
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1976

An Algorithmic Approach to the Detection and Prevention of An Algorithmic Approach to the Detection and Prevention of

Plagiarism Plagiarism

Karl J. Ottenstein

Report Number:
76-200

Ottenstein, Karl J., "An Algorithmic Approach to the Detection and Prevention of Plagiarism" (1976).
Department of Computer Science Technical Reports. Paper 142.
https://docs.lib.purdue.edu/cstech/142

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ON ALGORITHMIC APPROACH TO THE
DETECTION AND PREVENTION OF

PLAGIARISM

Karl J. Ottenstein
Computer Sciences Department.

Purdue University
West Lafayette, Indiana 47907

CSD-TR 200
August 1976

BN ALGORITHMIC RPPRORCH TO
THE DETECTION RND PREVENTION OF PLflGIRRISN

Karl J. Ottenstein

Computer Sciences Department
Purdue University

ulest Lafayette, Indiana 47907

The significant problem of detecting (nearly) identical
student homework papers is non-trivial since o grader for a large
class cannot remember all previously graded papers whi 1 e
examining the current one. This problem can be reduced by
quantifying papers in such a way that equivalent ones are given
equal values. Here we discuss one possible quantification which
works well when applied to student computer programs.

The desired quantification is a function which maps the
"homework space" into some value space. The ideal function, f,
would impose a partitioning on the set of papers in the sense
that if x and y are homework papers and the P. are partitions of
the homework space with xep. and yePj then i=j iff f(x)=f(y). If
f(x) = f(y) and x and y are unique, then one of x and y is a
plagiarized version of the other. In other words, when all
partitions have but one element, no cheating has occured. This
ideal function is unobtainable for several reasons: it is
possible for identical work to be performed independently, the
semantic equivalence of two items cannot always be shown
deterministical1y, and there is a subjective area between
plagiarism and paraphrasing.

Our task, then, is to find a good approximation to this
function. The approximation should at least map all potentialty
equivalent homework papers into the seme partition. It may not
guarantee accuracy in that two papers being in the same partition
will not imply that they are necessarily plagiarized. If P! , P 2 ,

are the ideal partitions, our approximation should create
Qt, Q 2 , ..-0 m where each Q ; is either some Pj or the union of
several P^'s. That is, the partitions are merely cruder.

The constant functions satisfy our requirements for an
approximation since only one partition will be created; but, they
do not simplify our initial problem since all elements must be
individually inspected for cheating. R function which maps a
homework paper into the integer representing its length in
characters will invariably create numerous partitions, but they
will not be the desired Q; : the replacement of one token by a

synonym of a different length will place plagiarized assignments
in separate partitions. R length function based on the number of
tokens would eliminate this problem, but uiill still group
together totally unrelated assignments simply because they have
the i>.:ime length". A function which takes into account some
measure of the information content of a homework paper should
giva i.i:r> more accurate partitions.

Any meaningful 1anguage can have its symbols classified into
three sets:

• operators
• operands
• "syntactic sugar": symbols used only for readability

The information content of an element of a language, then,
depends on the operators and operands, some function of which
shp^u?d lead to a good approximation to our ideal" partitioning.
This is simply a more formal description of the approach employed
by [Buiut 1973].

In his study of student FORTRAN programs, Bulut counted the
basic software science [Hal stead 1972, 1977] parameters:

• 1, - the number of unique operators
• 1 2 - the number of unique operands
• N, - the total number of occurences of operators
• N a - the total number of occurences of operands

He noted that "the probability of u s i n g : a n d 1 2 symbols exactly
N, and times in two different...[expressions] is very slim."
Plagiarized copies were found by hand checking programs with
identical 1 1 f t 2 , l\|,, and N a values. Bulut observed that, as
with the length function above, the results of this method are
not affected by changes to operand names since 3uch changes will
not modify 1 2 or N 2 .

A program to count these four parameters for FORTRAN modules
was written [Ottenstein 1 976] and used to confirm Bulut's work.
Tabie 1 shotus the partitioning imposed on 47 student programs
from OS 210 at Purdue University by the "software science
method". In the formalism developed here, we consider this
method a mapping of programs into 4-tuples, (l t , 1 ,N a) € N x N
x N x N, where N denotes the set of natural numbers. Two
partitions (A and B) have two programs in them; the rest have
one. One program in partition B is a copy of the other, with
slightly different comments and margining. The other pair is not
as immediately detectable as being plagiarized because one author
apparently changed all of the variable names and label numbers.
Other programs with close correspondence of the parameters were

compared, but without positive results. Thus it seems that a
good partitioning was obtalnod. Copies of the programs in
partition R are included in Appendix A with the parameter counts.

The size of , a program (in tokens) is given as column N in
Table 1. Since M M M ^ N g , the partitions created by the length
function mentioned aboye are supersets of those created by the
software science method. Here, the length function creat.es 10
partitions of size greater than one, while the software science
method seems to have given us the ideal partitioning. So at
least in this case, the additional information provided by 1, and

is ujell worth the small effort required to obtain it.

Bulut called the chances of two student programs having equal
4-tuples "slim". Ule can get a more quantitative probability
estimate by observing that 1 1 , 1 a , N,, and IMa all appear to have
somewhat normal distributions, in agreement with our intuition.
(Appendix B gives the histograms for the four parameters.) In
our particular sample, we have:

mean median mode s. d. min max
17. DO 17 15 2.07 13 24
35.38 35 35 3.93 27 45

115.77 139 135 19.30 116 195
111.36 106 101 17.28 84 154

Assuming this normal distribution, there is clearly a greater
likelihood of finding a pair of independently written programs
with equal parameter values near the means as there is of finding
such a pair with values on the tails. Thus, we can be more
confident of a partition's accuracy as its individual parameter
values approach the tails of their distribution curves.

Since the four parameters are not mutually independent, we use
a multivariate normal density function, g, determined by the
means vector, rrp=(17.00, 35.38, 115.77, 111 .36), and the
covariance matrix [C], C, j^EO^ -m,) (Xj -m,,) w i t h X 5 * ^ , 1 2 l N,,
N s), to get a feel for the closeness of a 4-tuple to the means
vector. The expression g(XI/g(m) is 1 at X^m and approaches 0 as
we move away from the meaVv Evaluated at the 4-tuple X for
partitions fi and B, this expression results in 0.15 and 0.018,
respectively. This indicates that the programs in partition B
are very probably plagiarized (the partition is accurate), while
those in A are less probably so. Visual inspection of the
programs is clearly warranted in any caee, but one would ba
particularly suspicious of those In partition B. Since the
accuracy of the partitions variac according to the location of
the 1-tuples in the distribution apace, it would seem
advantageous to find a partitioning function whose range has a
c.onstant distribution. The existence of such a function is not

known at present, although one would expect that If such a
function were found, it would not be particularly accurate. In
genera 1, meaningful measurements of human behaviour produce
uneven distributions.

Il.finy terations made by students to copied programs will be
transparent to this method. Cosmetic transformations such as the
reordering time independent statements, recommenting,
reformatting of text, and renaming variables and labels will have
no effeet at all on t,, 1 2 , N, or N 2 . Most non-cosmetic
alterations fall into one of six well-defined impurity classes 1,
all of which are detectable by a slightly more sophisticated
counter. Unfortunately, a student who cheated on only part of a
progran; will not be detected.

Since the parameter counting routine was developed for other
purposes, its $300 or so developement cost is not significant
here: its running cost is about five cents (5^) per 100 line
student program on a CDC 6500. (This would bs less were it not
that the routine was written in RNSI-FORTRRN for portability and
self-analysis.) Thus, this method of detecting plagiarism is
both inexpensive and rapid. The preventive element mentioned in
the title is simply the deterent created by making it difficult
to cheat successfully.

It f,eems that this method can not only be applied to programs
in otht:r computer languages, but to any assignment which requires
the oulnnission of written material. Of course, programs are the
only practical item ior measurement since they are already in
inai?hi)"it:-readjbl e form, but software science has been applied with
some, success to English [Kulin 1 975, Hal stead 1 977] and one might
hypothesize that similar results can be obtained there.

ACKNOWLEDGEMENTS

Special notes of thanks are due Duiight Andrews of Purdue
University for collecting copies of his students' programs
expressly for this study and to Professor Halstead, also at
Purdue, for his encouragement and insights into software science.

'The impurity classes are [Bulut 1971]:
(1) self-cancelling operations
(2) ambiguous usage of an operand
(3) synonymous usages of operands
(4) common subexpressions
(5) unnecessary replacements
(S) unfactored expressions

Module 1L is. N

35 1 G 34 116 84 200
14 16 27 121 94 215
8 15 29 1 25 93 210

. .17 15 33 125 S3 21 8
1 19 33 131 93 224

26- 15 34 132 96 223
22 19. 32 135 93 220
31 16 32 132 98 230
27 18 32 135 95 2 SO
41 18 32 135 95 230
45 16 35 133 99 232
44 17 36 131 101 232
47 20 33 134 98 232
11 IB 32 129 105 234
2 17 37 136 101 23 7

16 15 36 137 101 238
33 15 35 138 101 239
36 17 28 139 103 242'
32 18 36 139 103 242
40 19 37 141 101 242
20 17 35 139 105 244
28 15 37 139 107 246
5 16 35 133 108 246

12 16 35 135 111 246
21 16 36 135 111 246
13 18 35 142 104 246
24 15 36 135 113 248
43 18 34 146 106 252
6 15 33 143 111 254

18 15 42 144 112 256
3 16 35 139 117 256
4 21 35 150 106 256

38 18 29 141 117 258
10 19 35 149 103 258
33 16 40 143 121 264
46 18 37 153 120 273
3 18 41 163 121 284

13 13 39 161 127 288
30 20 40 162 126 288
23 15 36 158 133 291
29 19 31 180 120 300
15 14 41 170 142 312
34 17 39 179 142 321
7 24 34 182 143 325

42 15 40 195 147 342
25 19 45 193 154 347
37 19 45 193 154 347

Table 1s
4 7 student program parameter values as partitioned fay the

software science method (left) and the length function (right).

s

RPPENDIX R

Source Listings of Programs in Partition 6

PURDUE S0FTWARE SCIENCE F0RTRRN ANRLVZER VERSION i. 0

1. N»1
2. 101*0
3. IFl-=0
4. IP1=0
5. i IQ2«0
6. IF2=0
7. IP2=0
8. C HAVE REFERENCED THE C0UNTEKS
9. READ 111, KQTS, KFTS, KPTS

10 111 F0RMAT < 12,X,12, X,
11. READ 120, MAX
12 120 F0RMAT <I2> >,.;
13. C HAVE READ QUANTITIES 0N HAND AND.HEADER NUMBER
14. 10 READ 100, NUM, IC0DE, I0GTS, J0FTS, IBfTS • ••
15. 100 FORMAT <11. X, I4,X, I2/X, I2;;K/I2> '•".
16. C HAVE READ A DATA CARD THE THREE SUCCEEDING IF STATEMENTS
17. C CHECK 0RDER QUANTITIES. AGAINST QUATITIES 0N HAND. . .
18. C 'INSUFFICIENT QUANTITY' RECEIPT, PRINTED-IF APPLICABLE
19. IF CIOQTS. LE. KQTS> G0 T8 20 , :
20. PRINT 200, NUM, IC0DE
21. PRINT 205
22. PRINT 300
23. G0 T0 44
24. 20 IF CIBFTS. LE. KFT5> G0 T0 30 .
23. PRINT 200, NUM, IC0DE
26. PRINT 205
27. PRINT 300
28. G0 T0 44
29. 30 IF CI0PTS. LE. KPTS> G0 TS 40
30. PRINT 200, NU)1, IC0DE
31. PRINT 203
32. PRINT 300
33. 08 T0 44
34. C IF 0RDER CAN BE FILLED, C0STS ARE C0MPUTED
35. C AND A RECEIPT PRINTED
36. 40 KQTS=KDT5-I0QTS
37. KFTS=KFTS-I0FTS
38. KPTS=KPTS-I0PTS
39. QCBST^S. O5+FL0ATCI0QTSJ
40.. FCBST=4. 15*FL0AT<I0FTS>
41. PC0ST-2. 25*FL0ATCI0PT5>
42. T0T*QC0ST+FC0ST+PC0ST
43. IFCN. EQ. 1) G0 T0 66
44. PRINT 200, NUM, IC0DE
45. Gl T0 77
46. 66 PRINT 201, NUM, IC0DE
47. 77 PRINT 210
4B. PRINT 220, I0QTS, QC0ST
49. PRINT 230, I0FTS, FC0ST
50. PRINT 240, I0PTS, PC0ST
51. PRINT 250/ T0T
52. > PRINT 300
53. C AFTER THE RECEIPT IS PRINTED. THE C0STS F0R EACH ST0RE ARE
54. C UPDATED T0 BE RECALLED AS A SUHMARV WHEN ALL CARDS ARE READ.
55. C SUHMARV VARIABLES HAVE APPR0PIATE SUFFIXES,
56. C 1 F0R ST0RE NUMBER 1 AND 2 F6R ST0RE NUMBER 2.
57. IF<NUM. EQ. 1> G0 T0 33
58. IQ2-IQ2+IBQTS

PURDUE SOFTWARE SCIENCE F0RTRON RNRLVZER VERSI0N 1. 0

59. IF2=IF2+I0FTS
60. IP2«IPZ+I8PTS
61. QC0S2*6.O5*FL0flT<IQ2>
62. FC052-4. 1S*FL0KT<IF2>
63. PC0S2=2. 23*FL8RT<IP2>
64. OT0T2=PC0S2+FC052+PC0S2
65. G0 T0 44
66. 33 IQ1=IQ1+I0QTS
C.7. IF1=IF1+I0FTS
6<?.. IPi=IPl+I0PTS
S3. QC0S1=6, O5*FL0RT< IQ1}
70. FC0SA=4. 13*FL0RT(IF1>
71. PC0S1=2, 25fFL0flT<IPl)
72. GT0T1=QC0S1+FC0S1+PC0S1

N=N+1
74. C THE NEXT STEP CHECKS THE CARD C0UNT AGAINST THE HERDER
75. IFCN. LE. MAX> G0 T0 10
76. PRINT 260
77. PRINT 210
78. PRINT 220/ IQ1, QC0S1
79. PRINT 230, IF1>FC051
60. PRINT 240/ I PI/ PC0S1
61. PRINT 270/ GT0T1
82. PRINT 300
S3 PRINT 2&0
B4. PRINT 210

83. PRINT 220/ IQ2, QC0S2
B6. PRINT 230/ IF2, FC052
87. PRINT 240/ IP2/ PC052
88. PRINT 270/GT6T2
89. 200 F0RMRT C 0 ' / 15X, 'STORE '. II, 2X, '0RDER C0DE ', 14)
90. 201 FORMAT C 1', 15X, ' STORE ', II, 3X, ' 0RDER C0DE ',I4>
91 205 FBRHflT C O ' , '++*+ ORDER NOT FILLED,'
92 t ' INSUFFICIENT STOCK 0N HAND ***+')

210 F0RMRT C O ' , 14X/ ' ITEM' , 9X, ' PRICE' / 5X, ' C0ST' >
94. 220 F0RMRT C Q " , i 2 X , I 2 , ' QUARTCS) *6. 05 $',F6.2>
95. 220 FORMRT C ',12X, 12, ' FIFTH(S) *4. 15 , F6. 2~>
Sit. 240 FORMAT C ',12X, 12/' PINTCS) *2. 25 »',F6, 2>
97. 250 F0RNftT C O ' , 27X, ' T0TRL $', F7. 2>
98. 260 FURHFiT C 1', 17X, 'STORE 1 TOTAL BILL')
99. 27U FORMRT C 0'/21*. ' GRAND T0TRL $',F7. 2)

100. 280 FORMAT C O ' , 17X, 'STORE 2 T0TAL BILL'>
101. 300 F0R11AT (' '/ >
102. 5T0P
103. END

PURDUE SOFTWARE SCIENCE F0RTRRN ANALYZER VERSION 1. O
9

STATISTICS F0R THIS MODULE:

OPERATOR FREQUENCY

£. 0. S. 40
O OR D0 9
IF 6
* 9
+ 13

3
29

. LE. • 4

.EH. 2
Q0T0 20 1
G0T0 44 4
G0T0 30 1
G0T0 40 1
GOT0 66 1
G0T0 77 1
G0T0 33 1
G0T0 10 1

FL&AT 9

ETA1= 1 8
Nl~ 135

OPERAND FREQUENCY

IP1 4

TpT 1 IP2 4
N 5 FC0ST 2

KFTS 3 FC0S1 2
QC0ST 2 FC0S2 2
QC0S1 2 IF1 4
RC0S2 2 IF2 4
PCOST 2 KCTS 3
PCBS1 2 IQ1 4
PC0S2 2 102 4
10QTS 5 n f t x 1

NUM 1 KPTS 3
GT0T1 1 1- OOE+00 4
GT0T2 1 O g
10PTS 5 6- 05E+00 3
I0FTS 5 4. 15E+00 3

2. 25E+00 3

ETA2= 32
N2= 93

PURDUE SOFTWARE SCIENCE FORTRAN HNALVZER V E R S I W 1. 0

1. C PROGRAM 2 CS 210
2. C
3. C FOLLOWING CALCULRT10NS PRE F0R D. T. W. D. PERTAINING T0 WEEKLV SALES
4. N=>1
5. IQTS=0
e, IFIFbO
7. IPTS=0
r\
'_>. IQT=0
S. IFI=0
10. IPT=0
11 RERD333, LOTS/ LFTS, LPTS
12. 232 FORMAT(12/ X/ 12/ X/ 12)
1?. RERD330/ NMPIX
14. 330 F 0 R H A T O 2 >
15. 10 READ335, NUMST. r0RC0D, IQTB/ IFIB/ IPTB
16. 335 F0RMRT< 11, X/ 14, X/ 12/ X/ 12, X/ 12)
17. C THIS DETERMINES WHETHER OR H0T THE ORDER CRN BE FILLED.
18. IF<IQTB. LE, LOTS)GOT011
19 c IF THE ORDER CRNN0T BE FILLED, THIS INFORMATION WILL BE PRINTED.
20. PRINT100, NUMST, lORCC'D
21. PRINT110
22. G0T655
23 11 I Ft IF IB. LE, LFTS)G0T012
24. PR1NT100,NUMST, I0RC0D
25. PRINT110
26 G0T055
27. 12 IF< IPTB. LE. LPTSJG0T02O
28. PRINT100,NUMST/ I0RC0D
29. PRINT110
30 G0T055
71 20 LCiTS=i_CJTS-IQTB
72. LFTS=LFTS-IFIB

LPTS=LPTS-IPTB
34. c FOLLOWING DETERMINES RLL C0ST INFORMATION IF ORDER CAN BE FILLED.
-f- QC0£T=6. O5*FL0F)T(IQTB)
76 FC0ST=4 15+FL0OTCIFIB>
37 PC0ST=2. 25*FL0flTCIPTB)
JS. T0T-QC0ST+FC0ST+PCfiST
39. IFCN. EQ. 1>G0T977
40. PRINT100,NUMST,I8RC0D
41 G0T022
a;: 7? PRItJTlOl» NUMST, I0RC0D
J3. c THIS PRINTS OUT STORE ORDERS.
44. 2?. PRINT111
45. PR1NT112, IQTB, QC0ST
46. PRIHT113, IFIB, FC0ST
47. PRIUT114, IPTB<PC0ST
4 a PRINT115, TOT
49. PRINT119
50 IFCNUMST. EQ. D G 0 T 0 2 5
'51. IGT=IQT+IQTB
52. IFl = IFI-t-IFIB
53. IPT-IPT+IPTB
54 QCOS-6. O5*FL0AT(IQT>
L.5. n;es=4. 15+FL0RTCIFI)
56. PU0S-2: 25*FL0AT<IPT>
57. GTOT=CC0S+FCO5+FCOS
sa. G0T055

PURDUE SOFTWARE SCIENCE F0RTRRN ANRLVZER VERSI0N 1. 0 11

59. 25 IQTS=IQTS+IGTB
60. IFIF=IFIF+1FIB
61. IPTS=IPTS+IPT8
f,Z. 0CBSQ=6. 05* FLOAT(IOTS)
63. FC0SQ=4, 15-fFLGATCIFIF)
<54, PC0SQ -2. 25*FL0ATC1PTS>
65. GT0TG=QCCiSQ+FC0Sa+PC>:^Q

55 H=N+1
b7. IFCN. LE. NMRK:>G0T01O
*2. . C THIS PRINTS OUT THE T0THL BILL,
'if. PRINT116
.70. PR IN Till
71. PRINT112, IOTS, QC3SQ
72. PRINT113, IFIF, FC05Q
73. PRINT114, IPTS,PC05Q
74. PRINT117, GT0TO
75. PRINT119
76. PR.INT118
77. PRINT111
73. PRINT112, IQT, OC0S

73. PRINT113, IFI, FC0S
S O . PRINT114, IPT, PC0S
91 PRINT117, GT0T
8 2 100 F O R M R T C O ' , 15X,'3T0RE', X, II, 3X, '0RDER CODE',X,I4>
53. 101 F 0 R M R T C 0 ' , 15X, 'STORE', X, II, 3X, '0RDER COf-E', X, I4>
54. 110 FORMAT C Q ' , '**•** ORDER N0T FILLED. '
85. 1 'INSUFFICIENT STOCK 0N HAND +***')

PS. Ill F O R M A T C 0' , 14X> ' ITEM-' / 9X, * PRICE', 6X* 'C0ST' J
112 F O R M R T C O ' , 12X, 12, X, ' Q U A R T S 6 . 0 5 *',F6.

38. 113 F O R M A T C 12X, 12, X,'FIFTHCS) SA. 15 f , F6.
89. 114 F O R M A T C ', 12X, 12, X, 'PINT(S) *2. 25 f • F*. 2>
90. 115 FORMAT C O ' , 27X,' TOTAL , F7. 2>
91. 116 FORMAT C 1 ' , 15X,' STORE 1 T0TAI. BILL')
9 2 . 117 F O R M A T C O ' , 21X,'GRAND TOTAL *',F7. 2>
93. ' 113 FORMAT C O ' , 15X, ' STORE 2 T0TRL BILL' >
94. • 119 F 0 R M R T C ')
95. STOP
96. CND

I

PURDUF S0FTUFIRE SCIENCE FORTRAN RNALYZER VERSION 1. 0 1 2

STATISTICS F0R THIS MODULE:

0PERRT0P TPEQLIENCY

E. C. S 40
O OP DO 3

IF £
*. s

+ 13

2

29
LE. 4

. EG). 2
GOT0 11 1
Gi?TU 5S 4
GOTO lj 1
GOTO 20 1
GOTO ?? 1
ijOTm 72 1
ijOTO 25 1
hwro iM i

h'LOffl 9

ETfil- irj
Nl- 135

OPERAND FREQUENCY

IP Pi . 4 '

•"jT 1 1FIF 4 " .
'J 5 - I P r 4 •

QCOSC! , LOTS 3
'SCki-;, l i FC0SQ • • . •
PCn-iO 2 FCOST 2
PC0S1 2 . IJUI'IST • ' 1 .
GTOI L - Lrt£. ' 3 '
NI1AK 1 PC6-5 "
T07C 5 IFI . 4 ' • •

GTOTC 1 LFTS 3
FCOS 2 IQT 4
IOT'" 4 1. OOE+OO 4
IPTB 5 o

3 S. 05E+00 3
IF IP 5 4. 15E+00 3

2. 25E+00' 3

ETA2= 32
N2= 95

13

APPENDIX B

Histograms for 1 l P N, , and N
for the Observed Sample

IK ' '

1 8 0 , —

1 7 0 . —

1 6 0 . —

1 5 0 . - -

1 4 0 . - -

1 3 0 . - -

1 2 0 . - -

1 1 0 . - -

1 S 0 - 4

1 8 0 . 2

1 7 0 . 4

1 6 0 . 2

1 5 0 . S

1 4 0 . 2 1

130,. 4

120.: 1

~TT t r 1 1

0 3 6 S 1 2 1 5 1 8 2 1 2 4 2 7

DISTRIBUTION OF N1 VALUES

2 6 . -

2 4 . -

2 2 . -

2 0 . -

1 8 . -

1 6 . -

1 4 .

12 . -

2 8 . 0

2 6 . 0

2 4 . 1

22 . 1

20 . S

1 8 . 1 5

16 . 21

14 . 2

1 1 r 1 1 1 r ~

0 5 6 <=* 1 2 1 5 1 8 2 1

DISTRIBUTION OF ETfll VfiLUES

1 5 0 .

140 .

1 5 0 .

1 2 0 .

1 10 .

100 .

80 .

160 . 2

1 5 0 . 4

140 . 1

150 .

120 .

1 10 .

100 .

G
)0 .

4
^

15

I 1

1

"T 1 1 1 1 1 1 1 1

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

DISTRIBUTION OF N2 VALUES

42.5-

4 0 .

5 7 .5-

5 5 . •

5 2 . 5-

5 0 . -

2 7 . 5-

2 5 . •

4 5 . 2

4 2 . S 5

4 0 . 5

5 7 . 5 10

5 5 . 17

5 2 . 5 6

5 0 . 5

2 7 . 5 1

T T T"

0 5 6 ^ 12 lib" 18

DISTRIBUTION OF ETTA2 VALUE'S

1 G ' "

Ref ertnces

'Hu I'll I'.in] Oul ut, Necdet. Invariant properties of
algorithms. PhD Thesis, Purdue University
(August 1973) 118-119.

[Bulut 1974] Bulut, IMecdet and Hal stead, Maurice H.
Inpurities found in algorithm implementations.
C5D-TR 111, Purdue University (1974).

[H.il-trod 1 972] Hal stead, M.H. Natural laws controlling
algorithm structure? HCI1 SIGPLAN Notices 7. 2
(February 1972) 19-26.

[Ha 1 ri-te.^d 1 977] Hal stead, Maurice H. Elements of software
science. Elsevier North Holland, New York.
(1 977) (in press) .

[K»ihn •i'-i7ti] Kulrn, Gerald. Language level applied to the
information content of technical prose. .In
Collective phenonoma and the applications_o_f
physics to other fields of science (Prepared
for delivery at a seminar, Moscow, USSR, 1-5
July 1374) Norman A, Chigier and Edward A.
Stern, eds., Fayettevi11e, N.Y. Brain Research
Publications (1975) 401-408.

£01 , toin 1';!7S] Ottenstein, Karl J. A program to count
operators and operands for ANSI-FORTRAN
modules. C5D-TR 196, Purdue University (June
1376).

	An Algorithmic Approach to the Detection and Prevention of Plagiarism
	Report Number:
	

	tmp.1307986960.pdf.OH8Ix

