An Algorithmic Approach to the Detection and Prevention of Plagiarism

Karl J. Ottenstein

Report Number:

76-200

Ottenstein, Karl J., "An Algorithmic Approach to the Detection and Prevention of Plagiarism" (1976).
Department of Computer Science Technical Reports. Paper 142.
https://docs.lib.purdue.edu/cstech/142

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

FiN FLGORITHMIC RPPROFCH TO THE CIETECTION AND PREUENTION OF FLAGIARISM

Karl J. Ottenstein
Computer Sciences Department
Purdue University
llest I.afayette, Indiana 47907

CSD-TR 200
August 1976

FN ALGORITHMIC APPROACH TO
THE DETECTION RND PREVENTION OF PLAGIARISM
Karl J. Ottenstein
Computer Sciences Department
Purdue University
West Lafayette, Indiana 47907

The significant problem of detecting (nearly) identical student homework papers is non-trivial since a grader for a large class cannot remember all previously graded papers while examining the current one. This problem can be reduced by quantifying papers in such a way that equivalerit ones are given equal values. Here we discuss one possible quantification which works well when applied to student computer programs.

The desired quantification is a function which maps the "homework space" into some value space. The ideal function, f, would impose a partitioning on the set of papers in the sense that if x and y are homework papers and the $P_{\text {i }}$ are partitions of the homework space with $x \in P$; and $y \in P_{\text {; }}$ then $i=j$ iff $f(x)=f(y)$. If $f(x)=f(y)$ and x and y are unique, then one of x and y is a plagiarized version of the other. In other words, when all partitions have but one element, no cheating has occured. This ideal function is unobtainable for several reasons: it is possible for identical work to be performed independently, the semantic equivalence of two items cannot aluays be shown deterministically, and there is a subjective area between plagiarism and paraphrasing.

Our task, then, is to find a good appraximation to this function. The approximation should at least map all potentially equivalent homework papers into the same partition. It may not guarantee accuracy in that two papers being in the same partition will not imply that they are negessarily plagiarized. If P_{1}, P_{2}, $\ldots P_{r_{1}}$ are the ideal partitions, our approximation should create $\ddot{Q}_{1}, r_{1}, \ldots Q_{m}$ whers each Q_{i} is either some P_{j} or the union of several P_{v} 's. That is, the partitions are merely cruder.

The constant functions satisfy our requirements for an approximation since only one partition will be created; but, they do not simplify our initial problem since all elements must be individually inspected for cheating. A function which maps a homewark paper into the integer representing its length in characters will invariably create numerous partitions, but they will not be the desired Q_{i} : the replacement of one token by a
symonym of a difierent length will place plagiarized assignments in separate partitions. A length function based on the number of tokens would eliminate this problem, but will still group together totally unrelated assignments simply because they have the sme length: A function which takes into account some rneasure of the information content of a homework paper should 2ive us more accurate partitions.

Rny meaningfal language can have its symbols classified into three sets:

- operators
- operands
- "Syntactic sugar": symbols used only for readability

The information content of an element of a language, then, depencls on the operators and operands, some function of which shisuld lead to a good approximation to our ideal partitioning. This is simply a fnore formal description of the approach employed by [Bulut 1973].

In his study of student FORTRAN programs, Bulut counted the basic software science [Halstead 1972, 1977] parameters:

- 7, - the number of unique operators
- n_{2} - the number of unique operands
- N_{1} - the total number of occurences of operators
- N_{2} - the total number of occurences of operands

He noted that "the probability of using: I_{1} and n^{n} symbols exactly N_{1} and N_{2} times in two different... [expressions] is very slim. Plagiarized copies were found by hand checking programs with identical $\mathrm{T}_{1}, \mathrm{I}_{2}, \mathrm{~N}_{1}$, and N_{2} values. Eulut observed that, as with the length function above, the results of this method are not affected by changes to operand names since such changes will not modify y_{2} or N_{2}.

compared, but without positive results. Thus it seems that a good partitioning was obtained. Covies of the programs ir partition A are included in Appendix A with the parameter counts.

The size of a program (in tokens) is given as column iN in Tabie i. Since $N=N_{1}+\mathcal{N}_{2}$, the partitfons created by the lerigth function mentioned above are supersets of those created by the sofiware science method. Here, the length function creates 10 partitions of size greater than one, while the software science method seems to have given us the ideal partitioning. So at least in this case, the additional information provided by 7 , and ${ }^{\prime} z_{2}$ is well worth the small effort required to obtain it.

Bulut called the chances of two student programs having equal 4-tuples "slim". Wie can get a more quantitative probability estimate by observing that $\eta_{1}, \eta_{2}, N_{1}$: and N_{2} all appear to have somewhat normal distributions, in agreenent with our intuition. (Appendix B gives the histograms for the four parameters.) In our particular sample, we have:

	mean	median	moda	s.d.	min	$\underline{\max }$
7_{1}	17.00	17	15	2.07	13	24
7_{2}	35.38	35	35	3.93	27	45
N_{1}	145.77	139	135	19.30	116	195
N_{3}	111.36	106	101	17.26	84	154

Assuming this normal distribution, there is clearly a greater likelihood of \ddagger inding a pair of independently written programs with equal parameter values near the means as thare is of inding such a pair with values on the tails. Thus, we can be more confident of a partition's accuracy as its indiuidual parameter yalues approach the tails of their distribution curves.

Since the four parameters are not mutually independent, we use a multivariate normal density function, g, determined by the means vector, $m=(17.00,35.38,145.77,111.36)$, and the
 N_{2}), to get a feel for the closeness of a 4-tuple to the means vector. The expression $g(X) / g(m)$ is 1 at $X=m$ and approaches 0 as we move away from the mean. Evaluated at the 4 -tuple X for partitions A and B, thits expression results in 0.45 and 0.018 , respectively. This indicates that the programs in partition B are: very probably plagiarized (the partition is accurate\}, uhile those in F are less probably so. Visual inspection of the programs is clearly warranted in ony case, but one would be particularly suspicious of thase in partition B. Since the accuracy of the partitions varises according to the locetion of the 4 -tuples in the distribution space, it would seem advantageous to find a partitioning function whose range has a constant distribution. The existonce of such a function is not
knoun at present, although one would expect that if such a function were found, it would not be particularly accurate. In general, meaningful measurements of human behaviour produce uneven distributions.
liany alterations made by students to copied prograns will be tranispiarent to this method. Cosmetic transformations such as the reardering time independent statemerits, recommenting, reformitting of text, and renaming variables and labels will have no effect at all on $\eta_{1}, \eta_{2}, N_{1}$ or N_{2}. Most non-cosmetic alterations fall into one of six well-defined irapurity classes ${ }^{1}$, all of which are detectable by a slightly more sophisticated counter. Unfortunately, a student who cheated on only part of a prograni will not be detected.

Since the parameter counting routine was developed for other purposes, its $\$ 300$ or so developement cost is not significant here: its running cost is about five cents (5 $\%$) per 100 line student program on a CDC 6500. (This would be less were it not that the routine was written in FNSI-FORTRAN for portability and sel(-analysis.) Thus, this method of detecting plagiarism is both inexpensive and rapid. The preventive element mentioned in the title is simply the deterent created by making it difficult to chest successfully.

It Eeems that this method can not only be applied to prograns in other computer languages, but to any assignment which requires the entmission of mititen tiaterial. Of course, programs are the only practical item lis neasurement since they are already in machine:readsble form, hut suftware science has been applied with some wecess to English [Kulan 1975, Halstead 1977] and ane might hyputhesize that similar results can be obtained there.

ACKMOULEDGEMENTS

Special notes of thanks are due Dwight Andrews of Purdue University for collecting copies of his students" programs exprosily for this study and to Professor Halstead, also at Purdue, for his encouragement and insights into software science.
${ }^{1}$ The impurity classes are [Bulut 1974]:
(i) self-cancelling operarions
(2) ambiguous usage of an operand
i3) syronymous usages of operands
(4) common subexpressions
(5) unnecessary replacements
(G) unfactored expressions

	Module	7	12	N_{1}	N_{2}	N
	- 35	16	34	116	84	200
	14	16	27.	121	94	-215
	8	15	29	125	93	218
	17.	15	33	125	93	218
	1	19	33	131	93	224
	26.	15	34	132	96	228
	22	19	32	135	93	228
	31	16	32	132	98	230
	27	18	32	135	95	230
(A)	41	18	32	135	95	230
	45	16	35	133	99	232
	44	17	36	131	101	232
	47	20	33	134	98	232
	11	18	32	129	105	234
	2	17	37	136	101	-237
	16	15	36	137	101	-238
	39	15	35	138	101	-239
	36	17	28	139	10.3	242
	32	18	36	139	103	242
	40	19	37	141	101	242
	20	17	35	139	105	$\underline{244}$
	28	15	37	139	107	246
	5	16	35	138	108	246
	12	16	35	135	111	246
	21	16	35	135	111	246
	13	18	35	142	104	246
	24	15	36	135	113	248
	43	18	34	146	106	-252
	6	15	33	143	111	-254
	18	15	42	144	112	-256
	9	16	35	139	117	256
	4	29	35	150	106	256
	38	16	29	141	117	258
	10	19	35	149	109	$\underline{258}$
	33	16	40	143	121	-264
	46.	18	37.	153	120	273
	3	18	41	163	121	-284
	19	13	39	151	127	288
	30	20	40	162	126	-288
	23	15	36	158	133	-291
	29	19	31	180	120	-300
	15	14	41	170	142	-312
	34	17	39	179	142	- 321
	7	24	34	182	143	-325
	42	15	40	195	147	342
	25	19	45	193	154	347
(B)	37	19	45	193	154	347

Table 1:
47 student program parameter values as partitionod by the software science method (left) and the length function (right).

APPENDIX A

Source Listings of Programs in Partition 6

1.		Nal
2.		101*0
3		IF1=0
4.		IP1=0
5.1		IQ2\% 0
6.		YF2=0
7.		$1 P 2=0$
8.	c	HRVE REFERENCED THE CQUNTERS
9.		READ 111, KQTS, KFYS, KPYS
10	111	FBRMAT (12, $4,12, x, 12$)
21.		RERD 120, MAK
12	120	FBRMRT (I2)
13.	C	HAVE READ QUANTITIES EN HPIND AND. HERDER NUMBER
24.	10	READ 100, NUM, ICODE, I OOTS I PFTS, IOPTS :
15.	100	
16.	c	HRVE RERD A DATR CRRD THE THREE SUCCEEDING IF STRTEMENTS
17.	C	CHECK GRDER QUANTITIES RGAINST GURTITIES BN HRND. .
18.	C	'INSUFFICIENT QUANTITY' RECEIPT, PRINTED. IF RPFLICRELE
1.9.		IF (IOQTS. LE. KQTS) 90 T0 $20 . . \geqslant: ~ i$
20.		PRINT 200, NUM. ICODE $\quad \therefore$
21.		PRINT 205
c2.		PRINT 300
23.		GE TE 44
34.	20	IF <IEFTS. LE. KFTS》 G0 TO 30.
25.		PRINT 200, NUM, 【CODE
26.		PRINT 205
27.		PRINT 300
28.		GD T0 44
29.	30	IF (IEPTS. LE. KPTS) GS TB 40
30.		PRINT 200, NUM, ICODE
31.		PRINT 205
32.		PRINT 300
33.		08 T0 44
34.	C	IF GRDER CAN BE FILLED, COSTS RRE CBYPUTED
35.	C	AHD R RECEIPT PRINTED
36.	40	KGTS=KDTS-IQQTS
37.		KFTS=KFTS-IOFTS
38.		KPTS=KPTS-IDPTS
39.		QCBST $=6.05 * F L G R T$ (I0QTS)
40.		FCEST-4. 15wFLQAT (IOFTS)
41.		PCOST-2. 25*FLORT (IEPTS)
42.		TQT=GCEST+FCOST+PCBST
43.		IF(N. EQ. 1) Ge TB 66
44.		PRINT 200, NUM, ICODE
45.		G0 TO 77
46.	66	PRINT 201, NUM, ICODE
47.	77	PRINT 210
48.		PRINY 220, IEQTS Q QEOST
49.		PRINT 230, IGFTS, FCUST
50.		PRINT 240, IEPTS, PCEST
51.		PRINT 250, Ter
52.		PRINT 300
53.	C	RFTER THE RECEIPT IS PRINTED. THE CRSTS FER ERCH STERE RRE
54.	C	UPDATED TO BE RECPLLED RS A SUMMRRY WHEN RLL CARDS RRE READ
55.	C	SUMARRY VRRIRELES HRVE PPPREPIRTE SUFFIXES,
56.	c	1 FOR STERE NUMBER 1 AND 2 Fer STRRE NUMBER 2.
57.		IFSNUM. EQ. 1) G0 T8 3?
58.		102-I $02+180 T S$

59.		IF2＝IF2＋IGFTS
60.		IPZIPR＋18PTS
61.		QC852＝6． 05% FLBAT（IB2）
62.		FCBS244．15＊FLenT（1F2）
63.		PCOS2＝2 25＊FLBAT（IP2）
64.		0TET2＝0CES2＋FC052＋PC0S2
Esi．		G0 T8 44
66.	33	TQ1＝IQ1＋I00TS
6．7．		IF1＝IF1＋IEFTS
62.		IP $1=1 \mathrm{P} 1+\mathrm{IDPTS}$
59.		QC051～6．05＊FLORT（1Q1）
70.		FC051＝4．15＊FLORT（IF1）
71.		PC051＝2．25＊FLG9T（IF1）
72.		GTOT1＝GCES1＋FCESI＋PCOS1
33	44	$\mathrm{N}=\mathrm{N}+\lambda$
74.	6	THE NEXT STEF CHECKS THE CARD CQUNT RGAINST THE HERDER
75		IF（N．LE．MAX）GO TO 10
PE．		PRINT 260
77.		PRINT 210
78.		PRINT 220，IQ1，QCOS1
79.		PRINT 230，IF1．FC051
00.		PRINT 240，IP1，PC051
61.		PRINT ご0，¢T0T4
82.		PRINT 300
83		PRINT 280
B4．		PRINT 210
85.		PRINT 220，IQ2，QC052
86.		PRINT 230，IF2，FC052
37.		PRINT 240，IP2，PC0S？
88.		PRINT 270，GTET2
$B 9$.	200	
90.	201	
91	205	FGRIMAT（＇0）＇＊＊＊＊＊ARDER NGT FILLED，
93	\＄	，INSUFFICIENT STECK 日N HAND＊＊＊＊＊）
33.	210	FBRMRT（＇0＇，14\％，＇ITEM＇，9X，＇PRICE＇，5x，＇COST＇）
94.	220	FORMRT（＇0，12X，12．＾QUAFT（S）\＄6．05 \＄，F6．2）
95.	$2 \geqslant 0$	FORMRT（＇${ }^{\prime}, 12 \mathrm{x}, ~ 12,{ }^{\prime}$ FIFTH（S）\＄4．15 \＄，F6．2）
96	240	
97.	250	
98.	260	FGRIMAT（ ${ }^{\prime \prime}$ ，17\％＇STORE 1 TOTAL BILL＇）
99.	270	FORMAT（＇${ }^{\prime}$＇，21 ${ }^{\prime}$＇GRRAND TOTRL \＄＇，F7．2）
150.	250	
101.	300	FARMAT（ ${ }^{\text {c }}$ ， ）
102.		STOP
103.		END


```
PROGRFM 2 CS }2
C
                FQL.LOWING CALCULATIONS RRE FOR D.T. W.D. PERTAINING TO WEEKLY 5RLES
        N=1
        1GTS=0
        1FIFE0
        IPTS=0
        IOT=D
        IFI=0
        IPT=0
        RERD333, LQTS, LFTS, LPTS
    333 FORMPT(I2,x,I2,x,I2)
        READ3SO, NMAK
    30 FGRMAT(12)
    READ335, NUMST, IORCAD, IOTB, IFIE, IPTB
    335 FORMRT (I1, X, I4, X, I2, X, 12, x, 12)
C THIS DETERMINES WHETHER BR NOT THE OROER CAN EE FILLED
        IF (IQTB. LE. LQTS)GOTG11
C IF THE GRDER CRNNOT EE FILLED, THIS INFORMATIQN WILL 日E PRINTED.
        PRINT10U, NUMST, IERCES
        PRINTi10
        GOTG5S
        11 IF<IFIB. LE, LFTS\GOT012
        PRINT100, NUMST, IORCQD
        PFINT110
        G@T055
    12 IF\IPTB. LE. LPTS)GOTDEO
        PRINT100, NUISY%, IORCOD
        PRINT110
        S0TG55
    2N LQF==LOTS-10TB
        LFTE\approxLFTS-IFIB
        LPTS=LPTS-1FTB
    F FGLLBWING DETEFMINES ALL CEST INFORMATION IF GRDER CAN BE FILLED
        QCQST=6. 05*FLOAT\IQTB
        FCGST=4 15+FLGOT(IFIB)
        PCOST=2. 25+FLORT (IFTE)
        TgT=QCEST+FCaST+PCGOT
        IF (N. EQ. 1)GOTG??
        PRINT10N, NUMET, IQRCQD
        corbaz
        7% FRIST101, NUMST, IORCED
        THIS PRINTS GUT STORE ORDERS.
    c2. PRINT111
        FRINT112, INTB, QCASJ
        FRIHT112, IFIB, FCUET
        PRIRT114, IPTE, FCOS
        FRINT115, TOT
        FRINT11's
        IF(NUMST. EQ. 土)IST025
        IQT=IQT+IQTB
        IFI=IFI+IFIE
        IPT=IFT+IPTB
        QCOS=6. 05*FLART (IET)
        FGGE=4. 15*FLORT(IFI)
        PLGS=2: 25*FLQAT(IPT)
        GTOT=RCOS+FCOS+FCOS
        G0T055
```

```
25 INTS=1QTS+IQTB
    IFIF=IFIF+IFIB
    IPTS=IPTS+IPYB
    OCOSO=6. 05*FLQAT (1RTS)
    FCOSQ=4. 15*FLGRT (1FIF)
    FCDSQ=2. 2S*FLSHTClPTS.
    GTETO=0COSD+FCQSQ+FOGMQ
    55 N=N+1
    IF(N, LE. MMRN)OGTG10
C THIS PRINTS BUT THE T⿹TAL BILL.
    PRINT115
    PFINT1,12
    PRINT112, IQTS, Q2050
    PRINT113. IFIF, FEOSQ
    PRINT114, IFTS, PCOSQ
    PRINT117, GTOTQ
    PRINT119
    PRINT118
    PRINT1111
    PRINT112, IQT, QCOS
    PRINT113, IFI, FCGS
    PRINT114, IPT, PCOS
    PRINT117,GTGT
    100 FORMAT<'O', 15%,'STORE', X, I1, 3K, 'QRDER CRDE', X, I4)
    101 FERMRT<'O',15K,'STORE', X, 11, 3K,'ORDER CBCE', K, I4)
    110 FORPMAT<'O','**** BRDER NOT FILLED.'
    1 'INSUFFICIENT STECK EN HAND ****** )
111 FORMAT<' O', 14X, '1TEM', 9X, 'PRICE', 6X,'COST' )
    112 FURMFT('O', 12K, 12, %'QUFRT (S) $6.05 5, F6. 2)
    112 FGRMAT(', 12X,12,X,FFIFTH(E) $4.15 I', $5. 3,
    114 FGRMAT(' , 12% 12,%'FINT(S) $2.25 F.FS,2)
    115 FGRMAT\'0',27Y,'TETAL $*,F7.2)
    115 FQRIMAT''1', 15X,'STGRE I TGTRI. GYLL')
    113 FGRMAT('O', 21X, GRAND TOTAL *',F?.2)
    11% FGRMAT ('O',15X,'STORE 2 TOTAL BILL')
119 FGRMAT(<')
    STEP
    END
```

STATISTICS FOR THIS MODULE：

GFERFTGF	FPEQUENCY
C．©．	40
（） 360	9
IF	$\underline{6}$
＊	9
＋	13
－	］
$=$	29
LE．	＊
EO．	2
GI2T0 11	1
rave 59	4
Butg 12	1
GטTC 20	1
Glita	1
ijota 2c	1
¢ טTe z5	1
1，「月 J．1	1
FLE゙T	ξ

ETA1 $\quad 10$
$\mathrm{H} 1=135$

OFERAND FFEQUENC＇T

TGT	1
1d	5
OCNEO	\because
Mcis：1	\because
Prosel	2
Frost	2
GTUI	1
NHFI\％：	1
tove	5
¢TAT	1
FCOS	2
10T\％	4
IPTE	5
D心号	2
IFIE．	5

RPPENDIX B

Histogranis for $\eta_{1}, \eta_{2}, M_{1}$, arid N_{2} for the Observed Sample

$26 .-$	28.0
$24 .-$	26.0
$22 .-$	24.1
$20 .-$	22.1
$16 . \cdots$	20.9
$16 . \cdots$	18.13
$14 . \cdots$	16.21
$12 .-$	14.2

$42.5-$	45.	2
40.	42.5	3
$37.5-$	40.	5
35.	37.5	10
$32.5 \cdots$	35.	17
$30 .-$	32.5	6
$27.5 \cdots$	30.	3
25.	27.51	

Reffrences
[贝ulul l!ti] Bulut, Necolet. Invariant properties of algorithms. FhD Thesis, Purdue Iniversity f.August 1473) 118-119.
[Bulut 1974] Bulut, Necdet and Halstead, Maurice H. Inpurities found in algorithm implementations. CSD-TR 111, Purdue Uriversity (1974).
!Hal-tactif72] Halstead, M.H. Natural laus controlling aTgorithrn structure? RCM SIGPLAN Notices ?, 2 (February 1972) 19-26.
[ffajete.ad 1977] Halstead, Maurice H. Elements of software science. Elsevier North Holland, New York. (1977) (in press).
[Kiln 147ヶ] Kulm, Gerald. Language leve] applied to the infornation sontent of technical prose. In Sollective phenonoma and the apelications of physiss to other fields of science (Prepared for delivery at a seminar, Moscow, USSR, 1-5 July 1974) Norman A. Chigier and Edward A. Stern, eds., Fayetteville, M.Y. Brain Research Putilisations (1975) 401-408.
[ntra :trin 1975] Ottenstein, Karl J. A program to count operators and operands for ANSI-FORTRAN modules. GSD-TR 196, Purdue University (June 4976).

