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Abstract. A new approach to the construction of entropies and entropy productions
for a large class of nonlinear evolutionary PDEs of even order in one space dimension is
presented. The task of proving entropy dissipation is reformulated as a decision prob-
lem for polynomial systems. The method is successfully applied to the porous medium
equation, the thin film equation, and the quantum drift-diffusion model. In all cases, an
infinite number of entropy functionals together with the associated entropy productions
is derived. Our technique can be extended to higher-order entropies, containing deriva-
tives of the solution, and to several space dimensions. Furthermore, logarithmic Sobolev
inequalities can be obtained.
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1. Introduction

The analysis of nonlinear evolution equations arising from applications relies on appro-
priate a priori estimates of the solutions. Often, the physical energy or entropy of the
underlying physical system proves to be a conserved or at least a non-increasing quan-
tity with respect to time. However, additional estimates are usually necessary in order to
prove mathematical properties of the solutions of the differential equation. It is a difficult
task to derive new estimates. In this paper we present a novel approach to construct such
non-increasing functionals, which we call entropies, and the corresponding integral bounds,
called entropy productions. Our approach is based on a reformulation of the problem as a
decision problem known in real algebraic geometry.

More specifically, we consider nonlinear partial differential equations of even order K of
the form

(1) ∂tn = ∂x

(

nβ+1P

(

∂xn

n
,
∂2

xn

n
, . . . ,

∂K−1
x n

n

))

, t > 0, n(·, 0) = nI ,

in a bounded interval (0, L) supplemented with periodic boundary conditions, for instance.
Here, P (ξ1, . . . , ξK−1) is a polynomial in the variables ξ1, . . . , ξK−1 ∈ R and β ∈ R. In
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the main part of this paper, we restrict ourselves to the one-dimensional situation; the
multi-dimensional case is studied in section 5.4.

A large class of equations from applications can be written in the form (1). In the
following we give some examples.

• The porous medium equation

nt = (nβnx)x, β > 0,

is of the form (1) with P (ξ1) = ξ1. It describes the flow of an isentropic gas through
a porous medium with density n(x, t) but it also appears in the modeling of heat
radiation in plasmas, water infiltration etc. (see, e.g., the survey [33]).

• The thin film equation

(2) nt = −(nβnxxx)x, β > 0,

is also of the form (1) with P (ξ1, ξ2, ξ3) = −ξ3. This equation models the flow of a
thin liquid along a solid surface with film height n(x, t) (β = 2 or β = 3) or the thin
neck of a Hele-Shaw flow in the lubrication approximation (β = 1). For details, we
refer to the reviews [6, 8, 29, 30].

• The Derrida-Lebowitz-Speer-Spohn (DLSS) equation

(3) nt = −(n(log n)xx)xx =

(

n

(

−nxxx

n
+

2nxnxx

n2
− n3

x

n3

))

x

can be written as in (1) with β = 0 and P (ξ1, ξ2, ξ3) = −ξ3 + 2ξ1ξ2 − ξ3. It arises
as a scaling limit in the study of interface fluctuations in a certain spin system
[22] and in quantum semiconductor modeling as the zero-temperature zero-field
quantum drift-diffusion equation [1, 25]. Here, the function n(x, t) describes the
particle density.

• The sixth-order equation

(4) nt =

(

n

(

1

n
(n(log n)xx)xx +

1

2
(log n)2

xx

)

x

)

x

can also be written as in (1) with β = 0 and

P (ξ1, ξ2, ξ3, ξ4, ξ5) = 6ξ5
1 − 18ξ3

1ξ2 + 11ξ1ξ
2
2 + 8ξ3

1ξ3 − 3ξ1ξ4 − 5ξ2ξ3 + ξ5.

This equation is derived from the generalized quantum drift-diffusion model for
semiconductors of Degond et al. [19] in the O(~6) approximation, with ~ denoting
the reduced Planck constant (see the appendix for an outline of the derivation).
Again, n(x, t) represents the particle density.

In general, a priori estimates (for smooth positive solutions) are obtained by multiplying
(1) by a nonlinear function σ(n) and integrating by parts,

d

dt

∫

s(n) dx =

∫

σ(n)nt dx = −
∫

nβ+2σ′(n)P

(

∂xn

n
, . . . ,

∂K−1
x n

n

)

∂xn

n
dx,

where s(n) is a primitive of σ(n) and here and in the following, the integral has to be
understood as an integral from 0 and L. Notice that we use periodic boundary conditions
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only in order to avoid boundary integrals. Clearly, any other boundary conditions with
the same property can be chosen instead. We refer, for instance, to [24] for the treatment
of the DLSS equation with more complicated boundary conditions.

We assume that s(n) > 0 for all n > 0. Denoting by

S(t) =

∫

s(n) dx and P(t) =

∫

nβ+2σ′(n)P

(

∂xn

n
, . . . ,

∂K−1
x n

n

)

∂xn

n
dx,

we can write the above equation as

(5)
dS
dt

+ P = 0, t > 0.

If P(t) is nonnegative, S(t) is non-increasing and is referred to as an entropy (see section 2.1
for a precise definition). In some sense, S(t) can be interpreted as a Lyapunov functional.
Additional estimates may be obtained from the time-integrated production term P(t).

The key point is to prove the nonnegativity of the production term which is usually
done by appropriate integrations by parts and other estimates. However, the proof can be
quite involved. We are able to present an algorithmic approach to prove this property. In
this framework, the claim P(t) ≥ 0 is reformulated as a so-called quantifier elimination
problem for polynomial systems which is always solvable in an algorithmic way.

1.1. Idea of the method. We illustrate the idea of the reformulation by means of the
thin film equation (2) as an example. We multiply (2) by σ(n) = nα−1/(α−1) with α 6= 0, 1
and integrate by parts once:

(6)
d

dt

∫

nα

α(α − 1)
dx =

∫

nα+β−2nxxxnx dx,

which is of the form (5) with

S(t) =

∫

nα

α(α − 1)
dx, P(t) = −

∫

nα+β−2nxxxnx dx ds.

Some ingenious integrations by parts allow to show that the right-hand side of (6) is
nonpositive for 3

2
− β < α < 3 − β [5, 10, 28] (also see [17, (4)]).

In a systematic way, this result can be obtained as follows. First, identify possible
integration-by-parts formulas:

(

nα+β
(nx

n

)3
)

x

= nα+β

[

(α + β − 3)
(nx

n

)4

+ 3
(nx

n

)2 nxx

n

]

,

(

nα+β nx

n

nxx

n

)

x
= nα+β

[

(α + β − 2)
(nx

n

)2 nxx

n
+

(nxx

n

)2

+
nx

n

nxxx

n

]

,

(

nα+β nxxx

n

)

x
= nα+β

[

(α + β − 1)
nxxx

n

nx

n
+

nxxxx

n

]

.
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Integrating these expressions over the interval (0, L) and taking into account the periodic
boundary conditions, we obtain

I1 =

∫

nα+β

[

(α + β − 3)
(nx

n

)4

+ 3
(nx

n

)2 nxx

n

]

dx = 0,

I2 =

∫

nα+β

[

(α + β − 2)
(nx

n

)2 nxx

n
+

(nxx

n

)2

+
nx

n

nxxx

n

]

dx = 0,

I3 =

∫

nα+β
[

(α + β − 1)
nxxx

n

nx

n
+

nxxxx

n

]

dx = 0.

Therefore, the production term can be written as

(7) P = P + c1I1 + c2I2 + c3I3,

with arbitrary real constants c1, c2, and c3. The goal is to find c1, c2, and c3 such that the
integrand of P proves to be a nonnegative function. In fact, we will show in section 4.2
that there exists ε > 0 such that

(8) P ≥ ε

∫

(

nα+β−2n2
xx + (n(α+β)/2)2

xx + (n(α+β)/4)4
x

)

dx.

The terms on the right-hand side are called entropy productions (see section 2.1).
The above integration-by-parts formulas can be translated into polynomials by identify-

ing (∂k
xn/n)m with ξm

k . Then

P corresponds to S0(ξ) = −ξ1ξ3,

I1 corresponds to T1(ξ) = (α + β − 3)ξ4
1 + 3ξ2

1ξ2,

I2 corresponds to T2(ξ) = (α + β − 2)ξ2
1ξ2 + ξ1ξ3 + ξ2

2 ,

I3 corresponds to T3(ξ) = (α + β − 1)ξ1ξ3 + ξ4,

where ξ = (ξ1, ξ2, ξ3, ξ4). Thus, translating (7) shows that it is sufficient to prove that

(9) ∃c1, c2, c3 ∈ R : ∀ξ ∈ R
4 : (S0 + c1T1 + c2T2 + c3T3)(ξ) ≥ 0.

Problems of this kind are well known in real algebraic geometry. Quantified formulas as
(9) are referred to as Tarski sentences. Determing the truth or falsity of such a sentence
for a particular value of α is the associated decision problem. It was shown by Tarski [32]
that such problems for polynomial systems are always solvable in an algorithmic way. We
refer to section 2.2 for further comments.

Summarizing, our algorithm consists of the following four steps:

Step 1: Calculate the functional P and “translate” it into a polynomial S0.
Step 2: Determine the polynomials T1, . . . , Td corresponding to integral expressions

which can be obtained by integration by parts.
Step 3: Decide for which functions the variety of all linear combinations of S0 and

T1, . . . , Td contains a polynomial which is nonnegative. This corresponds to a point-
wise positivity estimate for the integrand of P (for a certain value of α).
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Step 4: Check if the production term P can be estimated by an entropy production
in the sense of P ≥ εE for some ε > 0 and E is of a form similar to the right-hand
side of (8) (see section 2.2 for a more precise description).

We notice that our method is formal in the sense that smooth positive solutions have
to be assumed in order to justify the calculations. In the existence proofs, usually an
appropriate approximation of the entropy functional has to be employed to overcome the
lack of regularity and to ensure positivity of the approximations (see, e.g., [5, 7, 10, 31] for
the thin film equation in one space dimension and [17, 18] for several space dimensions and
[12, 24, 25] for the DLSS equation). However, the formal computations are a necessary
first step to identify possible entropies and, even more importantly, they reveal a lot about
the structure of the nonlinear equation.

Further, we mention that our method is exhaustive in the sense that the solution to the
quantifier elimination problem in (9) reveals all α ∈ R, for which the respective production
term P can be rewritten as an integral over a pointwise non-negative function by means of
integration by parts of the type (7). The latter seems to be the most common technique in
proofs of the dissipation property, so it is not surprising that previously know results are
completely “rediscovered” by the algorithm. On the other hand, some of the remaining
values α still might correspond to entropies. But the proof of the dissipation property in
these cases neccessarily involves other techniques than suitable integrations by parts. For
further comments on the absence of entropies, see section 5.5.

1.2. Main results. Our method allows to derive all known entropies for the thin film and
DLSS equation. In the following we summarize some of our results. For this, we introduce
the functions

Sα =

∫

nα

α(α − 1)
dx, S0 =

∫

(n − log n) dx, S1 =

∫

(n(log n − 1) + 1) dx,(10)

S1
α =

∫

(nα/2)2
x dx.(11)

We call Sα an entropy if its time derivative is nonnegative for all t > 0. For all examples,
we assume smooth positive solutions. Clearly, all functions in (10) are entropies for the
porous medium equation.

• Thin film equation: The functions (10) with 3
2
− β ≤ α ≤ 3 − β are entropies for

(2). (This holds also true in the multi-dimensional case; see section 5.4). For all
3
2
−β < α < 3−β, there exists a constant ε > 0 such that for all t > 0, the entropy

production inequality (8) holds. Moreover, the functions (11) are entropies if (α, β)
belong to the region shown in Figure 1. This region is characterized by a system of
algebraic inequalities, which are at most quadratic in α and β.

• DLSS equation: The functions (10) with 0 ≤ α ≤ 3
2

are entropies. In particular,

there are entropy productions terms for all 0 < α < 3
2
. For instance, in the cases



6 ANSGAR JÜNGEL AND DANIEL MATTHES

α = 0, 1
2
, 1, 3

2
, there exists ε > 0 such that for all t > 0,

d

dt

∫

(n − log n) dx ≤ −ε

∫

(log n)2
xx dx,(12)

d

dt

∫

4(
√

n − 1)2 dx ≤ −ε

∫

4( 4
√

n)2
xx dx,(13)

d

dt

∫

(n(log n − 1) + 1) dx ≤ −ε

∫

(
√

n)2
xx dx,(14)

d

dt

∫

n3/2 dx ≤ −ε

∫ √
n(
√

n)2
xx dx.(15)

Furthermore, the functions (11) are entropies if 2
53

(25−6
√

10) ≤ α ≤ 2
53

(25+6
√

10).
• Sixth-order equation: The functions (10) are entropies for all α which lie between

the two real roots of the polynomial 1125α4 − 2700α3 + 2406α2 − 1020α + 125,
namely 0.1927 . . . ≤ α ≤ 1.1572 . . .. For instance, α = 1 satisfies this property, and
there exists an ε > 0 such that for all t > 0,

d

dt

∫

(n(log n − 1) + 1) dx ≤ −ε

∫

(
√

n)2
xxx dx.

1 2 3 4
Β

3
�����
2

2

5
�����
2

3
Α

1 2 3 4
Β

3
�����
2

2

5
�����
2

3
Α

Figure 1. Values of α and β providing an entropy.

Most of the above results are well known: estimate (8) for the thin film equation has
been shown in [5, 10] in an existence study. The dissipation property for (11) in the case
α = 2 has been shown in [18]; for more general α this property has been recently proved
by Laugesen [27] using a different method. The entropies (10) and (11) (if α = 2) for
the DLSS equation have been reported in [12, 13, 25]. The entropies (11) for the DLSS
equation in the case α 6= 2 and the results on the sixth-order equation are new.

We stress the fact that, although most of the above results are known, the main focus
of this paper is to present a new systematic method for deriving entropies and entropy
productions. This method is not only able to reproduce the known results; it can be
applied to any equation of the form (1) for any even order K. Moreover, our technique
allows for several extensions which we sketch now.
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1.3. Extensions. We already stated above that we are able to derive bounds on entropies
containing derivatives of the solution. The most prominent example is the Fisher infor-
mation,

S =

∫

(
√

n)2
xdx.

In section 5.1, first-order entropies (11) are determined for the example of the thin film
and DLSS equation. Clearly, even entropies containing more than one derivative can be
theoretically treated.

Secondly, our technique can be employed to prove functional inequalities which resemble
logarithmic Sobolev inequalities. For instance, we are able to show that, for α > 0,

∫

nα(log n)4
xdx ≤

(

3

α

)2 ∫

nα(log n)2
xxdx,

∫

nα(log n)3
xxdx ≤ 5

12α

∫

nα(log n)2
xxxdx

for smooth positive functions n. We refer to section 5.2 for details of the computations.
Thirdly, we can consider compound equations of the form

nt = ∂x

[

nβ+1

(

P

(

∂xn

n
,
∂2

xn

n
, . . . ,

∂K−1
x n

n

)

+ Q

(

∂xn

n
,
∂2

xn

n
, . . . ,

∂K−1
x n

n

))]

,

where P and Q are polynomials of different orders. A simple example is the thin film
equation with a perturbation of porous medium type with a “bad” sign:

nt = −(nβ(nxxx))x − q(nβnx)x, q > 0.

We show in section 5.3 that for 0 < q ≤ 2π/L (recall that L is the interval length), the
function (10) with α ∈ [γ1(β, q), γ2(β, q)] is non-increasing. The interval [γ1(β, q), γ2(β, q)]
is non-empty if and only if 3

2
− β ≤ α ≤ 3 − β and it always contains the value 2 − β.

Finally, we are able to treat multi-dimensional equations. For instance, entropies of the
form (10) are obtained for the thin film equation

∂tn = −div(nβ∇∆n)

in any space dimension when 3
2
−β ≤ α ≤ 3−β (see section 5.4). This result has previously

been found in [11, 18] in the case of two or three space dimensions.
These examples show that our algorithmic construction of entropies is quite powerful and

can be applied to a variety of important mathematical questions concerning the structure
of nonlinear equations.

A variety of further possible applications of the method is obvious. For instance, it is
natural to extend our technique to differential equations of type (1) with odd order K or
to nonlinear conservation laws, obtaining first integrals rather than Lyapunov functionals.
Furthermore, more general (e.g. convex) entropies could be studied. The method could be
applied to other higher-order equations like the doubly nonlinear thin film equation [2],

nt = −(|n|β|nxxx|p−2nxxx)x, where p ≥ 2, 0 < β ≤ p + 1.
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Finally, the multi-dimensional case should be studied systematically; we examine only one
example here. All these topics are currently under investigation.

The paper is organized as follows. In the next section we give the precise definitions of
entropy and entropy production and present in detail the general scheme for their deter-
mination. In section 3 some nonnegativity results for polynomials are proved. Section 4 is
devoted to a detailed study of the four examples presented above and to the proofs of our
main results. Finally, details about the extension of our method to more general situations
are given in section 5.

2. The general scheme

2.1. Definitions. First we make precise which differential operators are admissible in (1).

Definition 1. The real polynomial

P (ξ1, . . . , ξk) =
∑

p1,...,pk

cp1,...,pk
ξp1

1 · · · ξpk

k

is called a k-order symbol if at most those coefficients cp1,...,pk
with 1·p1+2·p2+· · ·+k·pk = k

are non-zero. We denote by Σk the set of all k-order symbols. We associate to P ∈ Σk the
following nonlinear ordinary differential operator of order k:

DP (n) = P

(

∂xn

n
,
∂2

xn

n
, . . . ,

∂k
xn

n

)

.

In this notation, we are concerned with equations of the type

nt = (nβ+1DP (n))x, x ∈ (0, L), t > 0, n(·, 0) = nI ,

where P ∈ ΣK and β ∈ R; recall that K is an even positive integer. For simplicity, periodic
boundary conditions are imposed on n,

∂`
xn(0, t) = ∂`

xn(L, t), ` = 0, 1, . . . , k − 1, t > 0.

The notions of entropy and entropy production are formalized in the following definition.

Definition 2. For a real number α, we define:

• An α-functional S(t) is an integral of the form

S(t) =

∫

s(n(x, t)) dx,

where the function s is positive for positive arguments, and is such that s′′(n) = nα−2

for n > 0.
• The α-production term Pα is the negative time derivative of an α-functional, i.e.
Pα(t) = −(d/dt)S(t).

• An entropy is an α-functional S(t) which is non-increasing along any sufficiently
smooth solution n(x, t) of (1), i.e., the α-production term is nonnegative.
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• An entropy production for the entropy S(t) is an integral expression

(16) E(n) =

∫

nα+βDE(n) dx

with a K-order symbol E such that

(17) Pα(t) ≥ εE(n(t)) for all t > 0, and for some ε > 0.

• An A-entropy S is called generic if and only if (16) yields an entropy production
for S for any K-order symbol E.

The production term is – as will be seen below – completely determined by α. The
function s(n) inside an α-functional is almost defined by the exponent α. Indeed, the
definition implies

α 6= 0, 1 : s(n) =
nα

α(α − 1)
+ An + B,

α = 1 : s(n) = n(A + log n) + B,

α = 0 : s(n) = − log n + An + B,

and the constants A and B are chosen such that s(n) > 0 for n > 0.
On the other hand, the variety of entropy productions for one α-functional may be large.

It is reasonable to restrict oneself to positive functionals. Typical (and for the analysis of
the equations, useful) examples are

E(n) =

∫

nα+β−2(∂K/2
x n)2 dx and(18)

E(n) =

∫

(∂j
xn

(α+β)/`)` dx or E(n) =

∫

(∂j
x log n)` dx,(19)

with positive integers j and ` such that j` = K. The first integral in (19) is defined
for α + β 6= 0, the second one for α + β = 0. Some examples of entropies and entropy
productions are given in (12)-(15).

2.2. Determining entropies and entropy productions. In the following, we propose
an algorithm to decide for which values of α the α-functional S is indeed an entropy for (1)
and what are possible choices for the entropy productions E . According to the introduction,
one has to perform four steps, which we repeat below using the terminology introduced in
section 2.1:

Step 1: Calculate the polynomial S0 corresponding to the α-production term Pα.
Step 2: Determine the polynomials T1, . . . , Td corresponding to integral expressions

which can be obtained by integration by parts.
Step 3: Decide for which values of α there are c1, . . . , cd ∈ R such that the polynomial

S = S0 + c1T1 + · · · + cdTd is nonnegative for all arguments.
Step 4: Check the stability of the positive polynomials under perturbations, implying

genericity of the entropy.
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These four steps are now analyzed in detail and accompanied by the example of the thin
film equation.

Step 1: Characteristic symbols. First we establish a canonical link between the integral
expression of an α-production term and symbols of order K.

Definition 3. A characteristic symbol for the α-production term Pα is a K-order symbol
S ∈ ΣK such that

Pα = −
∫

nα+βDS(n) dx.

There is at least one characteristic symbol for each α, namely S0(ξ1, . . . , ξK) = ξ1

P (ξ1, . . . , ξK−1), with P being the (K − 1)-order symbol in (1). This fact follows from

d

dt
S(t) =

∫

s′(n)nt dx =

∫

s′(n)(nβ+1DP (n))x dx

= −
∫

s′′(n)nx(n
β+1DP (n)) dx

= −
∫

nα+β
(nx

n

)

P

(

∂xn

n
, . . . ,

∂K−1
x n

n

)

dx.

The characteristic symbol S0 is called the canonical symbol. The canonical symbol is
independent of α and characterizes the equation (1).

Example 4. We recall from the introduction that the thin film equation can be written in
the form (1) with P (ξ) = −ξ3. Therefore, S0(ξ) = ξ1P (ξ) = −ξ1ξ3. This simply expresses
the fact that for any α 6= 0, 1,

(20)
d

dt

∫

nα

α(α − 1)
dx = −

∫

nα+β
(

−nx

n

nxxx

n

)

dx

(see (6)). ¤

Step 2: Shift polynomials. There exist infinitely many characteristic symbols S for the
α-production term Pα. As this function can be rewritten in various ways using integration
by parts, the coefficients of S vary. We give a systematic description of how the polynomial
S changes.

Definition 5. Let P ∈ Σk be a k-order symbol and γ ∈ R. Define the (k +1)-order symbol
δγP by

(nγDP (n))x = nγDδγP (n).

The operator δγ is a linear map from the space of k-order symbols Σk to the space of
(k + 1)-order symbols Σk+1. An explicit calculation shows that the image of the monomial
P (ξ) = ξp1

1 ξp2

2 · · · ξpk

k can be represented as

(21) δγP (ξ) =
(

γ − (p1 + · · · + pk)
)

ξ1P (ξ) + p1
ξ2

ξ1

P (ξ) + · · · + pk
ξk+1

ξk

P (ξ).

The next simple lemma is essential for our theory.
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Lemma 6. Let α, β ∈ R. If S ∈ ΣK is a characteristic symbol for the α-production term
Pα and P ∈ ΣK−1 then S ′ = S + δα+βP is another characteristic symbol for Pα.

Proof. For any P , we obtain, abbreviating δP = δα+βP ,

−
∫

nα+βDS+δP (n) dx = −
∫

nα+β
(

DS(n)+DδP (n)
)

dx = Pα−
∫

(

nα+βDP (n)
)

x
dx = Pα,

since we have assumed periodic boundary conditions. ¤

By Lemma 6, all symbols S belonging to the affine subspace S0 + (δα+βΣK−1) ⊂ ΣK ,
where S0 is a canonical symbol, are characteristic for the α-production term. A basis
T1, . . . , Td of the linear space δα+βΣK−1 is simply obtained by evaluating δα+β on any basis
R1, . . . , Rd of ΣK−1. From the representation given in (21) it is clear that if the Rj are
linear independent, so are the Tj. In the following, we choose monomials for the Rj. The
corresponding symbols Tj = δα+βRj are called shift polynomials. Notice that, whereas the
canonical symbol S0 is independent of α and β, the shift polynomials are not.

Example 7. It is not difficult to check that the three monomials

R1(ξ) = ξ3
1 , R2(ξ) = ξ1ξ2, R3(ξ) = ξ3

form a basis of the space Σ3. Formula (21) yields the shift polynomials in Σ4:

T1(ξ) = δα+βR1(ξ) = (α + β − 3)ξ4
1 + 3ξ2

1ξ2,

T2(ξ) = δα+βR2(ξ) = (α + β − 2)ξ2
1ξ2 + ξ2

2 + ξ1ξ3,(22)

T3(ξ) = δα+βR3(ξ) = (α + β − 1)ξ1ξ3 + ξ4.

Adding some linear combination of the Ti to S0 gives the characteristic symbol for an
equivalent integral representation of the α-production term. The variety of integral repre-
sentations which are connected to the original one by integration by parts is hence described
by polynomials S = S0 + c1T1 + c2T2 + c3T3 ∈ Σ4 with arbitrary real parameters c1, c2 and
c3. For instance, rewriting the right-hand side of (20)

∫

nα+β−2nxnxxx dx = −
∫

nα+β

[

(α + β − 2)
(nx

n

)2 (nxx

n

)

+
(nxx

n

)2
]

dx

corresponds to the passage from S0 = −ξ1ξ3 to S = S0 + T2 = (α + β − 2)ξ2
1ξ2 + ξ2

2 . ¤

Step 3: Decision problem. If one can show that there exists a characteristic symbol S for Pα

which is nonnegative for all real arguments ξ1,. . . ,ξK , then the corresponding α-functional
S is an entropy. Indeed,

d

dt
S(t) = −Pα(t) = −

∫

nα+βDS(n) dx = −
∫

nα+βS

(

∂xn

n
, . . . ,

∂K
x n

n

)

dx,

and if S is a nonnegative polynomial, then the expression under the last integral is non-
negative, for all functions n. This implies that the α-functionals are entropies. In other
words, the statement

“The α-functional S is an entropy.”
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follows if one can show that

(23) ∃c1, . . . , cd ∈ R : ∀ξ ∈ R
K : (S0 + c1T1 + · · · + cdTd)(ξ) ≥ 0.

More precisely, one would like to find all values of α ∈ R such that (23) is true; recall that
the shift polynomials Ti depend on α, and so does the validity of (23).

We already noticed in the introduction that the determination of all parameters α for
which (23) holds true is called a quantifier elimination problem. Such problems are al-
ways solvable in an algorithmic way [32]. Solution algorithms have been implemented, for
instance, in the computer algebra system Mathematica. Moreover, there exists software
which is specialized on quantifier elimination, like the tool QEPCAD [16]. Seemingly all
available programs perform cylindrical algebraic decomposition [15], an algorithm whose
complexity is doubly exponential in the number of variables ξi and ci. Consequently, the
solution of a decision problem turns out to be extremely time- and memory-consuming in
practice. The apparently simple problems stated in section 4 are already at the edge of the
ability of a standard computer today. In more complicated situations, like for general en-
tropies in several space dimensions, more efficient algorithms are needed. The development
of such algorithms is an active field of current research (see, e.g., the FRISCO project).
A conceptually new algorithm has been recently proposed in [3]; it is yet not completely
implemented.

Fortunately, some of the simpler quantifier elimination problems can be solved by hand,
and others can be sufficiently simplified such that the available software produces a result
in reasonable time (see section 4). Indeed, several decisive properties of the polynomials
occuring in (23) are visible without going into algebraic geometry. For this, the following
notion is useful.

Definition 8. A characteristic symbol S for Pα is in normal form if for each k, the highest
exponent with which ξk occurs in S is even.

In particular, a K-order symbol S in normal form is independent of ξK/2+1, ξK/2+2, . . . ,
ξK . We claim that if a characteristic symbol is not in normal form, then the corresponding
polynomial cannot have a definite sign. Indeed, assume that the highest power p` of ξ` is
odd. Fix the variables ξk with k 6= ` at some values, thus considering S as a polynomial in
ξ` only. Assume without loss of generality that the coefficient of ξp`

` is positive. Then for
ξ` → +∞ and ξ` → −∞, S(ξ) tends to +∞ and −∞, respectively, which shows the claim.

The requirement that S is in normal form helps to reduce the number of parameters ci,
as we will see in section 4. We do not investigate the question of whether a general symbol
can be brought into normal form by means of integration by parts. We just notice that in
the examples analyzed here, it is always possible.

Example 9. We consider again the thin film equation. The first step is to identify those
symbols S = S0 + c1T1 + c2T2 + c3T3 which are in normal form. Obviously, c3 must vanish
as T3 contains ξ4 in first power. Similarly, c2 must be chosen to eliminate the first power
of ξ3 which stems from S0 = −ξ1ξ3, i.e. c2 = 1. There are no restrictions on c1. Thus, the
variety of equivalent normal forms for Pα is given by the symbols

(24) S = S0 + c1 · T1 + 1 · T2 + 0 · T3 = (α + β − 3)c1ξ
4
1 + (α + β − 2 + 3c1)ξ

2
1ξ2 + ξ2

2 .
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Recall that the number β is fixed by the model and α characterizes the entropy under con-
sideration. In section 4.2 it is shown in detail how the corresponding quantifier elimination
problem is explicitly solved. The final result is that there exists a suitable choice of c1

turning S into a nonnegative polynomial if and only if 3
2
≤ α + β ≤ 3. ¤

Step 4: Entropy production. Finally, we turn to an algebraic formulation of the entropy
production. Obviously, (17) is a consequence of the following statement: There exists a
characteristic symbol S for Pα and there is an ε > 0 such that

(25) S(ξ) − εE(ξ) ≥ 0 for all ξ ∈ R
K .

To simplify calculations, it is advisable to bring both S and E into a normal form (assuming
that this is possible by adding shift polynomials) before property (25) is checked.

Recall that an entropy S is generic if (25) is true for all choices of K-order symbols E,
with ε depending on E. This terminology reflects the following idea: S is a nonnegative
polynomial, and S− εE is a polynomial with an ε-small perturbation in the coefficients. If
the nonnegativity property (25) is retained for arbitrary but sufficiently small perturbations
E, then one can say that the coefficients of S are in generic position in ΣK .

For instance, the polynomial P (ξ) = ξ2 − 2ξ + 1 is nonnegative, but not generic, as
P (ξ) − εξ becomes negative at some point, no matter how small ε > 0 is chosen. In
contrast, Q(ξ) = 2ξ2 + 2ξ + 1 is generic. In general, it is far from being trivial to decide
whether a nonnegative polynomial is generic in this sense or not. It is possible in our
examples.

Example 10. Exactly those α-functionals with 3
2

< α + β < 3 are generic entropies for
the thin film equation (see section 4.2). How do possible entropy productions for the thin
film equation look like? As K = 4, the standard ansatz (18) reads as

E =

∫

nα+β−2n2
xx dx,

while the ansatz (19) with ` = 2 and ` = 4, respectively, yields

E =

∫

(n(α+β)/2)2
xx dx and E =

∫

(n(α+β)/4)4
x dx.

For a generic entropy, one thus finds positive constants ε1, ε2, ε3 such that

d

dt

∫

nα

α(α − 1)
dx ≤ −ε1

∫

nα+β−2(nxx)
2 dx − ε2

∫

(n(α+β)/2)2
xx dx − ε3

∫

(n(α+β)/4)4
x dx.

¤

3. Some auxiliary results

In this section we present technical lemmas that help to solve some easy quantifier elimina-
tion problems “by hand”, or at least to help to simplify them noticeably. The basic idea is
to consider special polynomials and derive relations between the – unknown – coefficients
guaranteeing nonnegativity.
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Lemma 11. Let the real polynomial P (ξ1, ξ2) = a1ξ
4
1 + a2ξ

2
1ξ2 + a3ξ

2
2 be given. Then the

quantified expression

(26) ∀ξ1, ξ2 ∈ R : P (ξ1, ξ2) ≥ 0

is equivalent to the quantifier-free statement that

either a3 > 0 and 4a1a3 − a2
2 ≥ 0(27)

or a3 = a2 = 0 and a1 ≥ 0.(28)

Proof. The sufficiency of (28) for (26) is obvious, while formula (27) implies

P (ξ) =
(

a1 −
a2

2

4a3

)

ξ4
1 + a3

(

ξ2 +
a2

2a3

ξ2
1

)2

≥ 0.

Conversely, (26) implies 0 ≤ P (1, 0) = a1 and 0 ≤ P (0, 1) = a3. If a3 > 0,

0 ≤ P (
√

a3,−
a2

2
) =

a3

4
(4a1a3 − a2

2)

yields 4a1a3 − a2
2 ≥ 0, whereas a3 = 0 implies 0 ≤ P (a2,−a2 − a1a2) = −a4

2 and hence
a2 = 0. ¤

If a3 = 1 the statement of Lemma 11 simplifies:

∀ξ1, ξ2 ∈ R : P (ξ1, ξ2) ≥ 0 if and only if 4a1 − a2
2 ≥ 0.

Lemma 12. Let the real polynomial

(29) P (ξ1, ξ2, ξ3) = a1ξ
6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ

2
2 + a5ξ1ξ2ξ3 + ξ2

3

be given. Then the quantified formula

(30) ∀ξ1, ξ2, ξ3 ∈ R : P (ξ1, ξ2, ξ3) ≥ 0

is equivalent to the quantifier free formula

either 4a4 − a2
5 > 0 and 4a1a4 − a1a

2
5 − a2

2 − a2
3a4 + a2a3a5 ≥ 0(31)

or 4a4 − a2
5 = 2a2 − a3a5 = 0 and 4a1 − a2

3 ≥ 0.(32)

Proof. The polynomial P is obviously nonnegative on the plane ξ1 = 0. Thus, the formula
(30) is equivalent to the statement that the quadratic polynomial

p(y, z) = a1 + a2y + a3z + a4y
2 + a5yz + z2

is nonnegative for all real values of y and z where y = ξ2/ξ
2
1 and z = ξ3/ξ

3
1 .

For a fixed value of y0 ∈ R, the univariate polynomial

p(y0, z) = (a1 + a2y0 + a4y
2
0) + (a3 + a5y0)z + z2

is non-negative (cf. Lemma 11 above) if and only if the expression

q(y0) = 4(a1 + a2y0 + a4y
2
0) − (a3 + a5y0)

2

is non-negative. It is obvious that p is non-negative if and only if p(y0, z) is non-negative
for all y0 ∈ R, which means that

q(y) = (4a4 − a2
5)y

2 + (4a2 − 2a3a5)y + (4a1 − a2
3)
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is a non-negative polynomial. The latter is – again by Lemma 11 – equivalent to (31)-
(32). ¤

Lemma 13. Let a univariate polynomial P (x) = a0 + a1x + a2x
2 with a2 > 0 and a real

number x̂ be given. Then the quantified formula

(33) ∃x > x̂ : P (x) ≤ 0

is equivalent to the quantifier-free expression

either a0 + a1x̂ + a2x̂
2 < 0(34)

or 4a0a2 − a2
1 ≤ 0 and 2a2x̂ + a1 < 0.(35)

Proof. If P possesses real roots, i.e. if 4a0a2 − a2
1 ≤ 0, then the larger one is given by

x+ = (
√

a2
1 − 4a0a2−a1)/2a2. Now observe that x̂ < x+ if and only if either

(

x̂+a1/2a2)
2 <

(
√

a2
1 − 4a0a2

)2
or x̂ + a1/2a2 < 0, which can be rephrased as (34) and (35). ¤

4. Examples

4.1. The porous medium equation. We associate to the porous medium equation

nt = (nβnx)x

the polynomial P (ξ1) = ξ1. Thus the canonical symbol is S0(ξ1) = ξ2
1 . Notice that S0

is already a nonnegative polynomial. This immediately implies that all α-functionals are
entropies for the porous medium equation.

For the sake of completeness we show that all entropies are generic. Observe that a
general 2-order symbol E is of the form E(ξ) = b1ξ

2
1 + b2ξ2. The only shift polynomial is

given by

T (ξ1, ξ2) = δα+βξ1 = (α + β − 1)ξ2
1 + ξ2.

The normal form of E reads E(ξ) = b′ξ2
1 with b′ = b1 − (α + β − 1)b2 and is unique in this

exceptional case. Therefore, property (25) reduces to the question if there exists an ε > 0
such that

ξ2
1 − εb′ξ2

1 ≥ 0.

The answer is affirmative, independently of α ∈ R. Hence, the functionals (19) with j = 1
and ` = 2 are entropy productions for all α.

Theorem 14. All α-functionals (α ∈ R) are generic entropies for the porous medium
equation. In particular, the following estimate holds for all α 6= 0, 1:

d

dt

∫

nα

α(α − 1)
dx ≤ −ε

∫

(n(α+β)/2)2
x dx, ε > 0 sufficiently small.
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4.2. The thin film equation. The thin film equation

nt = −(nβnxxx)x

has already been discussed as a guiding example in section 2.2. It remains to prove that
the α-functionals with 3

2
≤ α + β ≤ 3 indeed correspond to entropies, and that those with

3
2

< α + β < 3 are generic.
For this, we recall the general normal form of the characteristic symbols for the α-

production term Pα from equation (24),

Sc(ξ) = (α + β − 3)cξ4
1 + (α + β − 2 + 3c)ξ2

1ξ2 + ξ2
2

with the free parameter c ∈ R. We need to find all α ∈ R such that

∃c ∈ R : ∀ξ ∈ R : Sc(ξ) ≥ 0.

By Lemma 11, the nonnegativity of Sc at a certain value of c is equivalent to

(36) 0 ≥ 9c2 + 2(α + β)c + (α + β − 2)2 = 9

(

c +
1

9
(α + β)

)2

+
8

9
(α + β)2 − 4(α + β) + 4.

Choosing the minimizing value c = −(α + β)/9, the requirement (36) is satisfied if and
only if

8(α + β)2 − 36(α + β) + 36 ≤ 0

which is fulfilled if and only if 3
2
≤ α + β ≤ 3.

We turn to the entropy production. Let E be a K-order symbol and assume that E is
already in normal form. Writing

S(ξ) = a1ξ
4
1 + a2ξ

2
1ξ2 + a3ξ

2
2 , E(ξ) = b1ξ

4
1 + b2ξ

2
1ξ2 + b3ξ

2
2 ,

we arrive at

S(ξ) − εE(ξ) = (a1 − εb1)ξ
4
1 + (a2 − εb2)ξ

2
1ξ2 + (a3 − εb2)ξ

2
2 .

To decide positivity of this expression, we use Lemma 11. Set a′
i = ai − εbi, i = 1, 2, 3.

The condition a′
3 > 0 is always satisfied for ε > 0 small enough. It remains to be checked

for which a1, a2 and a3

q′ := 4a′
1a

′
3 − (a′

2)
2 ≥ 0.

Notice that this is an ε-small purturbation of q := 4a1a3 − a2
2, so if q > 0, then also q′ > 0

for small ε, regardless of the values of b1, b2, and b3. It is easily seen that q > 0 corresponds
to the strict inequality 3

2
< α < 3; this inequality characterizes the generic entropies.

In the non-generic cases α+β = 3
2

and α+β = 3, the selection of entropy productions is
restricted. It is easily seen that, for instance, E(ξ) = ξ2

2 corresponding to DE(n) = n2
xx/n

2

does not yield an entropy production for α = 3
2
. However, there are still non-trivial choices

for E . As it is possible to calculate explicitly the constants c which makes Sc non-negative,
it is most canonical to take E = Sc. With c = −1

6
and c = −1

3
for α = 3

2
− β and
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α = 3 − β, respectively, one obtains E = (ξ2 − ξ2
1/2)2 and E = ξ2

2 , corresponding to the
entropy productions

E = 4

∫ √
n(
√

n)2
xx dx and E =

∫

n2nxx dx.

Recalling Example 10, we have proved the following result.

Theorem 15. For the thin film equation with β > 0, all α-functionals with 3
2
− β ≤ α ≤

3 − β are entropies. All α-functionals with 3
2
− β < α < 3 − β are generic, i.e., (8) holds

for some ε > 0.

4.3. The DLSS equation. The associated polynomial to the DLSS equation

nt = −(n(log n)xx)xx

reads as P (ξ1, ξ2, ξ3) = −ξ3
1 +2ξ1ξ2−ξ3; thus the canonical symbol is S0(ξ) = −ξ4

1 +2ξ2
1ξ2−

ξ1ξ3. The shift polynomials are the same as for the thin film equation but with β = 0, see
(22). Similarly, the most general normal form of S is given by

Sc(ξ) = S0 + c · T1 + 1 · T2 + 0 · T3 = (c(α − 3) − 1)ξ4
1 + (3c + α)ξ2

1ξ2 + ξ2
2 ,

only depending on one parameter c ∈ R. Performing essentially the same steps as in section
4.2, we arrive at the analogue of equation (36):

0 ≥ 9c2 + 2(α + 6)c + (4 + α2) = 9

(

c +
1

9
(α + 6)

)2

+
8

9
α

(

α − 3

2

)

.

Choosing c = −(α + 6)/9, this inequality is satisfied if and only if α(α − 3
2
) ≤ 0 or

0 ≤ α ≤ 3

2
.

As before, generic entropies are those for which q = 4a1a3 − a2
2 > 0, corresponding to

0 < α < 3
2
. The non-generic entropies α = 0 and α = 3

2
are treated as before: For α = 0,

we obtain c = −2
3

which gives E(ξ) = (ξ2
1 − ξ2)

2; for α = 3
2
, we have c = −5

6
, so that

E(ξ) = (ξ2/2 − ξ2
1)

2. Eventually, this leads to the entropy productions

E =

∫

(log n)2
xx dx and E = 4

∫ √
n(
√

n)2
xx dx.

Theorem 16. All α-functionals with 0 ≤ α ≤ 3/2 are entropies for the DLSS equation.
Generic entropies are those with 0 < α < 3/2. Furthermore, the estimates (12)-(15) hold
for some ε > 0.

4.4. A sixth-order equation. The canonical symbol of

nt =

(

n

(

1

n
(n(log n)xx)xx +

1

2
(log n)2

xx

)

x

)

x

equals

S0(ξ) = 6ξ6
1 − 18ξ4

1ξ2 + 11ξ2
1ξ

2
2 + 8ξ3

1ξ3 − 5ξ1ξ2ξ3 − 3ξ2
1ξ4 + ξ1ξ5.
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It can be seen that there are seven shift polynomials,

T1(ξ) = (α − 5)ξ6
1 + 5ξ4

1ξ2,

T2(ξ) = (α − 4)ξ4
1ξ2 + 3ξ2

1ξ
2
2 + ξ3

1ξ3,

T3(ξ) = (α − 3)ξ2
1ξ

2
2 + ξ3

2 + 2ξ1ξ2ξ3,

T4(ξ) = (α − 3)ξ3
1ξ3 + 2ξ1ξ2ξ3 + ξ2

1ξ4,

T5(ξ) = (α − 2)ξ1ξ2ξ3 + ξ2
3 + ξ2ξ4,

T6(ξ) = (α − 2)ξ2
1ξ4 + ξ2ξ4 + ξ1ξ5,

T7(ξ) = (α − 1)ξ1ξ5 + ξ6.

Straightforward considerations lead to the following general normal form of the character-
istic symbol:

Sc1,c2(ξ) = (S0 + c1 · T1 + c2 · T2 + 0 · T3 + (1 + α) · T4 + 1 · T5 − 1 · T6 + 0 · T7)(ξ)

= (6 + (α − 5)c1)ξ
6
1 + (−18 + 5c1 + (α − 4)c2)ξ

4
1ξ2 + (11 + 3c2)ξ

2
1ξ

2
2

+ (5 − 2α + α2 + c2)ξ
3
1ξ3 + (3α − 5)ξ1ξ2ξ3 + ξ2

3 .(37)

The corresponding quantifier elimination problem can now be solved using computer al-
gebra. For this example, we prefer to perform the quantifier elimination explicitly by
application of Lemmas 12 and 13. By Lemma 12, the polynomial Sc1,c2 is nonnegative with
respect to ξ if and only if either case (31) is true,

0 < 4a4 − a2
5 = 44 − (3α − 5)2 + 12c2,(38)

0 ≤ q(c1, c2) := 4a1a4 − a1a
2
5 − a2

2 − a2
3a4 + a2a3a5,(39)

= (q0 + q1c2 + q2c
2
2 − 3c3

2) + (q3 + q4c2)c1 − 25c2
1

(the coefficients qi depend on α only) or if (32) holds,

0 = 4a4 − a2
5 = 44 − (3α − 5)2 + 12c2,(40)

0 = 2a2 − a3a5 = −11 − 25α + 11α2 − 3α3 + 10c1 − (3 + α)c2,(41)

0 ≤ 4a1 − a2
3 = 8α(2 − α) − (α − 1)4 + 4(α − 5)c1 − (10 − 4α + 2α2)c2 − c2

2.(42)

The solution of the system (40)-(42) is easily computed: Inserting the values for c1 and c2

obtained from the linear equations (40) and (41) into (42) yields the following condition
on α:

(43) 0 ≤ 1

720
(−125 + 1020α − 2406α2 + 2700α3 − 1125α4).

Values of α lying between the two real roots (namely, 0.1927 . . . and 1.1572 . . .) of the
polynomial give rise to entropies.

To resolve (38)-(39) as well, first observe that (38) is satisfied if and only if c2 > ĉ2 :=
((3α − 5)2 − 44)/12. Moreover, the polynomial q(c1, c2) is quadratic in c1 for any fixed c2;
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it possesses a nonnegative point if and only if its discriminant is nonpositive,

0 ≥ 4(−25)(q0 + q1c2 + q2c
2
2 − 3c3

2) − (q3 + q4c2)
2

= (c2 − ĉ2)
[

4(25 + 20α + 14α2 + 10α3 + α4) + 4(25 + 10α + 7α2)c2 + 25c2
2

]

=: (c2 − ĉ2)∆(c2).

(It is a fortunate fact that the discriminant factors this way. Observe that q(c1, c2) itself
does not permit such a factorization.) Now apply Lemma 13 to determine the conditions
under which there exists a c∗2 > ĉ2 such that ∆(c2) ≤ 0. We omit the details but report
that formula (34) reproduces condition (43) above, with a strict inequality sign, while (35)
does not provide any additional information.

Finally, one can use the same perturbation argument as in the examples before. It is then
easily seen that generic entropies are singled out by the property that both inequalities in
(31) are strictly satisfied. The latter corresponds to strict inequality in (43).

Theorem 17. All α-functionals with 0.1927 . . . ≤ α ≤ 1.1572 . . . are entropies for the
sixth-order equation (4). Generic entropies are associated to those α which fulfil the strict
inequality. In particular, for α = 1, the following estimate holds:

d

dt

∫

(n(log n − 1) + 1) dx ≤ −ε

∫

(
√

n)2
xxx dx

for some ε > 0.

5. Extensions

5.1. Higher-order entropies. The definition of α-functionals and entropies allows a
straight-forward extension in which also x-derivatives of n may occur under the integral
sign. We do not intend to investigate the most general situation here, but limit ourselves
to functionals of the form

Sm =
1

2

∫

(∂m
x s(n))2 dx with s′(n) = nα/2−1.

We call such an integral an m-order α-functional. Naturally, an m-order α-functional is
called an m-order entropy if it is non-increasing in time,

d

dt
Sm(t) ≤ 0 for t > 0.

First-order entropies are of special interest. As mentioned in the introduction, the most
prominent example is the Fisher information, obtained for α = 1,

S1 = 2

∫

(
√

n)2
x dx,

which is known to be an entropy for the thin-film or DLSS equation [12, 27].
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The connection of m-order α-functionals to our algebraic framework becomes obvious
by calculating the time derivative

dSm

dt
=

∫

∂m
x s(n)

d

dt
∂m

x s(n) dx = (−1)m

∫

(

∂2m
x s(n)

)

s′(n)nt dx

= (−1)m+1

∫

nβ+1DP (n)
(

(∂2m
x s(n))s′(n)

)

x
dx.

For example, in order to obtain first-order entropies

S1 =
2

α

∫

(nα/2)2
x dx

for the thin film equation, we have to determine those values of α for which

∃c1, c2 ∈ R : ∀ξ : (α + β − 5)c1ξ
6
1 + (5c1 + (α + β − 4)c2)ξ

4
1ξ2 + 3c2ξ

2
1ξ

2
2

+
(

1
2
(α2 − 5α + 6) + c2

)

ξ3
1ξ3 + (2α − 4)ξ1ξ2ξ3 + ξ2

3 ≥ 0.

The situation is very similar to that of the sixth order equation in section 4.4. The quantifier
elimination can be performed either by computer algebra or explicitly with the help of
Lemmas 12 and 13. The result is displayed in Figure 1. Thus, there is always a “trivial”
first-order entropy, corresponding to α = 2, which reads S1 =

∫

n2
x dx. Further entropies

are available for 1/2 < β < 3; then α belongs to an interval that contains 2 in its interior.
The notions of entropy productions and generic entropies carry over literally to higher-

order entropies. We report that the points (α, β) lying in the interior of the entropy region
in Figure 1 correspond to generic entropies. Hence, there holds

d

dt

∫

(nα/2)2
x dx ≤ −ε1

∫

nα+β−2(nxxx)
2 dx − ε2

∫

(n(α+β)/2)2
xxx dx − ε3

∫

(n(α+β)/6)6
x dx.

Similarly, first-order entropies for the DLSS equation (3) correspond to values of α for
which there are c1 and c2, making

S(ξ) =

(

3 − 5
α

2
+

α2

2
+ (α − 5)c1

)

ξ6
1 + (−10 + 7α − α2 + 5c1 + (α − 4)c2)ξ

4
1ξ2

+ (8 − 4α + 3c2)ξ
2
1ξ

2
2 +

(

4 − 5α

2
+

α2

2
+ c2

)

ξ3
1ξ3 + (2α − 6)ξ1ξ2ξ3 + ξ2

3

a nonnegative polynomial in ξ. Along the same lines as before, one determines the condition
that α lies in between the two reals roots of 20−100α+53α2, i.e. α ∈ (0.2274 . . . , 1.6593 . . .).

5.2. Logarithmic Sobolev-type inequalities. The same technique used to determine
entropies can be employed to prove functional inequalities which resemble the logarithmic
Sobolev inequality

∫

n2 log
n2

N2
dx ≤ C

∫

n2(log n)2
x dx,
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where N2 =
∫

n2dx/L, L being the interval length. As an example of our method we prove
the relation

∫

nα(log n)4
x dx ≤

(

3

α

)2 ∫

nα(log n)2
xx dx

for all smooth (rapidly decaying or periodic) functions n > 0. More precisely, we determine
the range of ε such that

(44)

∫

nα
(

(log n)2
xx − ε(log n)4

x

)

dx ≥ 0.

This estimate is clearly satisfied if DQ0
(n) ≥ 0, with

Q0(ξ) = (1 − ε)ξ4
1 − 2ξ2

1ξ2 + ξ2
2 .

Integration by parts in (44) is translated into the addition of a linear combination of the
shift polynomials (22) with β = 0 to Q0. We thus consider the general normal form

Qc(ξ) = Q0(ξ) + cT1(ξ) = (1 − ε − c(α − 3))ξ4
1 + (3c − 2)ξ2

1ξ2 + ξ2
2

and seek all values of ε for which there exists a real constant c such that Qc is nonnegative.
In other words, we need to solve a quantifier elimination problem for Qc, establishing a
relation between α and ε. To do so, we apply Lemma 11 and obtain eventually the following
relation for c,

9c2 + 4αc + 4ε ≤ 0,

which is true if and only if 9ε ≤ α2. By Theorem 19 in section 5.5, the choice ε = (α/3)2

is optimal: Observe that Q0(ξ̌) = Q0(1, 1 − α/3) = ε − (α/3)2.
In a similar way, but with more technical effort, we can prove inequalities involving more

derivatives, like (assuming α > 0)
∫

nα(log n)3
xx dx ≤ 5

12α

∫

nα(log n)2
xxx dx.

For more information on logarithmic Sobolev inequalities and particularly its optimal
constants, we refer to [14, 23, 34] and, more recently, to [4, 21].

5.3. Combinations of operators of different order. Often, equations arising from
applications contain several differential terms modeling various physical phenomena. Ex-
amples are the (zero-field) quantum drift-diffusion model for semiconductors [1, 25],

(45) nt = −(n(log n)xx)xx + nxx,

and the thin-film porous-medium equation [9],

(46) nt = −(nβnxxx)x + (nγ)xx.

More generally, we wish to deal with compound equations of the form

(47) nt =
(

nβ+1 (DP (n) + DQ(n))
)

x
,

where the symbols P and Q define operators of different order. It is clear that if an α-
functional is an entropy both for nt = (nβ+1DP (n))x and nt = (nβ+1DQ(n))x, then it is
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also an entropy for (47). Therefore, the range of entropies for the compound equations
(47) contains the intersection of those for the individual equations.

More interesting is the situation in which the compound equation possesses additional
entropies. Consider the example

(48) nt = −(nβnxxx + qnβnx))x, q > 0.

As q > 0, there is no entropy for the equation associated to Q. The corresponding poly-
nomials are P (ξ) = −ξ3 and Q(ξ) = −qξ1. Here we employ the Poincaré inequality

(49) `

∫

(n(α+β)/2)2
x dx ≤

∫

(n(α+β)/2)2
xx dx,

where ` = (2π/L)2 is the (optimal) Poincaré constant. (Recall that L is the length of the
interval.) This inequality is equivalent to

∫

nα+β

[

(

nxx

n
+

α + β − 2

2

(nx

n

)2
)2

− `
(nx

n

)2
]

dx ≥ 0.

Although it is impossible to prove positivity of any characteristic symbol for α-production
terms of (48), the following estimate is clearly sufficient to show the positivity of the
α-production term itself:

(50) ξ1P (ξ) + ξ1Q(ξ) + cT1(ξ) + T2(ξ) ≥ ρ

(

(

ξ2 +
α + β − 2

2
ξ2
1

)2

− `ξ2
1

)

,

where ρ > 0 and T1 and T2 are the shift polynomials (22). The right-hand side is not
necessarily a pointwise positive expression but it represents the nonnegative integral (49).
If there is a choice of the shift parameter c such that this inequality holds for some ρ > 0,
then the decay of the α-functional is proven. An equivalent version of (50) is

(51) ξ1P (ξ) + cT1(ξ) + T2(ξ) − ρ

(

ξ2 +
α + β − 2

2
ξ2
1

)2

≥ (q − ρ`)ξ2
1 .

Observe that the polynomial on the left-hand side is homogeneous of degree two in ξ2
1 and

ξ2, whereas the right-hand side is homogeneous of degree one in ξ2
1 . Therefore (51) is true

for all ξ if and only if the left-hand side is always nonnegative and the right-hand side is
nonpositive. Among all values for ρ which make the right-hand side nonpositive, the choice
ρ = q/` obviously maximizes the left-hand side. It thus suffices to determine the values of
γ = α + β for which there exists a constant c such that the left-hand side is a nonnegative
polynomial. In explicit form,

(

c(γ − 3) − ρ

4
(γ − 2)2

)

ξ4
1 + ((1 − ρ)(γ − 2) + 3c)ξ2

1ξ2 + (1 − ρ)ξ2
2 ≥ 0.

By Lemma 11, the conditions ρ < 1 (which implies q = `ρ < `) and

(1 − ρ)(4c(γ − 3) − ρ(γ − 2)) ≥ ((γ − 2)(1 − ρ) + 3c)2
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are sufficient. (The case ρ = 1 corresponds to γ = 2.) Rewrite this inequality as a
polynomial equation for c,

9c2 + 2(1 − ρ)γc + (1 − ρ)(γ − 2)2 ≤ 0.

The minimal value of this quadratic expression in c is nonpositive if and only if

(8 + ρ)γ2 − 36γ + 36 ≤ 0.

In the limit q = 0 of vanishing perturbations, we derive the condition 3
2
≤ γ ≤ 3 again. If

0 < q < `, then γ can be chosen from the interval [γ1, γ2], where

(52) γ1/2 =
18

8 + q(L/2π)2

(

1 ±
√

1 − 1

9(8 + q(L/2π)2)

)

.

For q = `, we obtain γ1 = γ2 and hence, only γ = 2 is possible.

Theorem 18. Every α-functional is an entropy for (48) provided that 0 ≤ q ≤ (2π/L)2

and γ1 − β ≤ α ≤ γ2 − β, where γ1/2 are given by (52).

5.4. Multi-dimensional equations. In principle, the generalization of the one-dimen-
sional concept to two (or more) space dimensions is straightforward: The basic building
blocks are differential expressions of u(x1, x2) of the form (∂k

x1
∂`

x2
u)/u. Consequently, in

two dimensions, the variables ξk become double-indexed quantities, ηk,`. The rules of
integration by parts are obtained by differentiating products of η with respect to x1 or to
x2.

Although this naive strategy works in theory, it leads (even in the simplest situations) to
large polynomial expressions in many variables ηk,` and a huge variety of shift polynomials.
Solving the corresponding quantifier elimination problem would be far beyond the ability
of today’s computer technology.

A better approach is seemingly not to incorporate all products of differential expressions
(∂k

x∂`
yu)/u, but to restrict oneself to an appropriate subclass. We notice that the stronger

such a restriction is, the greater are the chances that on the one hand, the solution of the
quantifier elimination problem is actually computable, and that one the other hand, some
entropies are “lost”, i.e. not seen by the method. A natural restriction is to focus on those
expressions with the same basic symmetry properties as the original evolution equations.

This section is intended to sketch how our method works for functions u depending on
d > 1 variables. We do not rigorously develop the concept of multi-dimensional entropies
and shift polynomials, but only present the main ideas in its application to the multi-
dimensional thin film equation

(53) ut = −div
(

uβ∇∆u
)

, u : R
d × (0,∞) → R+.

In analogy to the one-dimensional case, we are looking for entropies in the form S(u) =
∫

uαdx/α(α − 1). Taking the time derivative and integrating by parts (assuming multi-
periodic boundary conditions), yields the production term

dS
dt

=

∫

uα+β∇u

u
· ∇∆u

u
dx.



24 ANSGAR JÜNGEL AND DANIEL MATTHES

The basis for determining the shift polynomials is the divergence theorem,
∫

divDR(u) dx = 0,

i.e., we are looking for multi-dimensional differential expressions DT (u) of the form DT (u) =
divDR(u).

We focus on differential expressions which can be written in terms of scalar multiplication
and the operator ∇ alone, i.e. without any reference to the individual partial derivatives
∂/∂xj. The resulting quantifier elimination problem can be easily solved; however, one
has to be aware that some entropies might get lost by this restriction. Here is a list of the
relevant monomic differential expressions:

• first order: ∇u/u (gradient, 1-tensor);
• second order: ∆u/u (Laplacian, scalar), ∇∇u/u (Hessian, 2-tensor);
• third order: ∇∆u/u (1-tensor), ∇∇∇u/u (3-tensor);
• fourth order: ∆∆u/u (scalar), ∇∇∆u/u (2-tensor), ∇∇∇∇u/u (4-tensor).

Next, we list all homogeneous scalar expressions containing exactly four derivatives (which
appear as products of the monomials above)

|∇u|4/u4, (∆u)2/u2, tr(∇∇u)2/u2, |∇u|2∆u/u3,(54)

∇uT (∇∇u)∇u/u3, ∇∆u∇∆u/u, ∆∆u/u.(55)

Introducing the symbols ηG = ∇u/u, ηL = ∆u/u, ηH = ∇∇u/u, ηT = ∇∆u/u, and
ηD = ∆∆u/u, the expressions in (54) and (55) are abbreviated as

η4
G, η2

L, tr(η2
H), η2

GηL,

η2
GηH , ηGηT , ηD.

These expressions have to be read as formal symbols and not as actual products. Notice
that in contrast to the one-dimensional situation, multiplication of differential monomials
in higher dimensions is rather sophisticated. For instance, the formal expression (∇u/u)2

could represent both the scalar function |∇u|2/u2 as well as the 2-tensor Q which is such
that Q(v, w) = (v · ∇u)(w · ∇u)/u2.

Fortunately, ambiguities like this do not appear in the situation at hand. Moreover,
the symbols involving the tensor expressions ηG and ηH (i.e. the gradient vector and the
Hessian matrix) share essential properties with actual products. In particular, from the
Cauchy-Schwarz estimate

(vT Aw)2 ≤ tr(A2) ‖v‖2 ‖w‖2

for arbitrary symmetric matrices A and vectors v, w, it follows that pointwise,

(56) |η2
GηH | ≤

√

tr(η2
H) ‖ηG‖2.

The shift polynomials corresponding to the divergence of

|∇u|2∇u/u3, ∆u∇u/u2, ∇uT (∇∇u)/u2, ∇∆u/u,
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are, writing γ = α + β and η = (ηG, ηH , ηL),

T1(η) = (γ − 3)η4
G + η2

GηL + 2η2
GηH ,

T2(η) = (γ − 2)η2
GηL + η2

L + ηGηT ,

T3(η) = (γ − 2)η2
GηH + tr(η2

H) + ηGηT ,

T4(η) = (γ − 1)ηGηT + ηD.

The different coefficients of η2
GηL and η2

GηH in T1 underline the fact that the second-order
symbols ηL and ηH are not completely interchangable and therefore cannot be combined
into one single variable.

The canonical symbol for equation (53) is S0(η) = −ηGηT . As in one dimension, it only
makes sense to consider the normal forms. The general normal form for S reads:

S(η) = (S0 + cT1 + fT2 + f ′T3)(η)

= c(γ − 3)η4
G + fη2

L + f ′tr(η2
H) + ((γ − 2)f + c)η2

GηL + ((γ − 2)f ′ + 2c)η2
GηH ,

where f and f ′ are constants satisfying f + f ′ = 1.
We now argue that it is sufficient to do quantifier elimination for a corresponding poly-

nomial on three scalar variables. Namely, define ξ = (ξG, ξH , ξL) ∈ R
3 for given η by

ξG = ‖ηG‖, ξH =
√

tr(η2
H), ξL = ηL.

Then S(η) is identical to S(ξ), up to the term involving η2
GηH . Thanks to the basic

relation (56), it follows S(η) ≥ min
(

S(ξG, ξH , ξL), S(ξG,−ξH , ξL)
)

pointwise. Thus, it
indeed suffices to resolve

∃c, f + f ′ = 1 : ∀ξ ∈ R
3 : S(ξ) ≥ 0.

From the latter, one obtains, using e.g. the algebra tool QEPCAD, the equivalent condition

3

2
≤ α + β ≤ 3.

5.5. Absence of Entropies. A variety of calculations is necessary to perform our algo-
rithm in actual applications, some of which (in particular the quantifier elimination) can
be very time-consuming. Below, a method of less computational effort is presented, which
yields restrictions on the regions where entropies will be found.

Recall that K is the order of equation (1). For α ∈ R, define ξ̌ ∈ R
K with components

ξ̌1 = 1 and inductively ξ̌k+1 =
(

1 − k
K−1

(α + β)
)

ξk for 1 ≤ k < K.

All respective shift polynomials Ti(ξ) vanish at ξ = ξ̌. This follows immediately by inserting
the definition of ξ̌ into formula (21). Therefore, the values of any two characteristic symbols
S and S ′ coincide at ξ̌. Hence, if the canonical symbol S0 is negative at ξ̌, then any
characteristic symbol is. If this is the case, then the α-production term cannot be rewritten
as an integral over a pointwise positive function by means of integration by parts. In
consequence, the corresponding α-functional S will not be identified as an entropy by our
algorithm. This statement can be even strengthened:
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Theorem 19. Assume that, for any C∞ periodic initial data nI , equation (1) posseses a
classical solution n(·, t) for t ∈ [0, T ). For α ∈ R with α+β > 0, let S be the corresponding
α-functional with canonical symbol S0. If S0(ξ̌) < 0, then S is not an entropy.

Proof. The claim of this theorem is essentially a generalization of Theorem 1(C) in [27].
We give an outline of the adaption to our situation, omitting the technical details.

The proposal is to take nI(x) = |x|τ with exponent τ = (K − 1)/(α + β). For x 6= 0,

∂k
xnI

nI

= τ(τ − 1) · · · (τ − k + 1)
(σ(x)

|x|
)k

with σ(x) being the sign of x. Hence, formally, the integrand of Pα at t = 0 reads

nα+β
I DS0

(nI) = |x|(α+β)τ S0

(

τ(σ(x)
|x|

), τ(τ − 1)(σ(x)
|x|

)2, . . . , τ · · · (τ − K + 1)(σ(x)
|x|

)K
)

= |x|(α+β)τ−K τK S0

(

1, τ−1
τ

, . . . , ( τ−1
τ

) · · · ( τ−K+1
τ

)
)

= τK S0(ξ̌) |x|−1.

Here we have used the homogeneity of S0 ∈ ΣK to pull τ k|x|−k out of the kth argument.
Also, since K is an even number, the expressions σ(x)k cancel.

To make nI a valid initial datum, there are three obstacles to overcome:

(1) The expression |x|−1 is not integrable at x = 0. Define nδ(x) = |x|τ+δ, with δ > 0.
Then, for any fixed x̄ > 0, a direct computation reveals

(57)

∫ x̄

−x̄

nα+β
δ DS0

(nδ) dx =
1

δ

[

2 τK

α + β
S0(ξ̌) + o(1)

]

as δ → +0.

(2) The function nδ is not periodic. Replace nδ by n̂δ(x) = | sin x|τ+δ (assuming without
loss of generality that L = 2π.). The asymptotic behaviour (57) is not affected, as
the integral is dominated by the almost-nonintegrable contribution near x = 0.

(3) n̂δ is neither smooth nor positive at x = 0. Use the regularized function

n̂δ,ε(x) =
(
√

ε + sin2 x
)τ+δ

,

which is smooth und positive for ε > 0. The dominated convergence theorem allows
to pass to the pointwise limit limε→+0 n̂δ,ε(x) = n̂δ(x) under the integral in (57) for
any δ > 0. At this point, estimates analogous to those in [27] are necessary.

In summary, one obtains a family of smooth positive 2π-periodic functions n̂δ,ε satisfying

(58) lim
δ→+0

[

δ lim
ε→+0

∫ π

−π

n̂α+β
δ,ε DS0

(n̂δ,ε) dx

]

=
2 τK

α + β
S0(ξ̌) < 0.

Use n̂δ,ε as initial condition nI for (1). By assumption, a classical solution n(·, t) with

n(·, 0) = nI exists. From (58) it follows that Pα(0) =
∫

nα+β
I DS0

(nI) dx < 0 for 0 <
ε ¿ δ sufficiently small. Thus, S(t) is increasing for small times t ≥ 0 and cannot be an
entropy. ¤
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The necessary criterion S0(ξ̌) ≥ 0 produces exact bounds on the (zeroth-order) entropy
ranges for, e.g., the DLSS equation. More precisely, one has S0(ξ̌) < 0 if and only if α < 0
or α > 3

2
. The same is true for the thin film equation.

The criterion seems less useful in situations with K ≥ 6 or for higher-order entropies.
For example, recall the equation of sixth order from section 4.4. One calculates

S0(ξ̌) =
2α2

625
(−10 + 3α)(−5 + 4α).

This expression is negative for 5
4

< α < 10
3
; hence the corresponding α-functionals are not

entropies. This estimate gives little information on the range of entropies which we have
determined as 0.1927 . . . < α < 1.1572 . . ..

Appendix

In this appendix we give a sketch of the derivation of the sixth-order equation (4). In [20]
the following generalized quantum drift-diffusion model has been derived in R

d (d ≥ 1):

(59) nt = div(n∇A),

where the particle density n(x, t) and the function A(x, t) are related through

n(x, t) =
1

2πδ

∫

Rd

Exp(A(x, t) − |p|2/2)dp, x ∈ R
d, t > 0,

and δ > 0 is the scaled Planck constant. The so-called quantum exponential Exp is defined
by Exp(f) = W (exp(W−1(f))), where f = f(x, p, t) is a function, W is the Wigner
transform, W−1 its inverse, and “exp” is the operator exponential. We refer to [19, 20] for
the precise definitions of the Wigner transform and its inverse since we do not need it in
the following. Equation (59) is obtained from a collisional Wigner equation by a moment
method in the diffusion limit, employing the quantum exponential as a closure function.

The aim of this section is to expand (59) in one space dimension in powers of δ up to
O(δ6). The expansion up to O(δ4) has been performed in [19, Thm. 5.1] and leads to the
(zero-field) quantum drift-diffusion model

nt = nxx −
δ2

12
(n(log n)xx)xx.

The crucial step is to find an O(δ6) approximation of Exp(f) with f(x, p) = A(x)−|p|2/2.
Following [19], we define F (s) = Exp(sf) and express F (s) as a series in δ, i.e. F (s) =
∑∞

k=0 δkFk(s). The functions Fk(s) can be computed by pseudo-differential calculus. Then,
Fk(s) = 0 for all odd indices k and

d

ds
Fk(s) = f ◦0 Fk(s) + f ◦2 Fk−2(s) + · · · + f ◦k F0(s)

for all even indices k, where the multiplication “◦m” is defined by

u ◦m v =

(

−1

4

)m/2
∑

α+β=m

(−1)β

α!β!
∂α

x ∂β
p u · ∂β

x∂α
p v.
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The functions F0 and F2 have already been calculated in [19, Lemma 5.6]:

F0(s)(x, p) = esf(x,p),

F2(s)(x, p) =
1

8
esf(x,p)

(

Axx

(

s2 − s3

3
p2

)

+
s3

3
A2

x

)

.

As F1(s) = F3(s) = F5(s) = 0, it remains to solve

d

ds
F4(s) = f ◦0 F4(s) + f ◦2 F2(s) + f ◦4 F0(s)

= f · F4(s) +
esf

192

(

s5A4
x + (9s4 − 2s5p2)A2

xAxx + (10s3 − 9s4p2 + s5p4)A2
xx

+ (8s3 − 2s4p2)AxAxxx + (3s2 − s3p2)Axxxx

)

+
esf

384

(

(3s2 − 6s3p2 + s4p4)Axxxx

)

.

By the variation-of-constants formula, the result is

F4(1) =
ef

384

[

1

3
A4

x +

(

18

5
− 2

3
p2

)

A2
xAxx +

(

5 − 18

5
p2 +

1

3
p4

)

A2
xx

+

(

4 − 4

5
p2

)

AxAxxx +

(

3 − 2p2 +
1

5
p4

)

Axxxx

]

.

This completes the O(δ6) expansion of the quantum exponential.
In order to represent the density n as a function of A, we integrate F0, F2, and F4 with

respect to p ∈ R and employ the formulas

∫

R

eA−p2/2pm dp =







√
2πm!

(m/2)!
eA if m is even

0 if m is odd.

This gives

n =
1

2πδ

∫

R

(F0(1) + δ2F2(1) + δ4F4(1))dp + O(δ6) =
eA

√
2πδ

(

1 +
δ2

24
(A2

x + 2Axx)(60)

+
δ4

5760
(5A4

x + 44A2
xAxx + 36A2

xx + 48AxAxxx + 24Axxxx) + O(δ6)

)

.

To obtain also an δ-expansion of A in terms of n, we insert the ansatz A = A0+δ2A2+δ4A4

in (60). Equating equal powers of δ yields the system

n =
√

2πδ eA0 ,

0 = A2 +
1

24
(A2

0,x + 2A0,xx),
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0 = A4 +
1

2
A2

2 +
1

12
(A0,xA2,x + A2,xx) +

1

24
A2(A

2
0,x + 2A0,xx)

+
1

5760
(5A4

0,x + 44A2
0,xA0,xx + 36A2

0,xx + 48A0,xA0,xxx + 24A0,xxxx).

Therefore,

A0 = log n − log(
√

2πδ), A2 = −1

6

√
nxx√
n

,

A4 = − 1

360

(

3(log n)2
xx

2
− nxx(log n)xx

n
−

(nxx

n

)

xx

)

.

Finally, (59) becomes

nt = nxx −
δ2

12
(n(log n)xx)xx +

δ4

360

(

n

(

(n(log n)xx)xx

n
+

(log n)2
xx

2

)

x

)

x

up to an error of order O(δ6). The sixth-order equation (4) is obtained by considering only
the last expression in the above equation and setting δ4 = 360. The whole equation can
be treated by our entropy method using the techniques of section 5.3.
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[19] P. Degond, F. Méhats, and C. Ringhofer. Quantum energy-transport and drift-diffusion models. J.

Stat. Phys. 118 (2005), 625-665.
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