half 
to -1. Form X’X and calculate f = Cicj s$. 

2. For column j of X (j = 1,2, . . . , m) repeat searching 
a pair of ith and uth elements having different signs in this 
column such that the swap of these two elements will result 
in the biggest reduction in f. If the search is successful, 
update f, X, and X’X using (1). If f cannot be reduced 
further, go to the next column. 

Step 2 is repeated until f = 0 or f reaches its lower bound 
(when m is divisible by n - 1) or f cannot be reduced by 
any further sign-swaps. 

The NOA algorithm is a typical example of an inter- 
change algorithm. Other examples of this type of algorithm 
in different design settings were discussed by Nguyen and 
Williams (1993) and Nguyen (1994). The algorithms of 
Booth and Cox (1962) and Lin (1995) for constructing su- 
persaturated designs and of Lin (1993b) for constructing 
saturated designs are examples of exchange algorithms (see 
Nguyen and Miller 1992). In this class of algorithms, a 
column of X is replaced by an entirely new column from 
the candidate list. 

TECHNOMETRICS, FEBRUARY 1996, VOL. 38, NO. 1 
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Remarks 
1. Because X’X is symmetric, the NOA algorithm only 

needs to work with the upper diagonal elements. 
2. To calculate the change in f and update f in Step 2, 

note that only the nonzero elements of the vector 2(u’ - i’) 
will affect the increase (or decrease) of a corresponding 
element of X’X. 

3. Among several designs generated by the NOA algo- 
rithm with same f [or ave(s2)] but with different s,,,‘s, 
the one with the smallest smax is chosen. 

4. To replace the ave(s2) criterion by the smax criterion, 
f in the preceding algorithm is replaced by fsmax, the fre- 
quency of sij = &s,,. 

4. COMPARISON WITH OTHER DESIGNS 
For designs with (n, m) = (2t,4t - 2) and t = 3,5, 

6,7,9,11,12, and 15, the HFHM-based supersaturated de- 
signs of Lin (1993a) and my BIBD-based designs have the 
same value of ave(s2) and rmax (the maximum correlation in 
terms of the absolute value between two columns of X cal- 
culated as s max/n). For t = 4,8,10,13, and 14, my BIBD- 
based designs are new. These designs were obtained from 
the generating vectors in Table 1. They are ave(s2) optimal 
(Table 2). As mentioned in Section 2, deleting a column 
of these designs does not change ave(s2). The design for 
(n, m) = (26,49) in Table 2 was obtained by deleting a col- 
umn of a design for (n, m) = (26,50) (see Remark 3 of Sec. 
2). This design has the same ave(s2) as the corresponding 
design of Lin (1993a) but has a smaller r,,, than Lin’s. 

Designs for (n,m) = (12,16), (12, 18), (12, 24), (18, 24), 
(18, 30), (18, 36), and (24, 30) in Table 2 were constructed 
by the NOA algorithm. The design for (n, m) = (24,30) is 
design (A) in Section 1. An alternative design [design (B) in 
Sec. l), obtained by the smax criterion, has ave(s”) = 8.72 

Table 2. Comparison of Selected Designs in Terms of ave(s’) 
(the smaller the better) 

Booth 
n m & cox Lin WU 

12 22 - 6.86 7.40 
16 7.06 6.27 6.00 
18 9.68 6.59 6.59 
24 10.26 - 8.17 

18 34 - 9.82 - 
24 13.04 9.22 - 
30 15.34 9.74 - 
36 16.44 - - 

24 46 - 12.80 13.29 
30 12.06 11.59 9.27 

6 10 - 4.00 - 
8 14 - - - 

10 18 - 5.88 - 
14 26 - 7.84 - 
16 30 - - - 
20 38 - - 11.36 
22 42 - 11.80 - 
26 50 - - - 
26 49 - 13.80 - 
28 54 - - 15.33 
30 58 - 15.79 - 

a ave$) optimal design. 
b rmax 01 Nguyen’s design. 

Nguyen rm, 
b 

6.86a ,333 
5.20 ,333 
5.96 ,333 
7.83 .333 
9.82= ,333 
7.13 ,333 
9.37 .333 

10.96 ,333 
1 2.80a .333 

7.91 .333 

4.00a ,333 
4.92= .500 
5.8aa .600 
7.84a ,429 
8.83a ,250 

10.81 a .400 
11 .80a ,273 
1 3.80a ,230 
1 3.80a .230 
14.79a ,285 
15.79= ,200 
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and rmax = .166. My designs improve those of Booth and 
Cox (1962), Lin (1993a), and Wu (1993) not only with re- 
spect to ave(s2) but also with respect to r,,,. For example, 
for (n, m) = (12,16) and (12, 24), although the designs of 
Wu (1993) have 45 and 141 sij = &4’s, respectively, my 
designs have only 34 sij = f4’s for the former and 135 
sij = f4’s for the latter, where 4 is smax of these designs. 
For (n,m) = (24,30), although the design of Wu (1993) 
has 63 sij = &8’s, my corresponding design [design (B) in 
Sec. 1] has s,, = 4. 

Note that, in the passenger-impact crash test in the Intro- 
duction, the airbag (first factor) explodes and starts to de- 
flate within the spell of an eyeblink. If the car-manufacturer 
engineers suspect that the bull-bar (second factor) distorts 
this tuning (because a 4WD has an inherently rigid chassis 
structure), using my design for (n, m) = (28,54), the in- 
teraction between these two factors can be tested. In Wu’s 
design, this interaction is fully aliased with the 28th factor. 

5. CONCLUDING REMARKS 
Although it is beyond the scope of this article to com- 

pare the NOA algorithm with the one of Lin (1993b) 
for constructing saturated designs, it is worth mentioning 
some saturated designs constructed by NOA that improve 
on Lin’s designs. For n = 17, my saturated design has 
ave(s2) = 1.94 as ‘compared to 2.06 of Lin’s corresponding 
design. Although Lin’s design has 6 sij = f5, mine has 
S - 3. The following is my saturated design for n = 22 max - 
with ave(s2) = 3.64 as compared to 4.33 of Lin’s corre- 
sponding design. Although Lin’s design has 6 sij = &6, 
mine has s,,, = 2. 

+++-+----+--+++-++-+-+ 
++++--+---++--+-+++-++ 
+--+----++-f-f--+--++- 
f------f--++---+-+-+-+ 
+-++++-+-+-----+-++-++ 
++--++-+--+--+--+---f- 
++--+-+--+-++-----+-+- 
+++++++++-++++----++++ 
++-+++--+--++-+++----+ 
++-+-++------+-+-+++-- 
++-+--++-++-+++++-++-+ 
+-+--+------f-f+--+++- 
+----++++---+---++-+++ 
+-++++++-+-+--+----+-- 
+-+++--++--++++-+++--- 
+++---++++-+-+++----++ 
+--++-+-+-+-++++-+--+- 
+----+--+++--++---+--+ 
++++---++++-+----+---- 
+-+--++--+++++-+++---- 
+-+-+-+-+-+----++-++-+ 
++--++-+++++--+++++++- 

Note that if the condition of equal occurrence of 
+1’s and -1’s for the entries in each column is re- 
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laxed, the Kronecker product of a Hadamard of order 
2 and a saturated design for n = 11 and ave(s2) = 
1 will produce a design saturated for n = 22 with 
ave(s’) = 1.90. However, 10 columns of this design 
has 12 entries that equal -1 but only 10 entries that 
equal +l 

An additional application of the NOA algorithm is to 
augment an existing supersaturated design with additional 
two-level columns. In the passenger-impact crash test in 
the Introduction, if the engineers decide to include the 55th 
safety feature, say computerized seat belt, in the test, they 
can augment the design for (n,m) = (28,54) in Table 2 
with an additional two-level column to obtain a design for 
(n,m) = (28,55) with ave(s2) = 15.31 and s,,, = .285. 
The extension of this idea to construct orthogonal and 
near-orthogonal arrays with mixed levels was discussed by 
Nguyen (in press). 

The running time of the NOA algorithm varies with m 
and n. For design of size (n, m) = (12,66), a solution with 
ave(s2) = 11.08 (optimal) and smax = 4 is obtained in 25 
out of 100 tries. The average time per try for this com- 
bination is about four seconds on a 66 MHz 486DX2 PC. 
Naturally, NOA cannot improve ave(s2) of the BIBD-type 
designs. The biggest Hadamard matrix NOA can construct 
is of order 20. 

Data from an experiment using supersaturated designs 
can be analyzed by stepwise selection or subset selection 
procedure (e.g., see Miller 1990). Examples of this type of 
analysis were given by Lin (1993a, 1995). 

The NOA algorithm is implemented in a PASCAL 
program with the same name. Please contact me at 
namky@forprod.csiro.au regarding the availability of this 
program and the CIB program that I used to obtain cyclic 
BIBD solutions in Section 2. 
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