Purdue University

Purdue e-Pubs

Department of Computer Science Technical Reports

Department of Computer Science

1976

An Algorithmic Approach to the Detection and Prevention of Plagiarism

Karl J. Ottenstein

Report Number: 76-200

Ottenstein, Karl J., "An Algorithmic Approach to the Detection and Prevention of Plagiarism" (1976). *Department of Computer Science Technical Reports.* Paper 142. https://docs.lib.purdue.edu/cstech/142

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

AN ALGORITHMIC APPROACH TO THE DETECTION AND PREVENTION OF PLAGIARISM

•

:

.

.

.

-

Karl J. Ottenstein Computer Sciences Department Purdue University West Lafayette, Indiana 47907

CSD-TR 200 August 1976

.

.

- _____-

AN ALGORITHMIC APPROACH TO THE DETECTION AND PREVENTION OF PLAGIARISM

1

-1

Karl J. Ottenstein

Computer Sciences Department Purdue University West Lafayette, Indiana 47907

The significant problem of detecting (nearly) identical student homework papers is non-trivial since a grader for a large class cannot remember all previously graded papers while examining the current one. This problem can be reduced by quantifying papers in such a way that equivalent ones are given equal values. Here we discuss one possible quantification which works well when applied to student computer programs.

The desired quantification is a function which maps the "homework space" into some value space. The ideal function, f, would impose a partitioning on the set of papers in the sense that if x and y are homework papers and the P, are partitions of the homework space with $x \in P$; and $y \in P$, then i=j iff f(x)=f(y). If f(x)=f(y) and x and y are unique, then one of x and y is a plagiarized version of the other. In other words, when all partitions have but one element, no cheating has occured. This ideal function is unobtainable for several reasons: it is possible for identical work to be performed independently, the semantic equivalence of two items cannot always be shown deterministically, and there is a subjective area between plagiarism and paraphrasing.

Our task, then, is to find a good approximation to this function. The approximation should at least map all potentially equivalent homework papers into the same partition. It may not guarantee accuracy in that two papers being in the same partition will not imply that they are <u>necessarily</u> plagiarized. If P_1 , P_2 , ... P_n are the ideal partitions, our approximation should create Q_1 , Q_2 , ... Q_m where each Q_i is either some P_j or the union of several P_j 's. That is, the partitions are merely cruder.

The constant functions satisfy our requirements for an approximation since only one partition will be created; but, they do not simplify our initial problem since all elements must be individually inspected for cheating. A function which maps a homework paper into the integer representing its length in characters will invariably create numerous partitions, but they will not be the desired Q_i: the replacement of one token by a

synonym of a different length will place plagiarized assignments in separate partitions. A length function based on the number of tokens would eliminate this problem, but will still group together totally unrelated assignments simply because they have the same length. A function which takes into account some measure of the information content of a homework paper should give us more accurate partitions.

Rny meaningful language can have its symbols classified into three sets:

- operators
- operands
- "syntactic sugar": symbols used only for readability

The information content of an element of a language, then, depends on the operators and operands, some function of which should lead to a good approximation to our ideal partitioning. This is simply a more formal description of the approach employed by [Bulut 1973].

In his study of student FORTRAN programs, Bulut counted the basic software science [Halstead 1972, 1977] parameters:

- 1, the number of unique operators
- h₂ the number of unique operands
- N₁ the total number of occurences of operators
- N₂ the total number of occurences of operands

He noted that "the probability of using: 1_1 and 1_2 symbols exactly N_1 and N_2 times in two different...[expressions] is very slim." Plagiarized copies were found by hand checking programs with identical 1_1 , 1_2 , N_1 , and N_2 values. Bulut observed that, as with the length function above, the results of this method are not affected by changes to operand names since such changes will not modify 1_2 or N_2 .

A program to count these four parameters for FORTRAN modules was written [Ottenstein 1976] and used to confirm Bulut's work. Table 1 shows the partitioning imposed on 47 student programs from CS 210 at Purdue University by the "software science method". In the formalism developed here, we consider this method a mapping of programs into 4-tuples, $(n_1, n_2, N_1, N_2) \in N \times N$ $\times N \times N$, where N denotes the set of natural numbers. Two partitions (R and B) have two programs in them; the rest have one. One program in partition B is a copy of the other, with slightly different comments and margining. The other pair is not as immediately detectable as being plagiarized because one author apparently changed all of the variable names and label numbers. Other programs with close correspondence of the parameters were

compared, but without positive results. Thus it seems that a good partitioning was obtained. Copies of the programs in partition R are included in Appendix A with the parameter counts.

The size of a program (in tokens) is given as column N in Table 1. Since $N=N_1+N_2$, the partitions created by the length function mentioned above are supersets of those created by the software science method. Here, the length function creates 10 partitions of size greater than one, while the software science method seems to have given us the ideal partitioning. So at least in this case, the additional information provided by N_1 and N_2 is well worth the small effort required to obtain it.

Bulut called the chances of two student programs having equal 4-tuples "slim". We can get a more quantitative probability estimate by observing that γ_1 , γ_2 , N_1 , and N_2 all appear to have somewhat normal distributions, in agreement with our intuition. (Appendix B gives the histograms for the four parameters.) In our particular sample, we have:

				•		
	<u>mean</u>	<u>median</u>	<u>mode</u>	<u>s.</u> d.	<u>min</u> 19	max
ካ 1	17.00	17	15	<u>s.d.</u> 2.07	13	24
ካ፞፞	35.38	35	35	3.93	27	45
N	145.77	139	135	19.30	116	195
Na	111.36	106	101	17.26	84	154

Assuming this normal distribution, there is clearly a greater likelihood of finding a pair of independently written programs with equal parameter values near the means as there is of finding such a pair with values on the tails. Thus, we can be more confident of a partition's accuracy as its individual parameter values approach the tails of their distribution curves.

Since the four parameters are not mutually independent, we use a multivariate normal density function, g, determined by the means vector, m=(17.00, 35.38, 145.77, 111.36), and the covariance matrix [C], $C_{1,j}=E(X_1-m_1)(X_j-m_j)$ with X=(n_1, n_2, N_1 , N_2), to get a feel for the closeness of a 4-tuple to the means vector. The expression g(X)/g(m) is 1 at X=m and approaches 0 as we move away from the mean. Evaluated at the 4-tuple X for partitions A and B, this expression results in 0.45 and 0.018, respectively. This indicates that the programs in partition B are very probably plagiarized (the partition is accurate), while those in A are less probably so. Visual inspection of the programs is clearly warranted in any case, but one would be particularly suspicious of those in partition B. Since the accuracy of the partitions varies according to the location of the 4-tuples in the distribution space, it would seem advantageous to find a partitioning function whose range has a constant distribution. The existence of such a function is not

known at present, although one would expect that if such a function were found, it would not be particularly accurate. In general, meaningful measurements of human behaviour produce uneven distributions.

Many alterations made by students to copied programs will be transparent to this method. Cosmetic transformations such as the repréering time independent statements, recommenting, reformatting of text, and renaming variables and labels will have no effect at all on n_1 , n_2 , N_1 or N_2 . Most non-cosmetic alterations fall into one of six well-defined impurity classes¹, all of which are detectable by a slightly more sophisticated counter. Unfortunately, a student who cheated on only part of a program will not be detected.

Since the parameter counting routine was developed for other purposes, its \$300 or so developement cost is not significant here: its running cost is about five cents (5¢) per 100 line student program on a CDC 6500. (This would be less were it not that the routine was written in ANSI-FORTRAN for portability and sel(-analysis.) Thus, this method of detecting plagiarism is both inexpensive and rapid. The preventive element mentioned in the title is simply the deterent created by making it difficult to cheat successfully.

It seems that this method can not only be applied to programs in other computer languages, but to any assignment which requires the cubmission of written material. Of course, programs are the only practical item for measurement since they are already in machine-readable form, but software science has been applied with some success to English [Kulm 1975, Halstead 1977] and one might hypothesize that similar results can be obtained there.

ACKNOWLEDGEMENTS

Special notes of thanks are due Dwight Andrews of Purdue University for collecting copies of his students' programs expressly for this study and to Professor Halstead, also at Purdue, for his encouragement and insights into software science.

- 'The impurity classes are [Bulut 1974]:
- self-cancelling operations
- (2) ambiguous usage of an operand
- (3) synonymous usages of operands
- (4) common subexpressions
- (5) unnecessary replacements
- (6) unfactored expressions

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			· .			-			· ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-			•	* .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•		· · · ·	-				5 [`]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			· -	-		7			
14 16 27 121 94 215 8 15 29 125 93 216 17 15 33 131 93 224 26 15 94 132 96 228 21 16 32 135 93 226 31 16 32 135 95 230 22 19 32 135 95 230 41 18 32 135 95 230 44 17 36 131 101 232 47 20 33 134 98 232 47 20 33 134 98 232 47 20 33 134 98 234 2 17 37 136 101 239 39 15 35 138 103 242 40 19 37 141 101 239 36 17 26 135 111<		Module	<u>.</u>	<u>12</u>	N_1	<u>N</u> 2	Ň		
14 16 27 121 94 215 8 15 29 125 93 216 17 15 33 125 93 214 26 15 94 132 96 228 22 19 32 135 93 226 31 16 32 135 95 230 41 18 32 135 95 230 41 18 32 135 95 230 41 18 32 135 95 230 44 17 36 131 101 232 47 20 33 134 98 232 11 18 92 123 105 234 2 17 37 136 101 239 36 17 28 133 103 242 40 19 37 141 101 239 36 17 28 135 111		25	15	1 1	110	Out	200		1
8 15 29 125 93 218 1 19 33 131 93 224 26 15 34 132 96 228 22 19 32 135 93 230 31 15 32 135 93 230 41 18 32 135 95 230 41 18 32 135 95 230 41 18 32 135 95 230 47 20 33 134 99 232 47 20 33 134 99 232 47 20 33 139 101 239 2 17 37 136 101 237 16 15 36 137 101 238 32 18 35 139 103 242 20 17 35			16						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	29			218		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		17	15	33	125		218		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	19	33		93	224		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		26`	15	34		96	228		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22		32	135	93	228		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				32		98	230		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			18			95			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J			32	135	95	230		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						99	232		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						101	232		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						105	222		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						101	237		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				36	137		238		•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15		138	101	239		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		36	17	28	139		242		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			18	36		103	242		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			19	37		101	242		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				35		105	<u>244</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		28			139	107			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					126				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				36	135				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					142				;
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				36	135	113	248		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		43	18	34	146	106	252		,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	15	33	143	111	254		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	15	42		112	256		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				35	139		256		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				35		<u>106</u>	<u> 256</u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				28			258		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							258		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>		153				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			163				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					151	127			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30		40	162	126	288		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						133			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		29		31		120	300		
7 24 34 182 143 325 42 15 40 195 147 342 1 25 19 45 193 154 347 1							<u> </u>		
<u>42 15 40 195 147 342</u> 25 19 45 193 154 347		34					321		
25 19 45 193 154 347							325		:
37 19 45 193 154 347							- 342		i
	١						347		
		↓ - <u>··</u> ····		<u>_</u>		·····			

1

•

-1

(A)

•,•

٠.

ų

· (B)

.

:

•

Tabla 1:

47 student program parameter values as partitioned by the software science method (left) and the length function (right).

·

L

· ·

s.

APPENDIX A

Source Listings of Programs in Partition B

PURDUE SOFTWARE SCIENCE FORTRAN ANALYZER VERSION 1. 0

.

b.

•

٠.

.

.

1.			N=1
2.			I 91 ≈0
3.			IF1=0
4.			IP1=0
5.1			102=0
б.			IF2=0
7.			IP2=0
8.	C		HAVE REFERENCED THE COUNTERS
9.			READ 111, KOTS, KETS, KETS
10		111	FORMAT (12, X, 12, X, 12)
21.			READ 120, MAX
12		120	FORMAT (12)
13.	С	*0	HAVE READ QUANTITIES ON HAND AND HEADER NUMBER
14. 15.			READ 100, NUM, ICODE, IOOTS, IOFTS, IOPTS
15. 16.			FORMAT (11, X, 14, X, 12, X, 12)
17.	C		HAVE READ A DATA CARD THE THREE SUCCEEDING IF STATEMENTS
18.	č		CHECK ØRDER QUANTITIES AGAINST QUATITIES ØN HAND. 'INSUFFICIENT QUANTITY' RECEIPT PRINTED IF APPLICABLE
1.9.			IF (100TS. LE. KOTS) GO TO 20
20.			PRINT 200, NUM, ICODE
21			PRINT 205
22.			PRINT 300
23.			GØ TØ 44
24.		20	IF (10FTS. LE. KFTS) 60 TO 30
25			PRINT 200, NUM, ICODE
26.			PRINT 205
27.			PRINT 300
28.			G0 T0 44
29.		30	IF (IOPTS, LE. KPTS) GO TO 40
30.	•		PRINT 200, NUM, ICODE
31.			PRINT 205
32.			PRINT 300
33.			GØ TØ 44
34.			IF ORDER CAN BE FILLED, COSTS ARE COMPUTED
35.	С		AND A RECEIPT PRINTED
36.		4 D	KOTS=KOTS-IDOTS
37.			KFTS=KFTS-I0FTS
38.			KPTS=KPTS-I0PTS
39.			QCBST=6.05+FLORT(IOQTS)
40.			FCOST=4. 15*FLOAT(IOFTS)
41. 42.			PC0ST=2. 25+FL0AT(10PT5)
43.			TØT≈QCØST+FCØST IF(N. EQ. 1) GØ TØ 66
44.			PRINT 200, NUM, ICODE
45.			GO TO 77
46.		66	PRINT 201. NUM, ICODE
47.			PRINT 210
4B.		•••	PRINT 220, IOUTS, QCOST
49.			PRINT 230, IOFTS, FCOST
50.			PRINT 240, IOPTS, PCOST
51.			PRINT 250, TOT
52.			PRINT 300
53. 1	C		AFTER THE RECEIPT IS PRINTED. THE COSTS FOR EACH STORE ARE
54.	C		UPDATED TO BE RECALLED AS A SUMMARY WHEN ALL CARDS ARE READ.
55.	С		SUMMARY VARIABLES HAVE APPROPIATE SUFFIXES,
56.	2		1 FOR STORE NUMBER 1 AND 2 FOR STORE NUMBER 2.
57.			IF(NUM. EQ. 1) 60 TO 33
58.			102=102+10QTS
	• •		

22

-

1.5

5

7

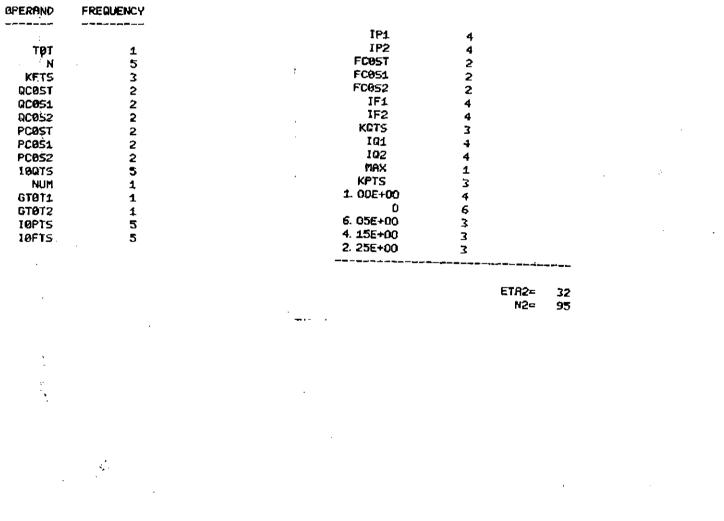
59. IF2=IF2+I0FTS 60. IP2≃IP2+I0PTS 61. QC052=6. 05+FL0AT(102) 62. FC052=4. 15+FL0RT(IF2) PC052=2. 25*FL0AT(IP2) 63. 64. 0T0T2=0C052+FC052+PC052 65. GØ TØ 44 33 T01=101+100TS 66. 67. IF1=IF1+I0FTS 68. IP1=IP1+I0PTS 69. QC051=6.05*FL0RT(IQ1) 70. FC051=4. 15*FL0AT(IF1) 71. PC051=2.25*FL0AT(IP1) GT0T1=QC051+FC051+PC051 72. 73. 44 N=N+1 74. ¢ THE NEXT STEP CHECKS THE CARD COUNT AGAINST THE HEADER 75. IF (N. LE. MAX> GO TO 10 7E. PRINT 260 77. PRINT 210 PRINT 220, 101, 00051 78, 79. PRINT 230, IF1, FC051 60. PRINT 240, IP1, PC051 PRINT 270, GTØT1 61. PRINT 300 82. 83 PRINT 280 84. PRINT 210 85. PRINT 220, 102, 00052 PRINT 230, 1F2, FC052 86 87. PRINT 240, IP2, PC052 98. PRINT 270, GT0T2 200 FØRMAT (101,15%,1STØRE 1,11,3%,10RDER CØDE 1,14) **B9** 201 FØRMAT (11,15%,15TØRE 1, 11,3%,10RDER CØDE 1, 14) 90. 91 205 FORMAT (101, 1**** ORDER NOT FILLED,1 \$ ' INSUFFICIENT STUCK ON HAND ***** 92 93. 210 FORMAT (101, 14%, 1 ITEM1, 9%, 1 PRICE1, 5%, 1 COST1) 220 FORMAT ('0', 12%, 12, ' QUART(S) 230 FORMAT (' ', 12%, 12, ' FIFTH(S) 240 FORMAT (' ', 12%, 12, ' FIFTH(S) \$6. 05 \$1, F6, 2) 94. \$1, F6, 2) 95. \$4, 15 96. \$2, 25 *1 F6. 2) 250 FORMAT (101, 27%, 10TAL \$1, F7. 2) 97. 260 FORMAT (11, 17%, 1STORE 1 TOTAL BILL') 98. 99. 270 FORMAT (101, 21% (GRAND TOTAL \$1, F7. 2) 280 FORMAT (101,17%,1STORE 2 TOTAL BILL1) 300 FORMAT (111,) 100. 101. 102. STOP END 103.

-1

8

PURDUE SOFTWARE SCIENCE FORTRAN ANALYZER VERSION 1. 0

۰. • ۰, .


.

PURDUE SOFTWARE SCIENCE FORTRAN ANALYZER YERSION 1. 0

STATISTICS FOR THIS MODULE:

OPERATOR	FREQUENCY	
E 0 5 () 0R D0 1F * - - - EQ 0970 20 0070 44 0070 30 0070 40 0070 66 0070 67 0070 33	40 9 6 9 13 3 29 4 2 1 4 1 1 1 1 1	
G0T0 10 FL0AT	1 9	

ETA1≂ 18 N1= 135

9

i

÷

I.

:

and the second secon

٠. '

;

1

ł

2

į

i

PURDUE c - 14

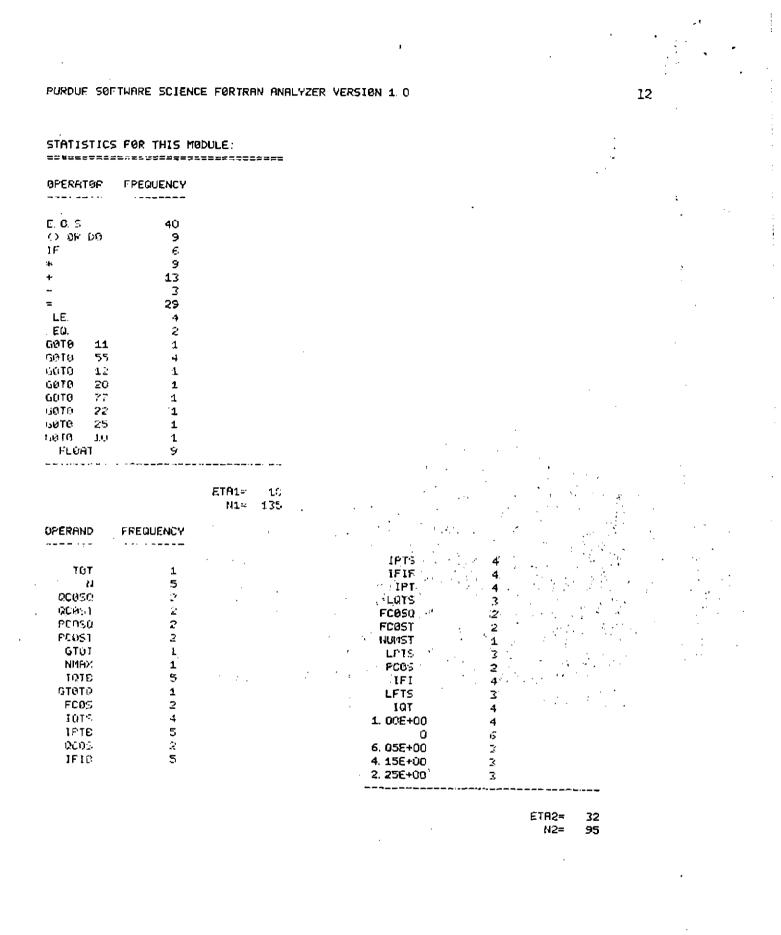
;

•

URDUE	SØF	[MUUK	E SCIENCE FORTRAN ANALYZER VERSION 1.0	1
1. 2.			PROGRAM 2 CS 210	
3.	C		FOLLOWING CALCULATIONS ARE FOR D. T. W. D. PERTAINING TO WEEKLY SALES	
4. 5.			N≈1 lats≃0	
<i>E</i> ,			IFIF≂0	
7.			IPTS=0	
0.			IQT=D	
9.			IFI≂O	
10,			1PT=0	
11			READ333, LOTS, LFTS, LPTS	
12.		333	FORMAT(12, X, 12, X, 12)	
13.			READ330, NMAX	
14.			FORMAT(12)	
15. 16.			READ335, NUMST, 10RC0D, 10TB, 1F18, 1PTB F0RMAT(11, X, 14, X, 12, X, 12, X, 12)	
17.	С		THIS DETERMINES WHETHER OR NOT THE ORDER CAN BE FILLED.	
18,			IF(IQTB, LE, LQTS)GOTO11	
19	c		IF THE ORDER CANNOT BE FILLED, THIS INFORMATION WILL BE PRINTED.	
20.			PRINT100, NUMST, IORCOD	
21.			PRINT110	
22.			G0T055	
23		11	IF(IFIB. LE, LFTS)G0T012	
24.			PRINTADD, NUMST, IØRCØD	
25.			PRINT110	
26		13	GOTOSS	
27. 28.		12	IF(IPTB. LE. LPTS)G0T020 PRINT100, NUMS7, IORCOD	
29.			PRINT100 ROMSE TORCOD	
30			G0T055	
21		20	LOTS=LOTS-IOTB	
32.			LFT5≃LFT5-IFIB	
32			LPTS=LPTS-1PTB	
34.	С		FOLLOWING DETERMINES ALL COST INFORMATION IF ORDER CAN BE FILLED.	
35.			QC0ST≃6. 05*FL0AT(1QTB)	
26			FCQST=4 15*FLQAT(IFIB)	
37 35.			₽CØST=2, 25+FLØAT(1₽TB) TØT≈QCØST+FCØST+PCØST	
39.			1F (N. EQ. 1)G0T077	
40.			PRINT100, NUMST, IGRCOD	
41			G0T022	
42			PRINT101, NUMST, LORCOD	
42.	С		THIS PRINTS OUT STORE ORDERS.	
44.		22	PRINT111	
45.			PRINT112, IQTB, QC0ST	
46. 47.			FRINT113, IFIB, FCØST PRINT114, IPTB, FCØST	
48.			PRINT115, TOT	
49.			FRINT119	
50.			IF (NUMST, EQ. 1)G0T025	
'51 .			IQT=IQT+IQTB	
52.			IF1=IFI+IFIB	
53			181-161+1 618	
54			QC05=6.05+FL0AT(IQT)	
55. 56			FC05=4.15*FL0AT(IFI)	
56. 57			PU05=22 25*FL0AT(IPT)	
57. 58.			G181=QC05+FC05+FC05 G07055	

ן 1-1-10

7


. •

•

PURDUE SOFTWARE SCIENCE FORTRAN ANALYZER VERSION 1.0 11 59. 25 IQTS=IQTS+IQTB 60. IFIF=IFIF+IFIB 61. IPTS=IPTS+IP78 62. 00050=6.05+FL0AT(1015) FC0SQ=4. 15*FL0AT(1FIF) 63. PC050=2.25*FL0AT(1PT5) 64. 65. GTØTQ=QCQSQ+FCQSQ+FCQSQ 66 55 N=N+1 IF (N. LE. NMRX) GOTO10 67. 68. C THIS PRINTS OUT THE TOTAL BILL. 69. PRINT116 PRINT111 70. PRINT112, IQTS, QC05Q 71. 72. PRINT113, IFIF, FC05Q 73. PRINT114, IPTS, PC050 74. PRINT117, GTOTO 75. PRINT119 76. PRINT118 77. PRINT111 . PRINT112, IGT, GC05 73 79. PRINT113, IFI, FCØS 80 PRINT114, IPT, PCØS PRINT117, GTØT S1. 100 FØRMAT(101, 15%, 15TØRE1, %, 11, 3%, 10RDER CODE1, %, 14) 82. 82. 101 FORMAT<101, 15X, 15TORE1, X, 11, 3X, 10RDER CODE1, X, 14) 54. 110 FORMATCO OF ***** ORDER NOT FILLED. 1 'INSUFFICIENT STOCK ON HAND ****') 35. 86. 111 FORMAT<? 01, 14X, 1 ITEM?, 9X, 1 PRICE1, 6X, 1 COST1) 112 FORMAT(101,12%, 12, %, COURT(S) 113 FORMAT(11,12%, 12, %, COURT(S) 113 FORMAT(11,12%, 12, %, FIFTH(S) 114 FORMAT(11,12%, 12, %, FIFTH(S) \$6. 05 37. \$~, F6, 2) SB. \$4, 15 ≉1, F6, 2) 89. \$2, 25 #1. FS. 23 115 FORMAT('0', 27X,' TOTAL \$',F7. 2) 115 FORMAT('1', 15X,' STORE 1 TOTAL BILL') 90. 9**1**. -92 117 FORMAT('0', 21%, ' GRAND TOTAL \$", F7. 2) 118 FORMAT(101, 15%, 1STORE 2 TOTAL BILL') 93. 119 FORMAT(') 91. 95, STOP 96 END ۰, 1 1 : 2, 27.5

ç,

· `}

.

۰.

;

.

Histograms for 1, 12, N1, and N2 for the Observed Sample

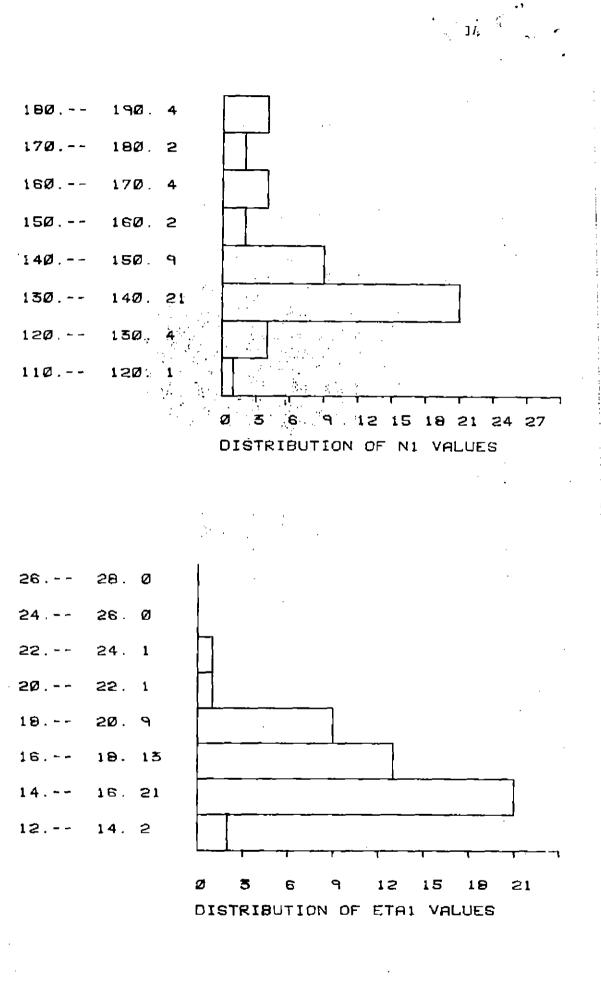
ź •

÷ 3

. • ź Ĩ, ł

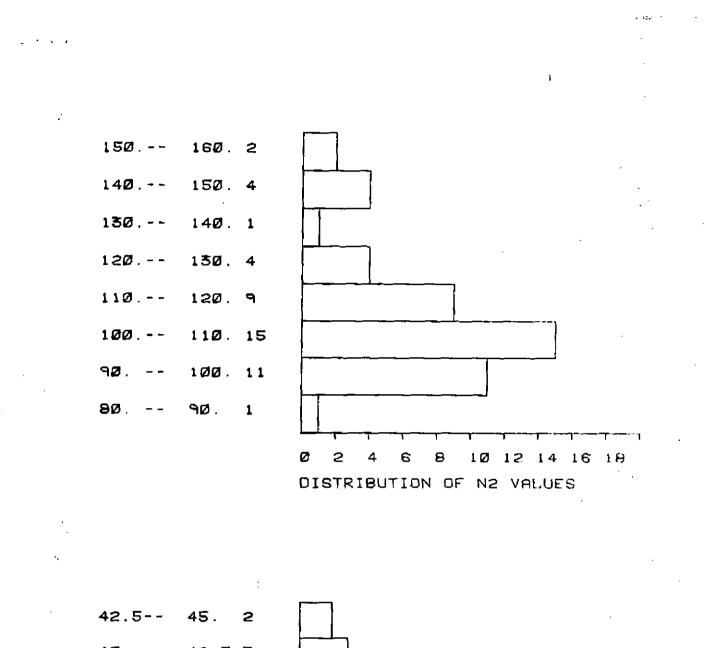
÷

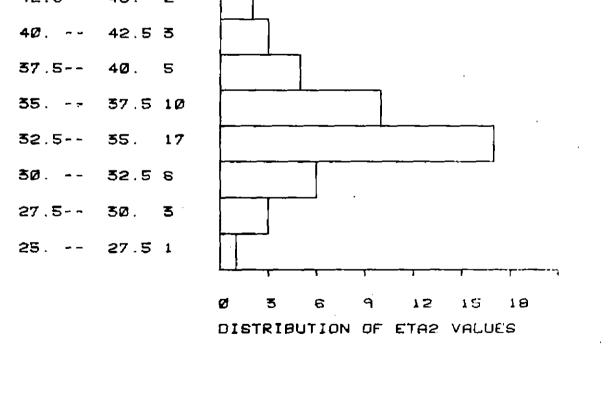
: - !


ć

.

. APPENDIX B


i : 13 • ,


の語言の言語

l

Ĺ

Ref	enences	
_	· · · · · · · · · · · · · · · · · · ·	

1. pr 44.15

- [Eular 1973] Bulut, Necdet. Invariant properties of algorithms. <u>PhD Thesis</u>, Purdue University (August 1973) 118-119.
- [Bulut 1974] Bulut, Necdet and Halstead, Maurice H. Inpurities found in algorithm implementations. <u>CSD-TR 111</u>, Purdue University (1974).
- [Halstead, M.H. Natural laws controlling algorithm structure? <u>ACH SIGPLAN Notices 7, 2</u> (February 1972) 19-26.
- [Halstead 1977] Halstead, Maurice H. <u>Elements of software</u> <u>science</u>. Elsevier North Holland, New York. (1977) (in press).
- [Kulm, Gerald. Language level applied to the infomation content of technical prose. In <u>Collective phenonoma and the applications of</u> <u>physics to other fields of science</u> (Prepared for delivery at a seminar, Moscow, USSR, 1-S July 1874) Norman A. Chigier and Edward A. Stern, eds., Fayetteville, N.Y. Brain Research Publications (1975) 401-408.
- [Ottonstein 1976] Ottenstein, Karl J. A program to count operators and operands for ANSI-FORTRAN modules. <u>CSD-TR 196</u>, Purdue University (June 1976).