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Abstract

Providing objective metrics of conscious state is of great interest across multiple research and clinical fields—from neurol-
ogy to artificial intelligence. Here we approach this challenge by proposing plausible mechanisms for the phenomenon of
structured experience. In earlier work, we argued that the experience we call reality is a mental construct derived from
information compression. Here we show that algorithmic information theory provides a natural framework to study and
quantify consciousness from neurophysiological or neuroimaging data, given the premise that the primary role of the brain
is information processing. We take as an axiom that “there is consciousness” and focus on the requirements for structured
experience: we hypothesize that the existence and use of compressive models by cognitive systems, e.g. in biological recur-
rent neural networks, enables and provides the structure to phenomenal experience. Self-awareness is seen to arise natu-
rally (as part of a better model) in cognitive systems interacting bidirectionally with the external world. Furthermore, we
argue that by running such models to track data, brains can give rise to apparently complex (entropic but hierarchically or-
ganized) data. We compare this theory, named KT for its basis on the mathematical theory of Kolmogorov complexity, to
other information-centric theories of consciousness. We then describe methods to study the complexity of the brain’s out-

put streams or of brain state as correlates of conscious state: we review methods such as (i) probing the brain through its
input streams (e.g. event-related potentials in oddball paradigms or mutual algorithmic information between world and
brain), (ii) analyzing spontaneous brain state, (iii) perturbing the brain by non-invasive transcranial stimulation, and (iv)

quantifying behavior (e.g. eye movements or body sway).

Key words: algorithmic information theory; Kolmogorov complexity; cellular automata; neural networks; complexity; pres-
ence; consciousness; structured experience; neural correlates of consciousness; PCI; LZW; tCS; tACS; TMS; EEG; MEG; fMRI; Al

Introduction

Characterizing consciousness is a profound scientific problem
(Koch et al. 2016) with pressing clinical and practical implications.
Examples include disorders of consciousness (Laureys 2005;
Casali et al. 2013), locked-in syndrome (Chaudhary et al. 2017),
conscious state in utero (Lagercrantz and Changeux 2010), in sleep
and other states of consciousness, in non-human animals, and
perhaps soon in exobiology or in machines (Koch and Tononi
2008; Reggia 2013). Here, we address the phenomenon of struc-
tured experience from an information-theoretic perspective.

Science strives to provide simple models that describe ob-
servable phenomena and produce testable predictions. In line
with this, we offer here the elements of a theory of conscious-
ness based on algorithmic information theory (AIT). AIT stud-
ies the relationship between computation, information, and
(algorithmic) randomness (Hutter 2007), providing a definition
for the information of individual objects (data strings) beyond
statistics (Shannon entropy). We begin from a definition of
cognition in the context of AIT and posit that brains strive to
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model their input/output fluxes of information (I/Os) with sim-
plicity as a fundamental driving principle (Ruffini 2007, 2009).
Furthermore, we argue that brains, agents, and cognitive systems
can be identified with special patterns embedded in mathematical
structures enabling computation and compression.

A brief summary of what we may call the Kolmogorov theory
of consciousness (KT) is as follows. We start from the subjective
view (“my brain and my conscious experience”):

1. “There is information and I am conscious.” Information here
refers to the messages/signals traveling in and out of my
brain or even within parts of my brain (/O streams), and to
Shannon’s definition of the information conveyed by those
messages.

2. “Reality, as it relates to experience and phenomenal structure,
is a model my brain has built and continues to develop based
on input-output information.” The phenomenal structure of
consciousness encompasses both sensory qualia and the spa-
tial, temporal, and conceptual organization of our experience
of the world and of ourselves as agents in it (Van Gulick 2016).
Brains are model builders and compressors of information for
survival. Cognition and phenomenal consciousness arise from
modeling, compression, and data tracking using models. At
this stage, from what really is a mathematical framework, “I,
(my brain)” derive, from the available information and compu-
tation, concepts such as chair, mass, energy, or space (physics
is itself a derived, emergent concept).

Then we shift to the objective view: what kind of mathemati-
cal structures connecting the concept of information with ex-
perience could describe the above?

3. We argue that the proper framework is provided by AIT and
the concept of algorithmic (Kolmogorov) complexity. AIT
brings together information theory (Shannon) and computa-
tion theory (Turing) in a unified way and provides a founda-
tion for a powerful probabilistic inference framework
(Solomonoff). These three elements, together with Darwinian
mechanisms, are crucial to our theory, which places
information-driven modeling in agents at its core.

4. To make the discussion more concrete, we briefly discuss
Cellular Automata (CA). These represent one example for
the definition of information and computation, and of
“brains” as special complex patterns that can actually repre-
sent (model) parts of the universe. CAs, as universal Turing
machines (TMs), can instantiate embedded sub-TMs and
provide an example of how complex-looking, entropic data
chatter can be produced by simple, iterative rules. This pro-
vides a conceptual bridge to relate algorithmic complexity
and other measures and “flavors” of complexity (e.g. en-
tropy, power laws, fluctuation analysis, fractals, complex
networks, and avalanches).

5. We return to the subjective and hypothesize that structured,
graded, and multidimensional experience arises in agents
that have access to simple models. These models are instan-
tiated on computational substrates such as recurrent neural
networks (RNNs) and are presumably found by successful
agents through interaction with a complex-looking world
governed by simple rules.

Finally, based on the prior items and shifting to empirical
application,

6. We examine methods to characterize conscious systems
from available data (internal/physiological or external/be-
havior) and propose lines for further research.

We do not address here the “hard problem” of
consciousness—the fundamental origin of experience (Chalmers

1995). We assume that “there is consciousness,” which, with the
right conditions, gives rise to structured experience, much as we
assume that “there is a quantum electromagnetic field” with par-
ticular states we call photons. We focus instead on understanding
how structured experience is shaped by the algorithmic character-
istics of the models brains (or other systems) build with simplicity
as a guiding principle. We aim to link the properties of models
with those of experience, such as uniqueness, unity, and strength.
In this sense, we are aligned with the idea that phenomenal struc-
ture requires complex representations of the world (as in repre-
sentational theories of consciousness) (Van Gulick 2016), and also
that we should address the “real problem” (Seth 2016): “how to ac-
count for the various properties of consciousness in terms of bio-
logical mechanisms; without pretending it doesn’t exist (easy
problem) and without worrying too much about explaining its ex-
istence in the first place (hard problem).” An important new ele-
ment is that we study “mathematical” mechanisms that, as such,
can potentially be generalized beyond biology. This is an ambi-
tious but challenging program. In the Discussion section, we dis-
cuss some limitations and open questions.

Computation, Compression, and Cognition

The definition of a Universal TM (Turing 1936) provides the
mathematical foundation for computation and information the-
ory and hence plays a key role in KT. Although our starting
point is mathematical, it is readily linked to physics. In practice,
all formulations of fundamental physics theories can be set on
mathematical frameworks in which there is a description of the
universe called the “state” (a string) and dynamic laws (effective
procedures) that transform the state in time (computation)
through “recursion.” The state can be fully described given suffi-
cient information (it is literally a string)—both in classical and
in quantum theories—and evolves computing its future (Lloyd
2002). The field of physics is guided by the notion that some
simple laws dictate this evolution. A possible conclusion is
summarized by the conjecture (called “digital physics”) that the
universe is discrete and isomorphic to a TM. Although the spe-
cific choice of a physical theory is not of immediate concern for
us, KT is certainly aligned with the idea that the universe is iso-
morphic to—or can be fully described by—such a mathematical
structure, and that organisms are examples of special complex
patterns embedded in it with the interesting property of being
capable of modeling parts of the universe. The statement that
the universe is a TM is important, among other reasons, be-
cause TMs can represent/embed others—and KT adopts the no-
tion that brains are such embedded sub-TMs in the universe.
Both CAs and RNNs provide examples of TMs, which may be ap-
propriate at different levels of description.

CAs are mathematical structures defined on a cell grid with
simple local interaction rules (Wolfram 2002), and they encapsu-
late many of fundamental aspects of physics (spatiotemporal ho-
mogeneity, locality, and recursion). They can be used to formalize
the concepts of computation, information, and emergence of
complex patterns and have attracted a great deal of interest be-
cause they capture two basic aspects of many natural systems: (i)
they evolve according to local homogenous rules and (ii) they can
exhibit rich behavior even with very simple rules. The simplest
interesting example is provided by a 1D lattice of binary-valued
“cells,” with nearest neighbor interaction. A rule specifies, for the
next iteration (dynamics) the value at that location from its prior
value and that of its neighbors (state). Surprisingly, some of these
rules have been shown to produce universal computers—such as
Rule 110 (Cook 2004). That is, the patterns such a simple system
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generates can be used to emulate a universal TM (as is Conway’s
2D Game of Life, Gardner 1970). The initial configuration of the
CA provides the program (Wolfram 2002). CAs can produce highly
entropic data, with power law behavior (Kayama 2010; Mainzer
and Chua 2012; Ninagawa 2013). Thus, CAs or similar systems
represent interesting frameworks to study measurable hallmarks
of computation and compression, and establish links with other
complexity “flavors” (as discussed, e.g. in Mainzer and Chua
2012). Although we will not attempt to do so here, we note that
CAs may provide a mathematical framework to formalize the
definition of information and interaction, as required in defini-
tion of “agent” below.

Neural networks (NNs) represent another important para-
digm of computation with a direct application in cognitive neu-
roscience and machine learning. Feedforward networks have
been shown to be able to approximate any reasonable function
(Cybenko 1989; Hornik 1991). Remarkably, if the function to be
approximated is compositional (recursive), then a hierarchical,
feedforward network requires less training data than one with a
shallow architecture to achieve similar performance (Mhaskar
et al. 2016). Significantly, RNNs are known to be Turing complete
(Siegelmann and Sontag 1995). Recurrence in NNs thus enables
universal modeling. There is increasing evidence that the brain
implements such deep, recursive, hierarchical networks—see,
e.g. Taylor et al. (2015).

Cognition from information

In this section, we attempt to formalize our ideas. If all that
brains have access to is information, we can naturally think of
brains as “information processing machines”—computers in
the mathematical sense (TMs)—and questions about our experi-
ence of reality should be considered within the context of AIT.
Our “Input/Output streams (I/Os)” include information collected
from visual, auditory, proprioceptive and other sensory sys-
tems, and outputs in the form of PNS mediated information
streams to generate actions affecting the body (e.g. via the auto-
nomic system) or the external world (e.g. body movements or
speech). We will use the term “cognition” here to refer to the
process of model building and model-driven interaction with
the external world (Ruffini 2007). Since it is a crucial concept in
KT, let us define more formally the notion of “model” (Fig. 1a):

Definition 1. A model of a dataset is a program that gener-
ates (or, equivalently, compresses) the dataset efficiently, i.e.
succinctly.

As discussed in Ruffini (2016), this definition of model is equiv-
alent to that of a classifier or generating function—NNs and other
classifiers can be seen to essentially instantiate models. A suc-
cinct model can be used to literally compress information by com-
paring data and model outputs and then compress the (random)
difference or error using, e.g. Huffman or Lempel-Ziv—-Welch
(LZW) coding (Kaspar and Schuster 1987; Cover and Thomas 2006).
Also, a good model must be capable of accounting for a large rep-
ertoire of potential I/Os. For example, Newtonian physics is a sim-
ple model that accounts for kinematics, dynamics, and
gravitational phenomena on the Earth (falling apples) and space
(orbit of the Moon). Naturally, a powerful model is both compre-
hensive and integrative, encompassing multiple data streams (e.g.
auditory, proprioceptive, and visual data). Examples of models
built by brains include our concepts of space and time, hand,
charge, mass, energy, coffee cups, quarks, tigers, and people.

To survive—to maintain homeostasis and reproduce—
brains build models to function effectively, storing knowledge
economically (saving resources such as memory or time). They
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use models to build other models, for agile recall and decision
making, to predict future information streams, and to interact
successfully with the world. Having access to a good, integrated
model of reality with compressive, operative, and predictive
power is clearly an advantage for an organism subjected to the
forces of natural selection (from this viewpoint, brains and DNA
are similar compressing systems acting at different time scales).
Furthermore, when a brain interacts actively with the rest of
the universe, it disturbs it with measurements or other actions
(represented as information output streams). The information
gathered from its inputs (senses) depends on how it chooses to
extract it from the outside world (through the passive and active
aspects of sensing or other actions). A more complete and
therefore more useful model of reality of an active brain must
include a model of itself—of “bodies” and internal “algorithms,”
for example. This creates a “strange loop” (Hofstadter 2007,
Ruffini 2007) in terms of model representations. Such self-
models correspond here to what are called body representation
and self-awareness.

On the basis of the notion of modeling, we now define a cog-
nitive system or “agent,” of which a brain is an example:

Definition 2. A cognitive system or agent is a model-building
semi-isolated computational system controlling some of its
couplings/information interfaces with the rest of the universe
and driven by an internal optimization function.

Figure 1b displays schematically the modeling engine and
the resulting error stream from comparison of data and model
outputs. These are passed onto an action module that makes
decisions guided by an optimization function (possibly querying
the model for action simulations) and generates output
streams, which also feedback to the model. A classical thermo-
stat or a machine-learning classifier are not agents by this defi-
nition, but new artificial intelligence systems being developed
are. As an example, we refer to Bongard et al. (2006), where a
four-legged robot uses actuation-sensation relationships to
model its own physical structure, which it then uses to generate
locomotion, or to the recent Deep Reinforcement Learning re-
sults, where deep learning and reinforcement learning are com-
bined very much as in the figure to create Al systems that excel
in Atari video-game universes (Mnih et al. 2015).

Simplicity and Kolmogorov complexity (K)

Compression (and therefore simplicity) was formalized by the
mathematical concept of algorithmic complexity or “Kolmogorov
complexity” (K) and co-discovered during the second half of the
20th century by Solomonoff, Kolmogorov, and Chaitin. We recall
its definition: “the Kolmogorov complexity of a string is the
length of the shortest program capable of generating it.” More
precisely, let ¢/ be a universal computer (a TM), and let p be a pro-
gram. Then the Kolmogorov or algorithmic complexity of a string
x with respect to U is given by Ky(x) = minpy -« (p), ie. the
length I(p) of the shortest program that prints the string x and
then halts (see e.g. Cover and Thomas 2006; Li and Vitanyi 2008).
Crucially, although the precise length of this program depends
on the programming language used, it does so only up to a
string-independent constant. An associated useful notion is the
“mutual algorithmic information (MAI)” between two strings
(Grunwald and Vitanyi 2004), the algorithmic analog of Shannon
mutual information.

We also need to point out a derived elegant concept, the
“Kolmogorov Structure Function” of a dataset (Cover and
Thomas 2006; Ruffini 2016), as well as the related concept of
Effective Complexity (Gell-Mann and Lloyd 2003). Briefly, one
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(a)

Model, compression and prediction M

Model state: M

error feedback

Model

Input stream: 100101010010101001

prediction

- .

Error out: 00000000000000001

(b) Agent: coupling modeling with an action module driven by an objective function of model state

Model state: M >

M

2 a

error feedback

Obj(M

Action /Obj state

prediction
Model

Input stream: 100101010010101001

Objective
function

Action module

—

Error out: 00000000000000001

output stream: 100101010010101001

>

Figure 1. Top (a): Modeling for predictive compression. The arrows indicate information flow and the circled plus sign comparison/difference (XOR
gate). Bottom (b): An agent with coupled modeling and an action modules. The action module contains an optimization objective function (e.g. ho-
meostasis) and may include, e.g. a motor system, and will query the model (this time for “imagery”) to plan and select the next actions. The model
itself may be informed of the state of the action module directly (dotted line) or indirectly via the output stream (concatenated to the input
stream). Without loss of generality a single stream is shown, although I/O streams represent multidimensional data.

can conceptually split the Kolmogorov optimal program de-
scribing a data string into two parts: a set of bits describing its
regularities and another which captures the rest (the part with
no structure). The first term is the effective complexity, the
minimal description of the regularities of the data. This concept
brings to light the power of the notion of Kolmogorov complex-
ity, as it provides, single handedly, the means to account for
and separate regularities in data from noise.

Godel’s incompleteness theorem, or its equivalent, Turing’s
halting theorem, implies that we cannot compute in general K
for an arbitrary string: it is impossible to test all possible algo-
rithms smaller than the size of the string to compress, since we
have no assurance that the TM will halt (Chaitin 1995).
However, within a limited computation scheme (e.g. in terms of
programming language resources or computation time), vari-
ants of algorithmic complexity can be calculated. An example of
this is Lempel-Ziv-Welch compression (Ziv and Lempel 1978), a
simple yet fast algorithm that exploits the repetition of symbol
sequences (one possible form of regularity). LZW file length is
actually equivalent to entropy rate, an extension of the concept
of entropy for stochastic sequences of symbols. LZW provides a
useful if limited “upper bound” to K,

The connection between simplicity, statistics, and prediction
was developed by Solomonoff through the definition of the “al-
gorithmic or universal probability Py(x) of a string x” (Li and
Vitanyi 2008). This is the (prior) probability that a given string x
could be generated by a random program. An important result
is that Py (x) ~ 27%®_Thus, the probability of a given string be-
ing produced by a random program is dominated by its
Kolmogorov complexity. Because of this, a Bayesian prior for

simplicity may be a good strategy for prediction, e.g. in a uni-
verse where data are generated by ferrets typing programs or by
other random program generating mechanisms. Although we
can only hypothesize the existence of such a data generating
process, we do seem to inhabit a universe described by simple
rules. Thus, we will assume here that while I/O streams encoun-
tered by agents may appear to be complex (entropic), they are
inherently simple, allowing for compression (the deterministic,
“simple physics hypothesis”). From this, and from consider-
ations on the evolutionary pressure on replicating agents (natu-
ral selection favoring pattern-finding agents), we formulate the
following hypothesis:

Hypothesis 1. Successful replicating agents find and use
simple models of their [/Os.

As far as an agent can tell, “reality” is the simplest program
it can find to model data-streams generated from its interaction
with the world.

Consciousness and KT

We address next the nature of conscious content. In what fol-
lows, we assume that there is a strong link between structured
experience and cognition, the cognitive substrates, and pro-
cesses involved in modeling I/Os.

Structured consciousness requires compressive models
of I/0s

From a cognitive perspective, we have argued that what we call
reality is represented and shaped by the simplest programs
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brains can find to model their interaction with the world. In
some sense, simplicity is equivalent to reality and therefore, we
now hypothesize, to structured experience. When we become
conscious of something, we become conscious of it through a
model, which is chosen among many as the one best fitting the
available data. In more detail, we propose our next hypothesis,
relating cognition and consciousness:

Hypothesis 2. Structured conscious content is experienced
by agents tracking I/Os using successful, simple models. The
more compressive these models are, the stronger the subjective
structured experiences generated.

In other words, conscious experience has a richer structure
in agents that are better at identifying regularities in their I/Os
streams, i.e. discovering and using more compressive models.
In particular, a “more” conscious brain is one using and refining
succinct models of coherent I/Os (e.g. auditory and visual
streams originating from a common, coherent source, or data
accounting for the combination of sensorimotor streams). We
may refer to this compressive performance level as “conscious
level.” It is ultimately limited by the algorithmic complexity of
the universe the agent is in and the resources it has access to.

Returning to Fig. 1, the better the fit of the model with all avail-
able data (integrating present and past multisensory streams), the
stronger the experience (how real it will feel to the agent) and the
stronger the impact on behavior. The model itself is a mathemati-
cal, multidimensional, highly structured object, and can easily
account for a huge variety of experiences. It will also, in general,
be compositional and recursive (assuming those are properties of
I/Os). An implicit element here is thus that consciousness is a uni-
fied, graded, and multidimensional phenomenon.

Let us clarify that here highly compressive implies “compre-
hensive,” i.e. that all the I/O data streams available up to the
moment of experience are ideally to be accounted for, and that
“compressive” refers to the length of model plus (compressed)
error stream being short. Past I/Os (possibly encoded in the
form of prior models), play an important role: the algorithmic
complexity of new data given available old data must be low
(simple).

In KT, structured conscious awareness is thus associated to
information processing systems that are efficient in describing
and interacting with the external world (information). An ant, e.g.
represents such a system. Furthermore, some experiences may
require a self-awareness, as we discussed before: if the appropri-
ate model has to take into account the agent’s actions (the output
streams), then self-awareness (self-modeling) will become an im-
portant element of structured experience. However, not all inter-
actions may call for a self-model (e.g. passively perceiving an
object may not require running a self-model, while dancing pre-
sumably does). Self-modeling includes here all the agent’s ele-
ments (e.g. including the Action module policy in the figure).

In Ruffini (2009), we hypothesized a related conjecture with
regard to the experience of “Presence,” the subjective experi-
ence of being somewhere. We may view this phenomenon as a
consequence of our prior hypotheses: “Given a set of models for
available data, an agent will select the most compressive one,
or equivalently, the model that will feel most real.” Again, by
data here we mean all available data up to the present moment,
some of which may be from, e.g. the past hour, or encoded in
models built from much older interactions.

Apparent complexity from simplicity

Can we associate the characteristics of electrophysiological or
metabolic spatiotemporal patterns in brains to conscious level?
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Although somewhat counterintuitive, in KT agents that run
simple models in conscious brains may appear to generate
(Shannon) apparently complex data. By “apparently complex
data” streams, we mean those that are inherently simple yet
entropic and probably hard to compress by weak algorithmic
complexity estimators such as LZW. The context for this appar-
ent paradox is the aforementioned hypothesis (the determinis-
tic, simple physics hypothesis) that the universe is ruled by
simple, highly recursive programs which generate entropic
data. As Mandelbrot, Wolfram, and others have shown, appar-
ently complex data streams can be generated by very simple, re-
cursive special models (Wolfram 2002) (called “deep” models in
Ruffini 2016). By this we mean models such as an algorithm for
the digits of =, which are not compressed by algorithmic com-
plexity estimators such as LZW. In such a world, a brain
tracking—and essentially simulating—high entropy data from
its interaction with the world will itself produce complex look-
ing data streams.

Recapping, we hypothesize that driven by natural selection
in a complex looking but intrinsically simple universe, replicat-
ing agents running and developing models of reality will instan-
tiate recursive computation (that being necessary for deep
modeling), running compressive, “deep” programs. The data
produced by such recursive agents can display features of criti-
cal systems (“order at the edge of chaos”) situated between the
kingdoms of simple and random systems (Li and Nordahl 1992).
Simple, deep programs will model and therefore generate entro-
pic, fractal-looking data, and one whose structure is character-
ized by power laws, small world (Gallos et al. 2012) or scale-free
networks (Eguiluz et al. 2005) associated with the hierarchies in
the systems we find in the natural world (West 1999; Albert and
Barabasi 2002; Ravasz and Barabasi 2003; He 2014). While a brain
capable of universal computation may produce many different
types of patterns—both simple (e.g. constant or repetitive) and
entropic—a healthy brain engaging in modeling and prediction
of complex I/Os will produce complex-looking, highly entropic
data. Such “apparent complexity” is what is evaluated by en-
tropy or LZW compression measures of, e.g. electrophysiologi-
cal or metabolic brain data (Casali et al. 2013; Schartner et al.
2015; Andrillon et al. 2016; Hudetz et al. 2016; Schartner et al.
2017). First-order entropy, entropy rate, or LZW provide “upper
bounds” to the algorithmic complexity of such data. We sum-
marize this as follows:

Consequence 1. Conscious brains generate apparently com-
plex (entropic) but compressible data streams (data of low algo-
rithmic complexity).

Thus, in principle, the level of consciousness can be esti-
mated from data generated by brains, by comparing its appar-
ent and algorithmic complexities. Sequences with high
apparent but low algorithmic complexity are extremely infre-
quent, and we may call them “rare sequences.” Healthy, con-
scious brains should produce such data. Although providing
improved bounds on algorithmic complexity remains a chal-
lenge, an apparently complex data stream generated from a low
algorithmic complexity model should in principle be distin-
guishable from a truly random one, leaving traces on metrics
such as entropy rate, LZW, power law exponents and fractal di-
mension. If brain data are generated by a model we know (e.g.
one fixed in an experimental scenario), a better bound for its al-
gorithmic complexity could be derived by showing that the
model can be used to further compress it. As an example, con-
sider a subject whom we ask to imagine, with eyes closed, para-
bolic trajectories from cannonballs. Using Newton’s equations,
we should be able to compress the subject’s EEG data beyond
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LZW, demonstrating that it is partly generated by an internal
physical model. As discussed, such apparent complexity from
simplicity points to the EEG data being generated by deep pro-
grams embedded in biological networks that are modeling real
work data.

MAI between world and agent

A related consequence of the above is that the MAI between
world and brain generated data should be high. A model is a
compressed representation of the external world. The actual
program length instantiated in the agent should be much
shorter than raw world data, while the MAI between both pro-
gram/model and data should be high. We may also expect, in
addition, that world data will not be obviously simple (i.e. entro-
pic and not yet in compressed form). A simple example is the
use of electrophysiology or fMRI data to reconstruct images
projected on the retina (Stanley et al. 1999; Nishimoto et al.
2011). A more interesting case is when there exists at least one
neuron that fires exclusively when an instance of a percept is
presented (corresponding to a good model being run), such as in
“grandmother” cells (Quiroga et al. 2005). Indeed, the informa-
tion stemming from such a cell would allow us to compress the
input stream more effectively.

Consequence 2. Consider a compressible (I(x)/K(x) > 1) input
data stream x and agent response data y as measured by, e.g.
neuroimaging or agent behavior. In a conscious agent process-
ing x (attending to it) the MAI I (x : y) will be high. Furthermore,
the information about x in y will be in compressed form.

Note that a high MAI is a “necessary,” not sufficient condition.
High MAI between an external visual input and the state of the
optical nerve or thalamus is also expected in a subject with eyes
open. Our hypothesis is that information will be compressed in
the cortex and present even if sensory inputs are disconnected,
represented as a model—e.g. run as the subject imagines a visual
scene. As models are presumably implemented in synaptic con-
nectivity and neuronal dynamics, compressed representations of
past input streams will be present in neuroimaging data. It is in
this sense that we expect MAI between world and agent to in-
crease with its actual or potential conscious level.

Relation to integration information, global workspace,
and predictive processing theories of consciousness

KT is closely related to theories of consciousness that place in-
formation at their core, and it actually provides conceptual links
among them. In Integration Information theory (IIT), the most
important property of consciousness is that it is “extraordinarily
informative” (Tononi and Koch 2008). It maintains that when
we experience a conscious state, we rule out a huge number of
possibilities. KT is strongly related to but not equivalent to
ITT. KT places the emphasis on the use of simple models to
track 1/Os, which lead to structured experience and which we
may call the mathematical substrates of consciousness. IIT em-
phasizes causal structure of information processing systems
and the physical substrate of consciousness. However, the con-
cept of a simple “model” (as defined above) may provide a more
fundamental—or alternative—origin of the notion of a causal
“complex” (a strongly interlinked causal information structure,
Tononi et al. 2016). KT agrees well with other aspects of IIT. If
structured experience is shaped by models, our belief in a par-
ticular model (as driven by the I/O streams up to this moment)
efficiently rules out—or lowers our belief in—all other models
for the experienced information streams. IIT emphasizes that

information associated to a conscious state must be “inte-
grated”: the conscious state is an integrated whole that cannot
be divided into sub-experiences (data from the I/Os must be
tightly bound together). KT provides a mechanism for binding
of information: a good, succinct model will by definition inte-
grate available information streams into a coherent whole.
While IIT states that “the level of consciousness of a physical
system is related to the repertoire of causal states (information)
available to the system as a whole (integration),” KT would say
that the potential level of consciousness of a physical system is
dictated by its ability to model its I/Os in an efficient manner.
Economy of description implies both a vast repertoire (reduc-
tion of uncertainty or information) and integration of informa-
tion. We note that simple programs (in the limit of Kolmogorov)
are irreducible and Platonic mathematical objects (as in, e.g. “a
circle is the set of points equidistant from another point”). This
is another link with IIT and its central claim that an experience
is identical to a conceptual structure that is maximally irreduc-
ible intrinsically.

We can establish closer links between KT and IIT by focusing
on efficient NNs for the instantiation of models. By definition,
the model encoded by a network specifies which value holders
(nodes) to use, how to connect them, and an initial state. The
result may be “integrated” or not. Loosely, if it is an effective
(simple) encoding, we would expect interconnectivity and inter-
causality in the elements of the network. It turns out that we
should also expect that perturbations of nodes of such a net-
work, when activated in detecting a matching pattern (i.e. run-
ning a model), will propagate further in the network, as found
in Casali et al. (2013) (Ruffini 2016).

Global workspace theory (GWT) (Baars 1988; Dehaene et al.
2003) has common elements with IIT and KT. It states that “con-
scious content provides the nervous system coherent, global in-
formation” (Baars 1983), i.e. what we call in KT a (global) model.
KT and IIT are in some sense meta-theories, with the biological
brain (and thus perhaps GWT) as a particular case. The fact that
effective models may require parallel information processing in
KT maps into GWT’s requirement that many areas of the brain be
involved in those conscious moments in GWT. Since the original
work of Baars, Dehaene and others (see, e.g. the recent results in
Godwin et al. 2016) have identified global brain events to corre-
spond to the conscious experience in numerous experiments.
According to KT, the experience is associated to successful
modeling validation events. Crucially, such events require inte-
gration of information from a variety of sensory and effective sys-
tems that must come together for model validation. Data must
thus flow from a variety of sub-systems involving separate brain
areas and merge—perhaps at different stages—for integrative er-
ror checking against a running model. There may be several such
integrative sub-nodes (as in “grandmother” cells), whose outputs
may themselves be integrated in a “grand model node.” A candi-
date for such a location is the temporo-parietal-occipital junction
(TPJ), an association area that integrates information from audi-
tory, visual, and somatosensory information, as well as from the
thalamus and limbic system (Koch et al. 2016).

Predictive processing theory (PP) (Friston 2009; Clark 2013;
Hohwy 2013; Seth 2013, 2014) is also closely related to KT, with a
focus on the predictive efficiency afforded by simple models of
I/Os. It maintains that to support adaptation, the (Bayesian)
brain must discover information about the likely external
causes of sensory signals using only information in the flux of
the sensory signals themselves. According to PP, perception sol-
ves this problem via probabilistic, knowledge-driven inference
on the causes of sensory signals. In KT, the causes are formally
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defined by models that are derived from the objective of com-
pressing 1/Os (and which include Bayesian modeling as a
byproduct) in a computational framework, providing links with
recursion and complexity measures.

Experimental Methods in KT

Modulating algorithmic complexity of input streams

In the case of the experience of Presence, consistency in the 1/Os,
in the sense of there being a simplifying low-level model avail-
able to match sensorimotor data, is a crucial element to enhance
this experience (“place illusion,” see Ruffini 2009; Slater 2009). As
we progress higher in the modeling hierarchy, Bayesian prior ex-
pectations play an important role: explanations with a better
match with past models are inherently simpler (leading to
“Plausibility”). Virtual reality (VR) technology offers a powerful
way to induce and manipulate Presence. KT (Hypothesis 1) pre-
dicts that given available models for existing data (past and pre-
sent), the simplest will be chosen (Ruffini 2009).

Binocular rivalry is a well-established paradigm in the study
of the neuroscience of consciousness. Briefly, two different im-
ages are presented to each eye and the experience of subjects
typically fluctuates between two models, i.e. seeing the right or
left image (Blake and Logothetis 2002; Blake and Tong 2008).
According to Hypothesis 1, given this data stream and past
ones, the subject’s brain will select the simplest model it can
find, which will then be experienced. First, we note that this ex-
perimental scenario breaks the subject’s past models of the ge-
ometry of 3D space. Any given model of an object in 3D space
will only match part of data stream (e.g. from a single eye).
Since the subject does not have access to a simple model from
past experience that integrates both retinal inputs, a partial
model will be selected if the images are equally simple: the sub-
ject will use a model of one of the images and become conscious
of only that particular image (the dominant one), discarding the
other retinal inputs from conscious access (but may also patch
both images up as in Kovacs et al. 1996). KT suggests further
dominance experiments in which the two images differ in
terms of their simplicity, some of which have already been car-
ried out. For example, natural images (with amplitude spectra
of the form A(f) ~ 1/f) dominate (Baker and Graf 2009)—in KT
because they agree better with available prior models, or, e.g.
recognizable figures dominate over patterns with similar psy-
chophysical traits, while upside down figures dominate rela-
tively less (Yu and Blake 1992). Stimulus strength (luminance,
contrast, motion Blake and Logothetis 2002) also play a role in
KT, because strength typically relates to higher signal to noise
ratio, which makes data streams more compressible than
others. We can consider images that differ in their visual algo-
rithmic complexity, e.g. the image of a regular versus an irregu-
lar polygon or target/context consistent (simpler) images, which
dominate over inconsistent ones (Fukuda and Blake 1992) or,
e.g. in a setting where at some point during an immersive VR
experience two different images are presented to the subject,
one congruent with the ongoing experience (more plausible),
and the other less fitting with the overall experience. Perhaps,
the subject can touch one of the objects appearing in the images
or hear sounds associated to it. The prediction is that the sub-
jects will tend to see the congruent (simpler model) image more
often. According to KT, image training (prior model building)
also leads to dominance (e.g. Dieter and Tadin 2016).

A direct approach to test the hypothesis that consciousness
level self-reports correlate with the capacity of rule-finding
(Hypothesis 2) is to prepare sensorial inputs of varying
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algorithmic complexities and assess the response of the brain
(EEG or MEG) to rule-breaking (deviant inputs). This is the so-
called “oddball paradigm” (N&ddtédnen et al. 1978; Grau et al. 1998).
The appearance of a surprise response to rule breaking is di-
rectly related to pattern detection (compression). According to
KT, the level of response to a deviant input is associated with
the complexity of the sequence and the available modeling
power of the brain. Oddball experiments using patterns with
varying complexity (including multimodality) could thus shed
light on the role of conscious level and compression. For the
purposes of studying higher level, structured consciousness, it
may be more appropriate to work with the later parts in the EEG
event-related potential (ERP), i.e. the P300b (Bekinschtein et al.
2009). We would expect that complex patterns might elicit
weaker or delayed responses (in agreement with Atienza et al.
2003) and other experiments such as Kanoh et al. (2004) or take
longer to learn (e.g. Benidixen and Schréger 2008 discuss how
rapidly simple but abstract rules are learned). This is also ad-
dressed in Bekinschtein et al. (2009) and Faugeras et al. (2011,
2012) using the so-called “local-global” paradigm, although the
authors’ interpretation of the results (experience of global rule
breaking requires awareness of stimuli) refers to the affordance
of sustained perceptual representation. In KT, the interpretation
is that the global rules used are algorithmically more complex
than the local ones. Working memory is necessary for model-
ing, but not sufficient. This methodology has now been ex-
tended to the macaque brain, highlighting the role of a
frontoparietal network in global regularity violation (Uhrig et al.
2014), including the activation of the temporoparietal area. KT
would therefore predict that global-rule violation detection
should not be available in situations in which subjects do not
report experience (deep sleep, unresponsive wakefulness state,
anesthesia, etc.). Furthermore, it suggests the exploration of
stimulation sequences of increasing algorithmic complexity.

Perturbing cortical networks using brain stimulation

Massimini et al. (2005) used transcranial magnetic stimulation
(TMS) to characterize changes of functional cortical connectivity
during sleep. Later, Casali et al. (2013) used TMS similarly to gen-
erate propagating action potentials, with resulting EEG re-
sponses compressed using LZW to define a “perturbation
complexity index (PCI).” The interpretation in IIT is that a high
PCI reflects information (LZW) and integration (since the neural
response originates from a common source and is therefore in-
tegrated by default). The interpretation in KT is slightly differ-
ent, but in agreement with the idea that a PCI is indicative of
conscious level. According to KT, brains run the simplest mod-
els they can find to track world data and make predictions.
Such models, if implemented efficiently in NNs, should be quite
sensitive to perturbations of their nodes while engaged in a task
(Ruffini 2016)—disturbances should travel further, as they ap-
pear to do (Massimini et al. 2005). Moreover, we may expect that
although EEG perturbations originate from a common cause (a
localized TMS pulse), they will be represented differently across
the cortex after non-linear propagation in cortical networks and
will therefore be hard to compress using LZW, since LZW is
quite limited in detecting and exploiting the potentially high
MALI in the signals from different cortical sources for compres-
sion. We note that other, more powerful estimators of algorith-
mic complexity metrics can be explored. In addition, various
non-invasive stimulation methods, such as transcranial current
stimulation (tCS) can be used to generate sub-threshold stimu-
lation-related potentials (SRPs) and study their complexity.
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The complexity of spontaneous brain state

Suppose we collect multichannel spontaneous EEG data from a
subject during a few seconds. An awake or sleeping brain during
REM is characterized by fairly similar EEG: visually complex,
fractal and distinct across channels and frequencies. The deeply
asleep brain is dominated by slower rhythms with staccato-like
bursts. The epileptic brain, the anesthetized brain, and the
unresponsive brain all display less complex-looking EEG. We
seek metrics that can differentiate between such data in terms
of complexity and discriminate among healthy TM-like chatter
from other forms of noise (Consequence 1). Using raw EEG, one
may simply attempt to compress the data file from just a few
seconds, e.g. using LZW. This technique has been shown to be
useful already in a handful of examples—e.g. during anesthesia
(Schartner et al. 2015) or sleep (Andrillon et al. 2016).
Furthermore, we can derive connectivity networks in electrode
or in cortical space and estimate their algorithmic complexity
(see, e.g. Ray et al. 2007; Soler-Toscano et al. 2014; Zenil et al.
2014; Zenil et al. 2015a). Power laws and scale-free behavior with
1/f* spectra are also probably closely associated with simple TM
chatter (Eguiluz et al. 2005), as proposed above. It is also known
that hierarchical modular architecture of a network (its struc-
ture, as in the cortex) can deliver hallmark signatures of dynam-
ical criticality—including power laws—even if the underlying
dynamical equations are simple and non-critical (Friedman and
Landsberg 2013). Although certainly of interest, further work is
needed to make clear statements about the relation of apparent
complexity (as measured by, e.g. LZW) and conscious level. For
example, a random number generator produces maximal en-
tropy, but its mutual information with the world is null. Thus,
high apparent complexity alone does not necessarily imply high
conscious level—it is necessary but not sufficient. Although a
healthy brain running simple models is expected to produce ap-
parently complex physiological chatter, we may be able to com-
press it beyond LZW if we have access to its underlying model,
e.g. by controlling the experimental scenario to have a subject
“run” a simple model—thus deriving better bounds on its algo-
rithmic complexity.

The complexity of brain outputs

With regard to Consequence 1, behavior (an agent’s output,
such as hand-reaching motion, voice, gait, or eye movements)
can be quantified in terms of apparent complexity. For example,
Manor et al. (2010) studied postural sway (center-of-pressure dy-
namics) during quiet standing and cognitive dual tasking, and
derived a complexity index using multiscale entropy (MSE)
(Costa et al. 2002). MSE has also been used to classify human
and robot behavior on Twitter, as in He et al. (2014). REM vs.
NREM sleep eye movements provide another example. Eye
movements have also been studied using entropy metrics, e.g.
in autism spectrum disorder (Shic et al. 2008; Pusiol et al. 2016).
More generally, the MAI between sensory inputs, brain state,
and then behavioral response (I/Os) should correlate with con-
sciousness level and awareness of the world (Consequence 2).

Discussion

KT proposes a mathematical framework to study cognition and
consciousness based on AIT, where the conceptual kernel is the
Kolmogorov complexity of a string. AIT provides the tools to
study computation and compression of data from an apparently
complex but intrinsically simple world. It takes as an axiom
that “there is consciousness” and provides requirements for

structured experience: it is only possible in computational sys-
tems such as brains that are capable of forming compressed
representations of the world. The availability of compressive
models gives rise to structured conscious phenomena in a
graded fashion. Self-awareness is seen to arise naturally as a
better model in agents interacting bidirectionally with the ex-
ternal world. We have thus linked by definition “conscious lev-
el” to the ability of building and running compressive models
that generate “structured experience” (Hypothesis 2). While this
can be seen as a limitation, in our view it provides a quantita-
tive approach for the study of such elusive concepts.

KT holds that apparent complexity with hidden simplicity is
the hallmark of data generated by agents running models of
reality—cognitive systems enjoying structured experience, be-
cause the world is complex only in appearance. This provides a
link between the conscious properties of systems and observ-
ables (e.g. EEG, fMRI time series, or behavior). We have argued
that since brains track (or imagine) and model the external
world (producing structured experience as a result), the appar-
ent complexity (as measured by, e.g. entropy or LZW) but inher-
ent simplicity of brain data (as measured by yet to be developed
improved bounds on K) as well as the MAI of world data with
present or past external brain inputs and outputs constitute key
elements or the development of metrics of consciousness.
However, more precise statements should be possible: the con-
nections between algorithmic complexity and recursion with
other complexity measures (e.g. power-laws, small-world net-
work behavior, and fractal dimensions) remain to be fully estab-
lished. CAs and RNNs may be good models to study these links.
In addition to such research in mathematics, fundamental re-
search in machine learning (e.g. studying the role of composi-
tion and simplicity in NNs) and in physics (studying how simple
recursive laws lead to simple, recursive and deep effective theo-
ries at larger, coarse-grained scales) is needed to create stronger
ties between mathematics, physics, cognitive neuroscience and
artificial intelligence. In KT, life, cognition, and consciousness
are all closely interrelated, graded phenomena united by the
common thread of computation and compression in a complex,
competitive environment. Even if KT is only partly correct, AIT-
derived metrics should exhibit discriminatory power for the
classification of conscious states and, importantly, a starting
point for the generalization of our understanding of cognition
and consciousness beyond biology.

Supplementary data

Supplementary data is available at

Consciousness Journal online.
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