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Abstract

As robots and other intelligent agents move from simple environments

and problems to more complex, unstructured settings, manually pro-

gramming their behavior has become increasingly challenging and ex-

pensive. Often, it is easier for a teacher to demonstrate a desired be-

havior rather than attempt to manually engineer it. This process of

learning from demonstrations, and the study of algorithms to do so, is

called imitation learning. This work provides an introduction to imi-

tation learning. It covers the underlying assumptions, approaches, and

how they relate; the rich set of algorithms developed to tackle the prob-

lem; and advice on effective tools and implementation.

We intend this paper to serve two audiences. First, we want to famil-

iarize machine learning experts with the challenges of imitation learn-

ing, particularly those arising in robotics, and the interesting theoreti-

cal and practical distinctions between it and more familiar frameworks

like statistical supervised learning theory and reinforcement learning.

Second, we want to give roboticists and experts in applied artificial in-

telligence a broader appreciation for the frameworks and tools available

for imitation learning.

We organize our work by dividing imitation learning into directly

replicating desired behavior (sometimes called behavioral cloning [Bain

and Sammut, 1996]) and learning the hidden objectives of the desired

behavior from demonstrations (called inverse optimal control [Kalman,

1964] or inverse reinforcement learning [Russell, 1998]). In addition to

method analysis, we discuss the design decisions a practitioner must

make when selecting an imitation learning approach. Moreover, appli-

cation examples—such as robots that play table tennis [Kober and

Peters, 2009] and programs that play the game of Go [Silver et al.,

2016]— illustrate the properties and motivations behind different forms

of imitation learning. We conclude by presenting a set of open questions

and point towards possible future research directions.

T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel and J. Peters. An

Algorithmic Perspective on Imitation Learning. Foundations and Trends® in
Robotics, vol. 7, no. 1-2, pp. 1–179, 2017.
DOI: 10.1561/2300000053.
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1

Introduction

Programming autonomous behavior in machines and robots tradition-

ally requires a specific set of skills and knowledge. However, human

experts know how to demonstrate the desired task even if they do not

know how to program the necessary behavior in a machine or robot.

The purpose of imitation learning is to efficiently learn a desired be-

havior by imitating an expert’s behavior. The application of imitation

learning is not limited to physical systems. It can be a powerful tool

to design autonomous behavior in systems such as web sites, computer

games, and mobile applications. Any system that requires autonomous

behavior similar to human experts can benefit from imitation learning.

However, imitation learning may be essential for robotics. It is now

considered to be a key technology for applications such as manufac-

turing, elder care, and the service industry. These robots will be ex-

pected to work closely with humans in a dramatic shift from prior

uses of robots. Powerful robotic manipulators are dangerous and have

therefore been used mainly in constrained, predefined industrial appli-

cations; employees must undergo special training before working with

them. This is changing due to recent advances in robotics from com-

pute to the use of light, compliant, and safe robotic manipulators. They

2
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1.1. Key successes in Imitation Learning 3

are ideal for applications where robots work alongside people, such as

collaborating with human operators and reducing the physical work-

load of care givers. These applications require efficient, intuitive ways

to teach robots the motions they need to perform from domain experts

who may not possess special skills or knowledge about robotics.

In recent years, imitation learning has been investigated as a way to

efficiently and intuitively program autonomous behavior[Schaal, 1999,

Argall et al., 2009, Billard et al., 2008, Billard and Grollman, 2013,

Bagnell, 2015, Billard et al., 2016]. In imitation learning, a human

demonstrates how to perform a task. A robotic system learns a pol-

icy to execute the given task by imitating the demonstrated motions.

Numerous imitation learning methods have been developed and imita-

tion learning has become a gigantic field of research. As a consequence,

capturing the entire field of imitation learning is not a trivial task.

The purpose of this survey is to provide a structural understanding

of existing imitation learning methods and its relationship with other

fields from supervised learning to control theory. We will describe what

has been developed in the field of imitation learning and what should

be developed in the future.

1.1 Key successes in Imitation Learning

One of the earliest and most well-known imitation learning success sto-

ries was the autonomous driving project Autonomous Land Vehicle In

a Neural Network (ALVINN) at Carnegie Mellon University [Pomer-

leau, 1988]. In ALVINN, a neural network learned how to map input

images to discrete actions in order to drive a vehicle. ALVINN’s neu-

ral network had one hidden layer with five units. Its input layer had

30 by 32 units; its output layer had 30 units. Although the structure

of this network was simple compared to modern neural networks with

millions of parameters, the system succeeded at driving autonomously

across the North American continent.

The Kendama robot developed by Miyamoto et al. [1996] is an-

other successful application of imitation learning. In the early days

of imitation learning, roboticists were mainly interested in teaching

Full text available at: http://dx.doi.org/10.1561/2300000053



4 Introduction

higher-level tasks from human demonstrations, such as “pick,” “move,”

and “place” Kang and Ikeuchi [1993], Kuniyoshi et al. [1994]. In those

settings, lower-level tasks were often considered to be simple, point-to-

point motions. In the late 1990s, this focus shifted from task-level plan-

ning to trajectory-level planning. The term “learning from demonstra-

tion” has become very popular since its use by S. Schaal and G. Atke-

son [Schaal, 1997, Atkeson and Schaal, 1997]. Since then, learning robot

motions has been a key domain of imitation learning.

Recently, learning from human demonstrations has benefited from

developments in deep neural networks. Recurrent neural networks such

as long short-term memory (LSTM) networks Hochreiter and Schmid-

huber [1997] have played a significant role in demonstrating how

to succeed in many previously difficult sequential tasks by learning

from demonstrated data. This includes tasks for generating handwrit-

ing Chung et al. [2015], natural language Wen et al. [2015], or image

captions Karpathy and Fei-Fei [2015]. Furthermore, AlphaGo, the al-

gorithm which was able to beat a human Go master and which we

discuss in more detail in §3.4.2, initializes a deep neural network pol-

icy from human demonstrations Silver et al. [2016]. Often these recent

approaches require a large amount of data. In §3, we will discuss how

to learn from data to reproduce observed behavior in specific problem

settings.

1.2 Imitation Learning from the Point of View of Robotics

Imitation learning is a class of methods that reproduces desired be-

havior based on expert demonstrations. In many cases, the experts are

human operators and the learners are robotic systems, Thus, imitation

learning is a technique that enables skills to be transferred from hu-

mans to robotic systems. To perform imitation learning, we need to

develop a system that records demonstrations by experts and learns a

policy to reproduce the demonstrated behavior from the recorded data.

For this purpose, we need to answer the following questions.

Full text available at: http://dx.doi.org/10.1561/2300000053



1.2. Imitation Learning from the Point of View of Robotics 5

General Aspects:

1. Why and when should imitation learning be used? This

question clarifies the motivation for using imitation learning and

what we should do with it.

2. Who should demonstrate? In many cases, the experts are hu-

man operators. Many imitation learning methods implicitly as-

sume that demonstrations are provided by a single expert. When

multiple experts are available, we need to decide which one should

be imitated or how we can incorporate demonstrations from mul-

tiple experts.

3. How should we record data of the expert demonstra-

tions? There are multiple ways of recording the behavior of

experts. For example, motion capture systems and teleoperated

robotic systems record data from expert behavior. This choice is

closely related to the embodiment problem between experts and

learners, which will be discussed in §3.7.1.

4. What should we imitate? The recorded data often includes

redundant information about expert behavior. In such cases, fea-

tures appropriate for the desired behavior should be selected.

Meanwhile, the recorded data also includes unnecessary motions,

which should not be imitated. The data must be segmented to

extract the motions to be imitated.

Algorithmic Aspects:

5. How should we represent the policy? Expert behavior can

be represented using methods such as symbolic representation,

trajectory-based representation, and state-action space represen-

tation. The choice depends largely on the design of the entire

system.

6. How should we learn the policy? Many algorithms for learn-

ing the policy have been developed over the past several decades.

The choice of the algorithm for learning the policy is closely re-

lated to the choice of policy representation.

Full text available at: http://dx.doi.org/10.1561/2300000053



6 Introduction

With regard to the first four questions, several survey papers on

imitation learning [Argall et al., 2009, Billard et al., 2008, Billard and

Grollman, 2013, Billard et al., 2016], provide a taxonomy of imitation

learning from the perspective of robotics. Argall et al. [2009] indicate

that it is essential to design an imitation learning system by considering

the correspondence between the expert and the learner, data acquisi-

tion methods, and limitations of the demonstration dataset. Billard

et al. [2008, 2016] provide an overview of imitation learning methods

and highlight techniques for trajectory learning. However, none of the

previous review articles focused on the design decisions needed to de-

velop new imitation learning algorithms to enable answering questions

five and six related to the algorithmic aspects discussed above. In ad-

dition, these articles did not discuss the algorithmic details of exist-

ing methods because the enormous amount of prior work on imitation

learning makes it challenging to cover the entire range of previous stud-

ies.

In this survey, we provide an overview of existing methods from

the algorithmic point of view, which will be useful for both readers

beginning the practice of imitation learning and readers who want to

achieve a deeper understanding of the theoretical aspects of imitation

learning. We discuss the design choices which one should consider in or-

der to develop novel imitation learning algorithms. Although our survey

cannot be exhaustive, we discuss the algorithmic details of existing al-

gorithms as much as possible, which will be useful to readers who want

to implement imitation learning techniques. Additionally, we develop

an information theoretic understanding of existing methods, which will

help readers to understand how existing methods relate to each other

and figure out how they could be extended.

Let us illustrate how different design choices of imitation learn-

ing algorithms can be made in different applications. Figure 1.1 shows

three applications of imitation learning: 1) an RC helicopter, 2) robotic

surgery, and 3) quadruped robot locomotion. In these applications, de-

sign of the policies for motion planning and control vary. Abbeel et al.

[2010] demonstrates acrobatic RC helicopter flight by learning from tra-

jectories demonstrated by a human expert. In this system, the desired

Full text available at: http://dx.doi.org/10.1561/2300000053
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Demonstration by experts

Observation

Gyro sensors

Accelerometers

Magnetometers

GPS

Vision system

…

Control inputs

Forward-backward tilt

Left-right tilt

Vertical rotational rate

Roter collective pitch

…

https://commons.wikimedia.org/w/index.php?curid=11467562

(a) Learning of acrobatic RC helicopter maneuvers [Abbeel et al., 2010]. The tra-
jectories for acrobatic flights are learned from a human expert’s demonstrations.
To control the system with highly nonlinear dynamics, iterative learning control
was used.

Demonstration by experts

Position of the 

slave manipulator

Position of the 

master manipulator

Control inputs Observation

(b) Learning with a teleoperated system [Osa et al., 2014] where a posi-
tion/velocity controller is available. To generalize the trajectory to different situ-
ations, a mapping from task situations to trajectories is learned from demonstra-
tions under various situations.

Demonstration by experts

Control inputs Observation

Terrain features

Foot step locations

Analog joystick 

value 

(c) Learning quadruped robot locomotion [Zucker et al., 2011]. The footstep plan-
ning was addressed as an optimization of the reward/cost function, which was re-
covered from the expert demonstrations. Learning the reward/cost function allows
the footstep planning strategy to be generalized to different terrains.

Figure 1.1: Observations y and control inputs u for imitation learning in (a)
helicopter flight, (b) surgery, and (c) locomotion. Motion planning is formulated in
different ways in these examples.
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8 Introduction

trajectories of acrobatic flights were learned from demonstrations with a

supervised learning method. Osa et al. [2017b] also learned trajectories

for autonomous knot tying from demonstrations by a human expert. To

generalize a trajectory, Osa et al. [2017b] learned a direct mapping from

task situations (contexts) to trajectories using demonstrations recorded

under various situations. Contrary to [Abbeel et al., 2010, Osa et al.,

2017b], Zucker et al. [2011] formulated footstep planning for quadruped

robot locomotion as an optimization of the reward/cost function. The

reward/cost function was recovered from demonstrations. In [Zucker

et al., 2011], learning the reward/cost function as a function of terrain

features enables the footstep planning strategy to be generalized to dif-

ferent terrains. Learning such reward/cost functions for manipulation

tasks like as knot-tying [Osa et al., 2017b] is not trivial, since complex

manipulation tasks often require nonlinear reward/cost functions.

Methods for learning policies also differ between applications. The

observation and control inputs of the RC helicopter system are much

noisier than those of the other two systems, and its dynamics are highly

nonlinear [Abbeel et al., 2010]. Therefore, it is essential to estimate the

true state using various sensory information and learn an adaptive con-

troller through iterations of trials to achieve acrobatic RC helicopter

flight. On the other hand, we can assume that the system state is

precisely known and a position/velocity controller is available in the

case of the tele-operation system in [Osa et al., 2014], which simplifies

imitation learning significantly. In [Osa et al., 2014], the conditional

trajectory distribution given a context can be learned with a simple re-

gression method, and the planned trajectory can be executed by a stan-

dard velocity controller. In locomotion planning for a quadruped robot

in [Zucker et al., 2011], estimating the reward/cost function requires

an iterative learning process with virtual simulation of the learned pol-

icy. As one can see from these examples, learning methods can be very

different between applications.

To apply imitation learning, it is essential to identify the structure

of the system, formulate a given problem, and design an algorithm to

solve the problem efficiently. In this survey, we focus on the algorithmic

aspects of imitation and discuss necessary design choices, exploring

Full text available at: http://dx.doi.org/10.1561/2300000053



1.3. Differences between Imitation Learning and Supervised Learning 9

various solutions proposed by previous studies.

In the rest of this chapter, we introduce several concepts in machine

learning that are essential to understand imitation learning algorithms.

We discuss the design choices of imitation learning algorithms in Chap-

ter 2. We describe the details of behavioral cloning methods and inverse

reinforcement learning methods in Chapters 3 and 4, respectively. To

conclude, we list open questions of imitation learning in Chapter 5.

1.3 Key Differences between Imitation Learning and Super-
vised Learning

The imitation learning problem has special properties that distinguish

it from the better known supervised learning setting [Shalev-Shwartz

and Ben-David, 2014] : 1) the solution may have important structural

properties including constraints (for example, robot joint limits), dy-

namic smoothness and stability, or leading to a coherent, multi-step

plan [Bagnell, 2015]; 2) the interaction between the learner’s decisions

and its own input distribution (an on-policy versus off-policy distinc-

tion) , and 3) the increased necessity of minimizing the typically high

cost of gathering examples.

As we learn a policy π from a dataset D, imitation learning is

closely related to supervised learning, and is particularly related to

the field of structured prediction [Daumé III et al., 2009, Ratliff et al.,

2006a, Taskar, 2005] , where the task is to learn a mapping from in-

puts x to a complex, structured output y (plans, parse trees, com-

plex motions). Reductions of structured prediction to sequential deci-

sion [Daumé III et al., 2009], and reductions of imitation learning to

structured prediction [Ratliff et al., 2006b] show the close connection,

and cross-fertilization between these research areas has been important

for both. In practice, distinctions arise because of the structural prop-

erties of policies we attempt to imitate, and the difficulty of "resetting"

state and restarting predictions is too costly or even infeasible in most

imitation learning settings because a physical system is often involved.

In addition, it is often the case that the embodiments of the expert

and the learner are different. For example, when transferring human

skills to a humanoid robot, the motion captured from a human expert

Full text available at: http://dx.doi.org/10.1561/2300000053



10 Introduction

may be infeasible for the humanoid. In such a case, the demonstrated

motion needs to be adapted to be feasible for the humanoid. This kind

of adaptation is less common in the standard supervised learning.

In machine learning, the prediction problem where the source do-

main distribution and the target domain distribution are different is of-

ten referred to as “covariate shift” or “domain adaptation” [Sugiyama,

2015]. In imitation learning, the source domain corresponds to expert

demonstrations and the target domain to learner reproductions. In im-

itation learning, the demonstration dataset does not cover all possible

situations since collecting expert demonstrations to cover all situations

is usually too expensive and time-consuming. As a result, the learner

often encounters states which were not encountered by the expert dur-

ing demonstrations, which means that the target domain distribution is

different from the source distribution. Therefore, covariate shift or do-

main adaptation is closely related to imitation learning [Bagnell, 2015].

Imitation learning is also closely related to reinforcement learn-

ing (RL), which tries to obtain a policy that maximizes an expected

reward [Sutton and Barto, 1998] signal. In RL, we employ a reward

function that encourages a desired behavior. However, in imitation

learning we often assume optimal (or at least “good”) expert demon-

strations which are not available in basic reinforcement learning, and

which provide prior knowledge that allows for dramatically more effi-

cient methods. Recent work by Sun et al. [2017] demonstrates a po-

tentially exponential decrease in sample complexity in learning a task

by imitation rather than by trial-and-error reinforcement learning, and

empirical results have long shown such benefits [Silver et al., 2016,

Kober and Peters, 2009, Abbeel et al., 2010]. Moreover, in the imi-

tation learning setting, as we detail below, we may or may not have

access to a true reward function.

1.4 Insights for Machine Learning and Robotics Research

As imitation learning offers intuitive ways to program robotic motions

by demonstrating the desired motion, imitation learning attracted in-

terests from robotic researchers. The robotics community has devel-
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1.5. Statistical Machine Learning Background 11

oped many imitation learning methods for motion planning and robot

control. When planning a trajectory for a robotic system, it is often

necessary to make sure that a planned trajectory satisfies some con-

straints such as smooth convergence to a new goal state. For this rea-

son, robotics researchers have developed “custom” trajectory represen-

tations that explicitly satisfy constraints necessary for robotic appli-

cations. Machine learning techniques are often used as a part of such

frameworks. However, robotics researchers need to be aware that rich

set of algorithms have been developed by the machine learning com-

munity and some of new algorithms might eliminate the need for cus-

tomizing policy or trajectory representation.

For machine learning researchers, imitation learning offers interest-

ing practical and theoretical problems, which differ from standard su-

pervised and reinforcement learning settings. Although imitation learn-

ing is closely related to structured prediction, it is often challenging to

apply existing machine learning methods to imitation learning, espe-

cially robotic applications. In imitation learning, collecting demonstra-

tions and performing rollouts are often expensive and time-consuming.

Therefore, it is necessary to consider how to minimize these costs and

perform learning efficiently. In addition, embodiments and observabil-

ity of the learner and the expert are different in many applications. In

such cases, the demonstrated motion needs to be adapted based on the

learner’s embodiment and observability. These difficulties in imitation

learning present new challenges to machine learning researchers.

1.5 Statistical Machine Learning Background

To understand imitation learning algorithms, familiarity with several

concepts in statistical machine learning is essential. In this section, we

briefly introduce the notation we use and these concepts.

1.5.1 Notation and Mathematical Formalization

Before introducing important concepts in machine learning, we intro-

duce the notation in this article. Table 1.1 summarizes our notation.

Throughout this survey, we use the bold style for vector values, and the

Full text available at: http://dx.doi.org/10.1561/2300000053
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non-bold style for scalar values. Demonstrations by an expert are often

given as a set of trajectories. In this case, the dataset of demonstra-

tions is given by D = {τ 0, . . . , τ m}. We use the lower script to denote

the time index; xt represents the state of the system at time step t.

We review many methods that manipulate probability distributions in

various ways. To make equations concise, the probability distribution

induced by the experts’ policy is denoted by q, and the distribution

induced by the learner’s policy is denoted by p. For example, p(τ )

represents the probability distribution over trajectories induced by the

learner’s policy. The term “action” is mainly used in machine learning

community, and “control input” is mainly used in robotic community

and control theory community. Since imitation learning methods have

been developed in all of these communities, we use the word “action”

Table 1.1: Table of Notation. We use a notation common in the control literature
for states and controls.

x system state

s context

φ feature vector

u control input/action

τ trajectory

π policy

D dataset of demonstrations

q probability distribution induced by an expert’s policy

p probability distribution induced by a learner’s policy

t time

T finite horizon

N number of demonstrations

E
superscript representing an expert

e.g. πE denotes an expert’s policy

L
superscript representing a learner

e.g. πL denotes a learner’s policy

demo
superscript representing a demonstration by an expert

e.g. τ demo denotes a trajectory demonstrated by an expert
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and “control input” interchangeably. We use the term “context” to refer

to the condition relevant to the task. The context s can be the initial

state of the system x0 or the state of relevant objects. For instance, the

position of the ball can be part of the context in a hitting-a-ball task.

We use T to denote the finite horizon of the trajectory. Therefore, the

total number of the time steps of a single trajectory is T + 1 in our

notation.

1.5.2 Markov Property

A sequence of states x0, ..., xt is a Markov chain if at any time t, the

future states xt+1, xt+2, ... depend on the history x0, ..., xt only through

the present state xt [Serfozo, 2009]. In other words, the next state xt+1

only depends on the current state xt in a Markov chain. This property

is called the Markov property.

1.5.3 Markov Decision Process

A Markov decision process (MDP) is a process that satisfies the Markov

property. If the state and action spaces are finite, then it is called a finite

Markov decision process (finite MDP) [Sutton and Barto, 1998]. An

MDP is defined as a tuple (X , U , P, γ, D, R). X is a finite set of states;

U is a set of control inputs; P is a set of state transitions probabilities;

γ ∈ [1, 0) is a discount factor; D is the initial-state distribution from

which the initial state x0 is drawn; and R : X 7→ R is the reward

function.

1.5.4 Entropy

Given the random variable x and its probability distribution p(x), the

entropy

H (p) = −

∫

p(x) ln p(x)dx (1.1)

is defined as the amount of information conveyed by transmitting

x [Bishop, 2006]. Note that the entropy H(x) is a convex function.
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1.5.5 Kullback-Leibler (KL) Divergence

In the field of information geometry, the KL divergence is used to quan-

tify a difference between two probability distributions[Kullback and

Leibler, 1951], i.e.,

DKL (p(x)||q(x)) =

∫

p(x) ln
p(x)

q(x)
dx. (1.2)

Since the KL divergence identifies a difference between two probability

distributions, it is useful for cases in which stochastic policies are go-

ing to be learned, or stochastic trajectories result from a deterministic

policy. Please note that the KL divergence is not symmetric, therefore

DKL (p||q) 6= DKL (q||p). The KL divergence can be obtained as a Breg-

man divergence derived from the negative entropy [Amari, 2016] and

is widely used as a measure in multiple imitation learning approaches.

1.5.6 Information and Moment Projections

One common approach to learning a policy from a dataset is to consider

“projecting” that dataset onto the space of the policy model. Informa-

tion theory emphasizes two kinds of projections: the Information(I)-

projection and the Moment(M)-projection [Bishop, 2006]. Using the

Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951], the I-

projection is

p∗ = arg min
p

DKL(p ‖ q) , (1.3)

and, the M-projection

p∗ = arg min
p

DKL(q ‖ p) . (1.4)

As the KL divergence is not symmetric, these two projections result in

different solutions when a given distribution is multi-modal as shown in

Figure 1.2. While the M-projection averages over the several modes, the

I-projection concentrates on a single mode. Performing the I-projection

is often not straight-forward, although the M-projection can often be

performed relatively easily by maximizing the likelihood with respect

to a given training dataset [Bishop, 2006].
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Figure 1.2: Illustration of I- and M- projections. Given a distribution with two
modes as shown in black, M-projection will give a solution that averages over two
modes as shown in red. On the contrary, I-projection will give a solution that con-
centrates on one of the modes.

1.5.7 The Maximum Entropy Principle

Let us consider a probability distribution p(x) that matches the fea-

tures of an unknown distribution q, i.e. it satisfies

Ep[φ(x)] = Eq[φ(x)],

where q(x) is an unknown probability distribution and Eq[φ(x)], which

is the expectation of a feature function φ(x), is available. As there are

typically an infinite amount of such distributions, we need an additional

constraint to obtain a unique solution [Amari, 2016].

The maximum entropy principle [Jaynes, 1957] suggests to choose

a distribution that maximizes the entropy

H(p) = −

∫

p(x) ln p(x)dx

among the distributions that satisfy Ep[φ(x)] = Eq[φ(x)]. From this

constrained optimization program, the maximum entropy distribution

can be computed as

p(x) ∝ exp
(

w⊤φ(x)
)

, (1.5)

where w is a vector-valued Lagrangian multiplier for the feature match-

ing constraint. While the maximum entropy principle does not directly

translate into a practical algorithm, it uncovers an interesting obser-

vation. Every distribution that is in a log-linear representation given

by Equation 1.5, is the maximum entropy distribution that can match

specific feature expectations given by the feature vector φ(x). This is
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true for typical distributions from the exponential family such as the

Gaussian distribution, which is the maximum entropy distribution that

matches first and second order moments. The notion of Maximum En-

tropy generalizes to Maximum Causal Entropy, which turns out to be

a natural notion of uncertainty for dynamical systems [Ziebart et al.,

2013].

1.5.8 Background: Reinforcement Learning

Reinforcement learning is a class of methods that autonomously learns

policies through iterations of trials and evaluations. The goal of

reinforcement learning is to learn a policy π that maps the state of

the system to the control input so as to maximize the expected reward

J(π). The reward rt represents the quality of the given state, action

or trajectory at time t. For example, rt could be large when a robot is

close to the desired trajectory and small when the robot is far from the

trajectory, or, rt could be large for stable robot grasps and small for

unstable ones. With a finite horizon T , the expected return is given by

the accumulation of the reward at each time step,

J(π) = E

[

T
∑

t=0

rt

∣

∣

∣

∣

∣

π

]

. (1.6)

Alternatively, the discounted accumulated reward is used for the infi-

nite horizon scenario, i.e.,

J(π) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

π

]

, (1.7)

where the discounted factor γ controls the trade-off between shorter

term rewards and longer term rewards. The desired policy π∗ is given

by

π∗ = arg max
π

J(π). (1.8)

The value of a state x under a policy π can be computed as the expected

reward when starting from x and following π

V π(x) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x0 = x, π

]

. (1.9)
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V π(xt) is often called the value function [Sutton and Barto, 1998].

Likewise, the value of taking action u in state x under a policy π can

be computed as the expected reward when starting from the action u

in a state x and thereafter following policy π

Qπ(x, u) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

x0 = x, u0 = u, π

]

. (1.10)

Qπ(xt, ut) is often called the action-value function [Sutton and Barto,

1998].

For an overview of reinforcement learning methods, please refer to

[Sutton and Barto, 1998, Szepesvari, 2010, Wiering and van Otterlo,

2012, Sugiyama et al., 2013] and for an overview in reinforcement learn-

ing in robotics, please refer to Kober et al. [2013], Deisenroth et al.

[2013b].

1.6 Formulation of the Imitation Learning Problem

The goal of imitation learning is to learn a policy that reproduces the

behavior of experts who demonstrate how to perform the desired task.

Suppose that the behavior of the expert demonstrator (or the learner

itself) can be observed as a trajectory τ = [φ0, ..., φT ], which is a

sequence of features φ. The features φ, which can be the state of the

robotic system or any other measurements, can be chosen according to

the given problem. Please note that the features φ do not have to be

manually specified, and φ could be as general as simply pixels in raw

images.

Often, the demonstrations are recorded under different conditions,

for example, grasping an object at different locations. We will refer to

these task conditions as context vector s of the task which is stored

together with the feature trajectories. The context s can contain any

information relevant to the task, e.g., the initial state of the robotic

system or positions of target objects. Note that, as the context describes

the current task, it is typically fixed during task execution and the only

dynamic aspects of the problem are the state features φt. Optionally,

a reward signal r that the expert is trying to optimize is also available

in some problem settings [Ross and Bagnell, 2014].
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In imitation learning, we collect a dataset of demonstrations D =

{(τ i, si, ri)}
N
i=1 that consists of pairs of trajectories τ , contexts s, and

optionally reward signals r. The data collection process can be both of-

fline and online. Using the collected dataset D, a common optimization-

based strategy learns a policy π∗ that satisfies

π∗ = arg min D (q(φ), p(φ)) , (1.11)

where q(φ) is the distribution of the features induced by the experts’

policy, p(φ) is the distribution of the features induced by the learner,

and D(q, p) is a similarity measure between q and p. Both offline and

online learning scenarios of this problem have been considered [Ross

et al., 2011]. Please note that, when the dataset contains demonstra-

tions of multiple tasks and the contexts include information of each

task, this problem can be considered multitask learning as in recent

work by Duan et al. [2017], Finn et al. [2017a,b].

In addition, we often have access to an environment such as a sim-

ulator or a physical robotic system where we can perform and evaluate

a policy through interaction. This simulator can be used to gather new

data and iteratively improve the policy to better match the demonstra-

tions.

Full text available at: http://dx.doi.org/10.1561/2300000053



References

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the international conference on Machine learn-
ing (ICML), 2004.

P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics
through apprenticeship learning. The International Journal of Robotics
Research, 29(13):1608–1639, 2010.

S. Amari. Information Geometry and Its Applications. Springer, 2016.

H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters. In-
teraction primitives for human-robot cooperation tasks. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
pages 2831–2837, 2014.

B. Anderson and J Moore. Optimal Control: Linear Quadratic Methods.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

O. Arenz, H. Abdulsamad, and G. Neumann. Optimal control and inverse
optimal control by distribution matching. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):
469–483, 2009.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversar-
ial networks. In Proceedings of the International Conference on Machine
Learning (ICML), pages 214–223, 2017.

160

Full text available at: http://dx.doi.org/10.1561/2300000053



References 161

C. G. Atkeson and S. Schaal. Robot learning from demonstration. In Proceed-
ings of the International Conference on Machine Learning (ICML), pages
12–20, 1997.

C. G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted learn-
ing for control. Artificial Intelligence Review, 11(1):75–113, 1997. ISSN
1573-7462. . URL http://dx.doi.org/10.1023/A:1006511328852.

J. Andrew (Drew) Bagnell. An invitation to imitation. Technical report,
Robotics Institute, Carnegie Mellon University, March 2015.

M. Bain and C. Sammut. A framework for behavioural cloning. Machine
Intelligence 15, pages 103–129, 1996.

C. L. Baker, R. Saxe, and J. B. Tenenbaum. Action understanding as inverse
planning. Cognition, 113(3):329–349, 2009.

G. BakIr, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S.V.N
Vishwanathan. Predicting Structured Data (Neural Information Process-
ing). MIT Press, 2007.

N. Baram, O. Anschel, I. Caspi, and S. Mannor. End-to-end differentiable ad-
versarial imitation learning. In Proceedings of the International Conference
on Machine Learning (ICML), 2017.

A. Billard and D.H. Grollman. Learning by demonstration. Scholarpedia,
2013. .

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Springer handbook of
robotics, chapter Robot programming by demonstration, pages 1371–1394.
Springer Berlin Heidelberg, 2008.

A. Billard, S. Calinon, and R. Dillmann. Handbook of robotics, chapter Learn-
ing from Humans, pages 1995–2014. Springer, 2016.

C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

M. Bloem and N. Bambos. Infinite time horizon maximum causal entropy
inverse reinforcement learning. In Proceedings of the IEEE Conference on
Decision and Control (CDC), pages 4911–4916, 2014.

K. Bogert and P. Doshi. Multi-robot inverse reinforcement learning under
occlusion with interactions. In Proceedings of the International Conference
on Autonomous Agents & Multiagent Systems (AAMAS), pages 173–180,
2014.

K. Bogert and P. Doshi. Toward estimating others transition models un-
der occlusion for multi-robot irl. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 1867–1873, 2015.

Full text available at: http://dx.doi.org/10.1561/2300000053

http://dx.doi.org/10.1023/A:1006511328852


162 References

K. Bogert, J. F. Lin, P. Doshi, and D. Kulic. Expectation-maximization for
inverse reinforcement learning with hidden data. In Proceedings of the In-
ternational Conference on Autonomous Agents & Multiagent Systems (AA-
MAS), pages 1034–1042, 2016.

A. Boularias, J. Kober, and J Peters. Relative entropy inverse reinforcement
learning. In Proceedings of the International Conference on Artificial In-
telligence and Statistics (AISTAT), 2011.

A. Boularias, O. Krömer, and J. Peters. Structured apprenticeship learning.
In European Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases (ECML-PKDD), pages 227–242.
Springer, 2012.

D. M. Bradley. Learning in modular systems. PhD thesis, Carnegie Mellon
University, 2010.

S. Calinon. Robot learning with task-parameterized generative models. In
In Proceedings of International Symposium on Robotics Research (ISRR),
2015.

S. Calinon. A tutorial on task-parameterized movement learning and retrieval.
Intelligent Service Robotics (Springer), 9(1):1–29, 2016.

S. Calinon and A. Billard. Incremental learning of gestures by imitation in a
humanoid robot. In Proceedings of the ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), pages 255–262, 2007.

S. Calinon and A. Billard. Statistical learning by imitation of competing
constraints in joint space and task space. Advanced Robotics, 23(15):2059–
2076, 2009.

S. Calinon, F. Guenter, and A. Billard. On learning, representing and gener-
alizing a task in a humanoid robot. IEEE Transactions on Systems, Man
and Cybernetics, Part B, 37(2):286–298, 2007.

S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G Billard.
Learning and reproduction of gestures by imitation. IEEE Robotics & Au-
tomation Magazine, 17(2):44–54, 2010.

S. Calinon, A. Pistillo, and D. G. Caldwell. Encoding the time and space
constraints of a task in explicit-duration hidden Markov model. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3413–3418. IEEE, 2011.

R. Camacho and D. Michie. Behavioral cloning: A correction. AI MAGAZINE,
16(2), 1995.

Full text available at: http://dx.doi.org/10.1561/2300000053



References 163

S. Cambon, R. Alami, and Fabien Gravot. A hybrid approach to intricate
motion, manipulation and task planning. The International Journal of
Robotics Research, 28:104–126, 2009.

R. A. Chambers and D. Michie. Man-machine co-operation on a learning task.
Computer Graphics: Techniques and Applications, 1969.

K. Chang, A. Krishnamurthy, A. Agarwal, H. Daumé III, and J. Lang-
ford. Learning to search better than your teacher. In Proceedings of
the International Conference on Machine Learning (ICML), 2015. URL
http://hal3.name/docs/#daume15lols.

S. Chernova and M. Veloso. Interactive policy learning through confidence-
based autonomy. Journal of Artificial Intelligence Research, 34:1–25, 2009.

J. Choi and K. Kim. Inverse reinforcement learning in partially observable
environments. Journal of Machine Learning Research, 12(Mar):691–730,
2011a.

J. Choi and K. E. Kim. Map inference for bayesian inverse reinforcement
learning. In Advances in Neural Information Processing Systems (NIPS),
pages 1989–1997, 2011b.

J. Choi and K. E. Kim. Hierarchical bayesian inverse reinforcement learning.
IEEE Transactions on Cybernetics, 45(4):793–805, April 2015. ISSN 2168-
2267. .

H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid
registration. Computer Vision and Image Understanding, 89(2):114–141,
2003.

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A
recurrent latent variable model for sequential data. In Advances in Neural
Information Processing Systems (NIPS), pages 2980–2988, 2015.

A. Coates, P. Abbeel, and A. Y. Ng. Learning for control from multiple
demonstrations. In Proceedings of the International Conference on Machine
Learning (ICML), 2008.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20
(3):273–297, 1995.

C. Daniel, O. Kroemer, M. Viering, J. Metz, and J. Peters. Active reward
learning with a novel acquisition function. Autonomous Robots, 39(3):389–
405, 2015.

H. Daumé III and J. Langford. Advances in structured prediction. In Tutorials
in the International Conference on Machine Learning (ICML), July 2015.

Full text available at: http://dx.doi.org/10.1561/2300000053

http://hal3.name/docs/#daume15lols


164 References

H. Daumé III, J. Langford, and D. Marcu. Search-based structured prediction.
Machine Learning, 75:297–325, 2009.

R. Dearden, N. Friedman, and D. Andre. Model based bayesian exploration.
In Proceedings of the Fifteenth Conference on Uncertainty in Artificial In-
telligence, pages 150–159. Morgan Kaufmann Publishers Inc., 1999.

M. P. Deisenroth. Efficient reinforcement learning using gaussian processes.
KIT Scientific Publishing, 2010.

M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-
efficient approach to policy search. In Proceedings of the International
Conference on Machine Learning (ICML), 2011.

M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-
efficient learning in robotics and control. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(2):408–423, 2013a.

M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for
robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2013b.

M. P. Deisenroth, P. Englert, J. Peters, and D. Fox. Multi-task policy search
for robotics. In IEEE International Conference on Robotics and Automation
(ICRA), pages 3876–3881, 2014.

M. Deniša, A. Gams, A. Ude, and T. Petric̆. Learning compliant move-
ment primitives through demonstration and statistical generalization.
IEEE/ASME Transactions on Mechatronics, 21(5):2581–2594, 2016.

Andreas Doerr, Nathan Ratliff, Jeannette Bohg, Marc Toussaint, and Stefan
Schaal. Direct loss minimization inverse optimal control. Proceedings of
Robotics: Science and Systems (R:SS), pages 1–9, 2015.

F. Doshi-Velez, J. Pineau, and N. Roy. Reinforcement learning with limited
reinforcement: Using bayes risk for active learning in pomdps. Artificial
Intelligence, 187:115–132, 2012.

F. Doshi-Velez, D. Pfau, F. Wood, and N. Roy. Bayesian nonparametric meth-
ods for partially-observable reinforcement learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(2):394–407, 2015.

A. D. Dragan, K. Muelling, J. Andrew Bagnell, and S. S. Srinivasa. Move-
ment primitives via optimization. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2339–2346, May
2015. .

Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever,
P. Abbeel, and W. Zaremba. One-shot imitation learning. arXiv preprint,
abs/1703.07326, 2017. URL http://arxiv.org/abs/1703.07326.

Full text available at: http://dx.doi.org/10.1561/2300000053

http://arxiv.org/abs/1703.07326


References 165

M. Dudík and R. E. Schapire. Maximum entropy distribution estimation with
generalized regularization. In Proceedings of the International Conference
on Computational Learning Theory (COLT), pages 123–138, 2006.

K. Dvijotham and E. Todorov. Inverse optimal control with linearly-solvable
mdps. In Proceedings of the International Conference on Machine Learning
(ICML), 2010.

S. Ekvall and D. Kragic. Robot learning from demonstration: a task-level
planning approach. International Journal of Advanced Robotic Systems, 5
(3), 2008.

P. Englert, A. Paraschos, J. Peters, and M. P. Deisenroth. Probabilistic model-
based imitation learning. Adaptive Behavior, 21:388–403, 2013.

M. Ewerton, G. Neumann, R. Lioutikov, H. Ben Amor, J. Peters, and
G. Maeda. Learning multiple collaborative tasks with a mixture of in-
teraction primitives. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 1535–1542, 2015.

M. Ewerton, G. Maeda, G. Kollegger, J. Wiemeyer, and J. Peters. Incremen-
tal imitation learning of context-dependent motor skills. In Proceedings
of IEEE international Conference on Humanoid Robots (HUMANOIDS),
2016.

P. Fearnhead and Z. Liu. On-line inference for multiple changepoint problems.
Journal of the Royal Statistical Society: Series B, 69(4):507–740, 2007.

C. Finn, P. Christiano, P. Abbeel, and S. Levine. A connection between
generative adversarial networks, inverse reinforcement learning, and energy-
based models. In arXiv 1611.03852, 2016a.

C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse op-
timal control via policy optimization. In Proceedings of the International
Conference on Machine Learning (ICML), 2016b.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the International Conference
on Machine Learning (ICML),, 2017a.

C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imita-
tion learning via meta-learning. In Proceedings of the Conference on Robot
Learning (CoRL), 2017b.

E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Sharing features among
dynamical systems with beta processes. In Advances in Neural Information
Processing Systems (NIPS), 2009.

Full text available at: http://dx.doi.org/10.1561/2300000053



166 References

A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude. Coupling movement primi-
tives: Interaction with the environment and bimanual tasks. IEEE Trans-
actions on Robotics, 30(4):816–830, Aug 2014. ISSN 1552-3098. .

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems (NIPS), 2014.

A. Graves, A.-R. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASPP), pages 6645–
6649. IEEE, 2013.

E. Gribovskaya, S. M. Khansari-Zadeh, and A. Billard. Learning non-linear
multivariate dynamics of motion in robotic manipulators. International
Journal of Robotics Research, 30(1):80–117, 2011.

D. B. Grimes and R. P. N. Rao. Creating brain-like intelligence: From basic
principles to complex intelligent systems, chapter Learning Actions through
Imitation and Exploration: Towards Humanoid Robots That Learn from
Humans, pages 103–138. Springer Berlin Heidelberg, 2009.

D. B. Grimes, R. Chalodhorn, and R. P. N. Rao. Dynamic imitation in a hu-
manoid robot through nonparametric probabilistic inference. In Proceedings
of Robotics: Science and Systems (R:SS), 2006a.

D. B. Grimes, D. R. Rashid, and R. P. Rao. Learning nonparametric models
for probabilistic imitation. In Advances in Neural Information Processing
Systems 19, 2006b.

A. Grubb and J. A. Bagnell. Boosted backpropagation learning for training
deep modular networks. In Proceedings of the International Conference on
Machine Learning (ICML), 2010.

A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. In Proceedings
of the Internatinal Conference on Learning Representatinos (ICLR), 2017.

D. Hadfield-Menell, A. Dragan, P. Abbeel, and S. Russell. Cooperative in-
verse reinforcement learning. In Advances in Neural Information Processing
Systems (NIPS), 2016.

M. Haruno, D.M. Wolpert, and M. Kawato. Mosaic model for sensorimotor
learning and control. Neural Computation, 13(10):2201–2220, 2001.

I. Havoutis and S. Calinon. Supervisory teleoperation with online learning
and optimal control. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2017.

Full text available at: http://dx.doi.org/10.1561/2300000053



References 167

E. Hazan. Introduction to online convex optimization. Foundations and
Trends® in Optimization, 2(3-4):157–325, 2016.

P. Henderson, W. Chang, P. L. Bacon, D. Meger, J. Pineau, and D. Precup.
Optiongan: Learning joint reward-policy options using generative adver-
sarial inverse reinforcement learning. In In the Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2018.

G. E. Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural Computation, 14(8):1771–1800, 2002.

J. Ho and S. Ermon. Generative adversarial imitation learning. In Adances
in Neural Information Processing Systems (NIPS), 2016.

J. Ho, J. K. Gupta, and S. Ermon. Model-free imitation learning with policy
optimization. In Proceedings of the International Conference on Interna-
tional Conference on Machine Learning (ICML), 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal. Biologically-inspired dy-
namical systems for movement generation: Automatic real-time goal adap-
tation and obstacle avoidance. In Proceedings of IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2587–2592, 2009.

S. Huang, J. Pan, G. Mulcaire, and P. Abbeel. Leveraging appearance priors
in non-rigid registration with applications to manipulation of deformable
objects. In Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2015.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for
learning motor primitives. In Advances in Neural Information Processing
Systems (NIPS), 2002a.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear
dynamical systems in humanoid robots. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1398–1403,
2002b.

A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynam-
ical movement primitives: Learning attractor models for motor behaviors.
Neural Computation, 25(2):328–373, 2013.

T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura. Embodied symbol
emergence based on mimesis theory. The International Journal of Robotics
Research, 2004.

R. A. Jacobs, M. I. Jordan, S. Nowlan, and G. E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 1991.

Full text available at: http://dx.doi.org/10.1561/2300000053



168 References

A. Jain, S. Sharma, T. Joachims, and A. Saxena. Learning preferences for ma-
nipulation tasks from online coactive feedback. The International Journal
of Robotics Research, 2015.

E. T. Jaynes. Information theory and statistical mechanics. Physical Re-
view, 106:620–630, May 1957. . URL http://link.aps.org/doi/10.

1103/PhysRev.106.620.

M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal. Learning objective
functions for manipulation. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1331–1336. IEEE, 2013.

R. E. Kalman. When is a linear control system optimal? Trans. ASME, J.
Basic Eng., Ser. D., 86(1):51 – 60, 1964.

S. B. Kang and K. Ikeuchi. Toward automatic robot instruction from
perception-recognizing a grasp from observation. IEEE Transactions on
Robotics and Automation, 9(4):432–443, Aug 1993.

A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3128–3137, 2015.

H. Khalil. Nonlinear systems. Prentice Hall, Upper Saddle River, NJ, 1996.

S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear dynamical
systems with gaussian mixture models. IEEE Transactions on Robotics, 27
(5):943–957, 2011.

S. M. Khansari-Zadeh and A. Billard. Learning control lyapunov function
to ensure stability of dynamical system-based robot reaching motions.
Robotics and Autonomous Systems, 62(6):752–765, 2014.

S. Kim, A. Shukla, and A. Billard. Catching objects in flight. IEEE Trans-
actions on Robotics, 30(5):1049–1065, 2014.

K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. Activity forecast-
ing. In European Conference on Computer Vision (ECCV), pages 201–214.
Springer, 2012.

J. Kober and J. Peters. Learning motor primitives for robotics. In Proceed-
ings of IEEE International Conference on Robotics and Automation, pages
2112–2118, 2009.

J. Kober, B. Mohler, and J. Peters. Learning perceptual coupling for motor
primitives. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robot Systems (IROS), pages 834–839, 2008.

Full text available at: http://dx.doi.org/10.1561/2300000053

http://link.aps.org/doi/10.1103/PhysRev.106.620
http://link.aps.org/doi/10.1103/PhysRev.106.620


References 169

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32:1238–1274,
2013.

J. Kohlmorgen and S. Lemm. A dynamic hmm for on-line segmentation of
sequential data. In Proceedings of the International Conference on Neural
Information Processing Systems (NIPS), pages 793–800, 2001.

J. Z. Kolter, P. Abbeel, and A. Y. Ng. Hierarchical apprenticeship learning
with application to quadruped locomotion. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2008.

G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from
demonstration by constructing skill trees. The International Journal of
Robotics Research, 31(3):360–375, 2011.

G. Konidaris, L. Kaelbling, and T. Lozano-Perez. Constructing symbolic rep-
resentations for high-level planning. In Proceedings of the Twenty-Eighth
Conference on Artificial Intelligence (AAAI), 2014.

S. Krishnan, A. Garg, R. Liaw, L. Miller, F. T. Pokorny, and K. Goldberg.
HIRL: hierarchical inverse reinforcement learning for long-horizon tasks
with delayed rewards. CoRR, abs/1604.06508, 2016. URL http://arxiv.

org/abs/1604.06508.

O. Kroemer, H. van Hoof, G. Neumann, and J. Peters. Learning to predict
phases of manipulation tasks as hidden states. In Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), pages 4009–
4014, 2014.

O. Kroemer, C. Daniel, G. Neumann, H. van Hoof, and J. Peters. Towards
learning hierarchical skills for multi-phase manipulation tasks. In Pro-
ceedings of International Conference on Robotics and Automation (ICRA),
pages 1503 – 1510, 2015.

K. Kronander, M. Khansari, and A. Billard. Incremental motion learning with
locally modulated dynamical systems. Robotics and Autonomous Systems,
70(C):52–62, 2015.

V. Kuleshov and O. Schrijvers. Inverse game theory: Learning utilities in
succinct games. In Proceedings of the International Conference on Web
and Internet Economics, 2015.

D. Kulić, W. Takano, and Yoshihiko Nakamura. Incremental learning, cluster-
ing and hierarchy formation of whole body motion patterns using adaptive
hidden markov chains. The International Journal of Robotics Research, 27:
761–784, 2008.

Full text available at: http://dx.doi.org/10.1561/2300000053

http://arxiv.org/abs/1604.06508
http://arxiv.org/abs/1604.06508


170 References

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals
of Mathematical Statistics, 22(1):79–86, 1951.

Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: extracting
reusable task knowledge from visual observation of human performance.
IEEE Transactions on Robotics and Automation, 10(6):799–822, 1994.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: proba-
bilistic models for segmenting and labeling sequence data. In Proceedings
of the International Conference on Machine Learning (ICML), 2001.

F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson. Efficiently
combining task and motion planning using geometric constraints. The In-
ternational Journal of Robotics Research, 33(14):1726–1747, 2014.

M. Laskey, J. Lee, W. Hsieh, R. Liaw, J. Mahler, R. Fox, and K. Goldberg.
Iterative noise injection for scalable imitation learning. arXiv preprint,
2017.

Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp. Off-road obstacle
avoidance through end-to-end learning. In Advances in Neural Information
Processing Systems (NIPS), 2006.

A. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel. Learning force-based
manipulation of deformable objects from multiple demonstrations. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2015a.

A. X. Lee, M. A. Goldstein, S. T. Barratt, and P. Abbeel. A non-rigid
point and normal registration algorithm with applications to learning from
demonstrations. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2015b.

D. Lee and Y. Nakamura. Mimesis model from partial observations for a
humanoid robot. The International Journal of Robotics Research, 2009.

D. Lee and C. Ott. Incremental kinesthetic teaching of motion primitives
using the motion refinement tube. Autonomous Robots, 2011.

D. Lee, C. Ott, and Y. Nakamura. Mimetic communication model with com-
pliant physical contact in human-humanoid interaction. The International
Journal of Robotics Research, 29:1684–1704, 2010.

A. Lemme, Y. Meirovitch, M. Khansari-Zadeh, T. Flash, A. Billard, and J. J.
Steil. Open-source benchmarking for learned reaching motion generation
in robotics. Paladyn, Journal of Behavioral Robotics, 6(1), 2015.

Full text available at: http://dx.doi.org/10.1561/2300000053



References 171

T. Lens, J. Kunz, O. v. Stryk, C. Trommer, and A. Karguth. Biorob-arm: A
quickly deployable and intrinsically safe, light- weight robot arm for service
robotics applications. In International Symposium on Robotics (ISR), pages
1–6, 2010.

S. Levine and P. Abbeel. Learning neural network policies with guided pol-
icy search under unknown dynamics. In Advances in Neural Information
Processing Systems (NIPS), 2014.

S. Levine and V. Koltun. Continuous inverse optimal control with locally op-
timal examples. In Proceedings of the International Conference on Machine
Learning (ICML), pages 41–48, 2012.

S. Levine, Z. Popovic, and V. Koltun. Nonlinear inverse reinforcement learning
with gaussian processes. In Advances in Neural Information Processing
Systems (NIPS), pages 19–27, 2011.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):
1334–1373, 2016.

R. Lioutikov, G. Neumann, G. Maeda, and J. Peters. Learning movement
primitive libraries through probabilistic segmentation. The International
Journal of Robotics Research (IJRR), 36(8):879–894, 2017.

Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation:
Learning to imitate behaviors from raw video via context translation. arXiv,
2017.

M. Lopes, F. Melo, and L. Montesano. Active Learning for Reward Esti-
mation in Inverse Reinforcement Learning, pages 31–46. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-04174-7. .

T. Lozano-Perez, J. L. Jones, E. Mazer, and P. A. O’Donnell. Task-level
planning of pick-and-place robot motions. Computer, 22(3):21–29, 1989.

L. Lukic, J. Santos-Victor, and A. Billard. Learning robotic eye-arm-hand
coordination from human demonstration: a coupled dynamical systems ap-
proach. Biological Cybernetics, 108(2):223–248, 2014.

G. Maeda, G. Neumann, M. Ewerton, L. Lioutikov, O. Kroemer, and J. Pe-
ters. Probabilistic movement primitives for coordination of multiple human-
robot collaborative tasks. Autonomous Robots, 2016.

G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters. Active incremental
learning of robot movement primitives. In Proceedings of the Conference
on Robot Learning (CoRL), 2017.

P. C. Mahalanobis. On the generalised distance in statistics. In Proceedings
of the National Institute of Sciences of India, 1936.

Full text available at: http://dx.doi.org/10.1561/2300000053



172 References

S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning movement prim-
itive attractor goals and sequential skills from kinesthetic demonstrations.
Robotics and Autonomous Systems, 74:97–107, 2015.

J. Maryniak, E. Ładyżyńska-Kozdraś, and S. Tomczak. Configurations of the
Graf-Boklev (V-style) ski jumper model and aerodynamic parameters in a
wind tunnel. Human Movement, 10(2):130–136, 2009.

H. Miyamoto, S. Schaal, F. Gandolfoc, H. Gomi, Y. Koike, R. Osu, E. Nakano,
Y. Wada, and M. Kawato. A kendama learning robot based on bi-
directional theory. Neural Networks, 9(8):1281–1302, 1996.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

P. Moylan and B. Anderson. Nonlinear regulator theory and an inverse op-
timal control problem. IEEE Transactions on Automatic Control, 18(5):
460–465, 1973.

K. Mülling, O. Kroemer J. Kober and, and J. Peters. Learning to select
and generalize striking movements in robot table tennis. The International
Journal of Robotics Research, 32:263–279, 2013.

A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine.
Combining self-supervised learning and imitation for vision-based rope ma-
nipulation. In Proceedings of the International Conference on Robotics and
Automation (ICRA), 2017.

S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa,
H. Hirukawa, and K. Ikeuchi. Learning from observation paradigm: leg task
models for enabling a biped humanoid robot to imitate human dances. The
International Journal of Robotics Research, 26(8):829–844, 2007.

S. Natarajan, G. Kunapuli, K. Judah, P. Tadepalli, K. Kersting, and J. Shav-
lik. Multi-agent inverse reinforcement learning. In Proceedings of the ninth
International Conference on Machine Learning and Applications (ICMLA),
pages 395–400. IEEE, 2010.

G. Neu and C. Szepesvári. Training parsers by inverse reinforcement learning.
Machine learning, 77(2-3):303–337, 2009.

A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the International Conference on Machine Learning (ICML),
pages 663–670, 2000.

Full text available at: http://dx.doi.org/10.1561/2300000053



References 173

D. Nguyen-Tuong and J. Peters. Model learning for robot control: a survey.
Cognitive Processing, 12(4):319–340, 2011.

S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G.
Barto. Learning grounded finite-state representations from unstructured
demonstrations. The International Journal of Robotics Research, 34:131–
157, 2014.

S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training Generative Neural
Samplers using Variational Divergence Minimization. In Advances in Neural
Information Processing Systems (NIPS), pages 271–279, 2016.

J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh. Action-conditional video
prediction using deep networks in atari games. In Advances in Neural
Information Processing Systems (NIPS), pages 2845–2853, 2015.

T. Okamoto, T. Shiratori, S. Kudoh, S. Nakaoka, and K. Ikeuchi. Toward a
dancing robot with listening capability: keypose-based integration of lower-,
middle-, and upper-body motions for varying music tempos. IEEE Trans-
actions on Robotics, 30(3):771–778, 2014.

T. Osa, N. Sugita, and M. Mitsuishi. Online trajectory planning in dynamic
environments for surgical task automation. In Proceedings of Robotics:
Science and Systems (R:SS), 2014.

T. Osa, A. M. Ghalamzan E., R. Stolkin, R. Lioutikov, J. Peters, and G. Neu-
mann. Guiding trajectory optimization by demonstrated distributions.
IEEE Robotics and Automation Letters (RA-L), 2(2):819–826, 2017a.

T. Osa, N. Sugita, and M. Mitsuishi. Online trajectory planning and force
control for automation of surgical tasks. IEEE Transactions on Automation
Science and Engineering, 2017b.

A. Paraschos, C. Daniel, J. Peters, and G. Neumann. Probabilistic movement
primitives. In Proceedings of Advances in Neural Information Processing
Systems 26, 2013.

R. Parent. Computer animation: algorithms and techniques. Morgan Kauf-
mann, 2002.

S. Y. Park and A. K. Bera. Maximum entropy autoregressive conditional
heteroskedasticity model. Journal of Econometrics, 150(2):219–230, 2009.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization
of motor skills by learning from demonstration. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2009.

D. A. Pomerleau. ALVINN: An autonomous land vehicle in a neural network.
In Advances in Neural Information Processing Systems (NIPS), 1988.

Full text available at: http://dx.doi.org/10.1561/2300000053



174 References

P. Poupart and N. Vlassis. Model-based Bayesian reinforcement learning in
partially observable domains. In Proceedings of the Tenth International
Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.

L. R. Rabiner. A tutorial on hidden markov models and selected appli- cations
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

M. Racca, J. Pajarinen, A. Montebelli, and V. Kyrki. Learning in-contact
control strategies from demonstration. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
688–695. IEEE, 2016.

R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine. Vision-based
multi-task manipulation for inexpensive robots using end-to-end learning
from demonstration. arXiv, 2017.

D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In
Proceedings of the International Joint Conference on Artifical Intelligence
(IJCAI), pages 2586–2591, 2007.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine
learning. The MIT Press, 2006.

N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt. Boosting structured
prediction for imitation learning. In Advances in Neural Information Pro-
cessing Systems 19, 2006a.

N. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient
techniques for imitation learning. Autonomous Robots, 27:25–53, 2009.

N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning.
In Proceedings of the international conference on Machine learning (ICML),
pages 729–736, 2006b.

S. Ross and J. A. Bagnell. Efficient reductions for imitation learning. In
Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), 2010.

S. Ross and J. A. Bagnell. Reinforcement and imitation learning via interac-
tive no-regret learning. Arxiv preprint, 2014.

S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of
the International Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2011.

S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bag-
nell, and M. Hebert. Learning monocular reactive uav control in cluttered
natural environments. In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), pages 1765–1772, May 2013. .

Full text available at: http://dx.doi.org/10.1561/2300000053



References 175

L. Rozo, Silvério J., S. Calinon, and D. Caldwell. Learning controllers for
reactive and proactive behaviors in human-robot collaboration. Frontiers
in Robotics and AI, pages 1–11, 2016.

S. Russell. Learning agents for uncertain environments (extended abstract). In
Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, 1998.

J. Rust. Handbook of Econometrics, chapter Structural estimation of Markov
decision processes, pages 3082–3139. Elsevier, 1994.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43–49, 1978.

C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In Proceed-
ings of the International Conference on Machine Learning (ICML), pages
385–393, 1992.

S. Schaal. Learning from demonstration. In Advances in Neural Information
Processing Systems (NIPS), pages 1040–1046, 1997.

S. Schaal. Is imitation learning the route to humanoid robots? Trends in
Cognitive Sciences, 3(6):233 – 242, 1999.

S. Schaal and C. Atkeson. Constructive incremental learning from only local
information. Neural Computation, 10(8):2047–2084, 1998.

S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement primi-
tives. In Proceedings of the International Symposium on Robotics Research
(ISRR), 2004.

J. G. Schneider. Exploiting model uncertainty estimates for safe dynamic
control learning. In Advances in Neural Information Processing Systems
(NIPS), 1997.

J. Schulman, J. Ho, C. Lee, and P. Abbeel. Learning from demonstrations
through the use of non-rigid registration. In Proceedings of the International
Symposium on Robotics Research (ISRR), 2013.

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region
policy optimization. In Proceedings of the 32nd International Conference
on Machine Learning (ICML), 2015.

R. Serfozo. Basics of Applied Stochastic Processes. Springer Science & Busi-
ness Media, 2009.

P. Sermanet, K. Xu, and S. Levine. Unsupervised perceptual rewards for
imitation learning. In Proceedings of Robotics and Science and Systems
(R:SS), 2017.

Full text available at: http://dx.doi.org/10.1561/2300000053



176 References

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014.

K. Shiarlis, J. Messias, and S. Whiteson. Inverse reinforcement learning from
failure. In Proceedings of the International Conference on Autonomous
Agents & Multiagent Systems, pages 1060–1068. International Foundation
for Autonomous Agents and Multiagent Systems, 2016.

A. Shukla and A. Billard. Coupled dynamical system based arm-hand grasping
model for learning fast adaptation strategies. Robotics and Autonomous
Systems, 60(3):424–440, 2012.

D. Silver, J. A. Bagnell, and A. Stentz. Learning from demonstration for
autonomous navigation in complex unstructured terrain. The International
Journal of Robotics Research, 29(12):1565–1592, 2010.

D. Silver, J. A. Bagnell, and A. Stentz. Active learning from demonstra-
tion for robust autonomous navigation. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages 200–207, 2012.

D. Silver, J. A. Bagnell, and A. Stentz. Learning autonomous driving styles
and maneuvers from expert demonstration. In Experimental Robotics: The
13th International Symposium on Experimental Robotics (ISER), pages
371–386, 2013.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

B. Stadie, P. Abbeel, and I. Sutskever. Third person imitation learning. In
Proceedings of the International Conference on Learning Representations
(ICLR), 2017.

M. Sugiyama. Introduction to Statistical Machine Learning. Morgan Kauf-
mann, 2015.

M. Sugiyama, M. Kawanabe, and P. L. Chui. Dimensionality reduction for
density ratio estimation in high-dimensional spaces. Neural Networks, 23
(1):44–59, 2010.

M. Sugiyama, H. Hachiya, and T. Morimura. Statistical Reinforcement Learn-
ing: Modern Machine Learning Approaches. Chapman & Hall/CRC, 2013.

Full text available at: http://dx.doi.org/10.1561/2300000053



References 177

W. Sun, A. Venkatraman, G. Gordon, B. Boots, and J. A. Bagnell. Deeply
aggrevated: Differentiable imitation learning for sequential prediction. In
Proceedings of the International Conference on Machine Learning (ICML),
2017.

R. Sutton and A. Barto. Reinforcement learning: An introduction. The MIT
Press, 1998.

R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112(1-2):181–211, 1999.

C. Szepesvari. Algorithms for reinforcement learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 4(1):1–103, 2010. .

W. Takano and Y. Nakamura. Statistical mutual conversion between whole
body motion primitives and linguistic sentences for human motions. The
International Journal of Robotics Research, 34:1314–1328, 2015.

W. Takano and Y. Nakamura. Real-time unsupervised segmentation of human
whole-body motion and its application to humanoid robot acquisition of
motion symbols. Robotics and Autonomous Systems, 75:260–272, 2016.

W. Takano and Y. Nakamura. Planning of goal-oriented motion from stochas-
tic motion primitives and optimal controlling of joint torques in whole-body.
Robotics and Autonomous Systems, 91:226–233, 2017.

V. Tangkaratt, N. Xie, and M. Sugiyama. Conditional density estimation
with dimensionality reduction via squared-loss conditional entropy mini-
mization. Neural Computation, 27(1):228–254, 2015.

B. Taskar. Learning structured prediction models: a large margin approach.
PhD thesis, Stanford University, 2005.

Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of com-
plex behaviors through online trajectory optimization. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4906–4913, 2012.

G. Tesauro. Temporal difference learning and td-gammon. Communications
of the ACM, 38(3):58 – 68, 1995.

E. Todorov and W. Li. A generalized iterative lqg method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In Proceedings
of the American Control Conference, 2005.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin
methods for structured and interdependent output variables. Journal of
Machine Learning Research, 6:1453–1484, 2005.

Full text available at: http://dx.doi.org/10.1561/2300000053



178 References

A. Ude, C. G. Atkeson, and M. Riley. Programming full-body movements for
humanoid robots by observation. Robotics and Autonomous Systems, pages
93–108, 2004.

J. van den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X. Y. Fu, K. Gold-
berg, and P. Abbeel. Superhuman performance of surgical tasks by robots
using iterative learning from human-guided demonstrations. In Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 2074–2081, 2010.

V. N. Vapnik. Statistical learning theory. John Wiley & Sons, 1998.

A. Venkatraman, M. Hebert, and J. A. Bagnell. Improving multi-step predic-
tion of learned time series models. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 3024–3030, 2015.

A. Venkatraman, R. Capobianco, L. Pinto, M. Hebert, D. Nardi, and J. A.
Bagnell. Improved learning of dynamics models for control. In Proceedings
of the International Symposium on Experimental Robotics (ISER), 2016.

S. Vijayakumar and S. Schaal. Locally weighted projection regression: An
o(n) algorithm for incremental real time learning in high dimensional space.
In Proceedings of International Conference on Machine Learning (ICML),
pages 1079–1086, 2000.

S. Vijayakumar, A. D’Souza, and S. Schaal. Incremental online learning in
high dimensions. Neural Computation, 17:2602–2634, 2005.

K. Waugh, B. D. Ziebart, and J. A. Bagnell. Computational rationalization:
The inverse equilibrium problem. In Proceedings of the International Con-
ference on Machine Learning (ICML), pages 1169–1176, 2011.

T. H. Wen, M. Gašić, N. Mrkšić, P. H. Su, D. Vandyke, and S. Young. Se-
mantically conditioned lstm-based natural language generation for spoken
dialogue systems. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1711–1721. Association
for Computational Linguistics, 2015.

B. Widrow and F. W. Smith. Pattern recognising control systems. Computer
and Information Sciences Clever Hume Press, 1964.

M. Wiering and M. van Otterlo, editors. Reinforcement Learning: State-of-
the-Art. Springer, 2012.

S. Z. Yu. Hidden semi-markov models. Artificial Intelligence, 174(2):215–243,
2010.

B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-
proportionate example weighting. In Proceedings of the IEEE International
Conference on Data Mining, pages 435–442, 2003.

Full text available at: http://dx.doi.org/10.1561/2300000053



References 179

B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of
maximum causal entropy. PhD thesis, University of Washington, 2010.

B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the Twenty-Second Con-
ference on Artificial Intelligence (AAAI), pages 1433–1438, 2008.

B. D. Ziebart, J. A. Bagnell, and A. K. Dey. The principle of maximum
causal entropy for estimating interacting processes. IEEE Transactions on
Information Theory, 59(4):1966–1980, 2013.

M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J Andrew Bagnell, C. G. Atke-
son, and J. Kuffner. Optimization and learning for rough terrain legged
locomotion. The International Journal of Robotics Research, 30(2):175–
191, 2011.

M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.
Dellin, J. A. Bagnell, and S. S. Srinivasa. Chomp: covariant hamiltonian
optimization for motion planning. The International Journal of Robotics
Research, 32:1164–1193, 2013.

Full text available at: http://dx.doi.org/10.1561/2300000053


	Introduction
	Key successes in Imitation Learning
	Imitation Learning from the Point of View of Robotics
	 Differences between Imitation Learning and Supervised Learning 
	Insights for Machine Learning and Robotics Research 
	Statistical Machine Learning Background
	Formulation of the Imitation Learning Problem

	Design of Imitation Learning Algorithms
	Design Choices for Imitation Learning Algorithms
	Behavioral Cloning and Inverse Reinforcement Learning
	Model-Free and Model-Based Imitation Learning Methods 
	Observability
	Policy Representation in Imitation Learning
	Behavior Descriptors
	Information Theoretic Understanding of Feature Matching

	Behavioral Cloning
	Problem Statement
	Design Choices for Behavioral Cloning
	Model-Free and Model-Based Behavioral Cloning Methods
	Model-Free Behavioral Cloning Methods in Action-State space
	Model-Free Behavioral Cloning for Learning Trajectories
	Model-Free Behavioral Cloning for Task-Level Planning
	Model-Based Behavioral Cloning Methods
	Robot Applications with Model-Free BC Methods
	Robot Applications with Model-Based BC Methods

	Inverse Reinforcement Learning
	Problem Statement
	Model-Based and Model-Free IRL Methods
	Design Choices for Inverse Reinforcement Learning Methods
	Model-Based Inverse Reinforcement Learning Methods
	Model-Free Inverse Reinforcement Learning Methods
	Interpretation of IRL with the Maximum Entropy Principle
	Inverse Reinforcement Learning under Partial Observability
	Robot Applications with IRL Methods

	Challenges in Imitation Learning for Robotics
	Behavioral Cloning vs Inverse Reinforcement Learning
	Open Questions in Imitation Learning

	Acknowledgements
	References

