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Abstract We study the phenomenon of cognitive learning from an algorithmic standpoint.

How does the brain effectively learn concepts from a small number of examples despite the

fact that each example contains a huge amount of information? We provide a novel algorithmic

analysis via a model of robust concept learning (closely related to “margin classifiers”), and

show that a relatively small number of examples are sufficient to learn rich concept classes.

The new algorithms have several advantages—they are faster, conceptually simpler, and

resistant to low levels of noise. For example, a robust half-space can be learned in linear time

using only a constant number of training examples, regardless of the number of attributes.

A general (algorithmic) consequence of the model, that “more robust concepts are easier to

learn”, is supported by a multitude of psychological studies.

Keywords Learning . Cognition . Random projection . Robust concepts

1. Introduction

One motivation of computational learning theory is to gather insight into cognitive processes.

The exact physical processes underlying learning, indeed any aspect of cognition, are far from

being understood. Even from a purely theoretical standpoint, it is mostly a mystery as to how

the brain copes with huge amounts of data. How does the brain effectively learn concepts
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from a relatively small number of examples, when each example consists of a huge amount

of information?

There are at least two approaches to explaining this phenomenon. The first, due to Valiant,

is attribute-efficient learning (Valiant, 1998; Littlestone, 1987, 1991). In this model, it is

assumed that the target concept is simple in a specific manner: it is a function of only a small

subset of the set of attributes, called the relevant attributes, while the rest are irrelevant. From

this assumption one can typically argue that the VC-dimension of the resulting concept class

is a function of only the number of relevant attributes (k), and hence derive a bound on the

number of examples required. Unfortunately, although the model is theoretically clean and

appealing, it is not known how to learn anything more complex than a disjunction of variables

(without membership queries). Further, it is NP-hard to learn a disjunction of k variables as

a disjunction of fewer than k log n variables (where n is the total number of variables).

In this paper, we study a different approach based on a simple idea which is illus-

trated in the following example. Imagine a child learning the concept of an “elephant”.

We point the child to pictures of elephants or to real elephants a few times and say “ele-

phant”, and perhaps to a few examples of other animals and say their names (i.e., “not
elephant”). From then on, the child will almost surely correctly label only elephants as ele-

phants. On the other hand, imagine a child learning the concept of “African elephant” (as

opposed to the Indian elephant) just from examples. It will probably take many more ex-

amples, and perhaps even be necessary to explicitly point out the bigger ears of the African

elephant.

The crucial difference in the two concepts above is not in the number of attributes, or

even in the number of relevant attributes of the examples presented, but in the similarity

of examples with the same label and in the dissimilarity of examples with different labels.

There is a clearer demarcation between elephants and non-elephants than there is between

African elephants and Indian elephants. This notion will be formalized later as the robustness
of a concept. An alternative perspective of robustness is that it is a measure of how much

the attributes of an example can be altered without affecting the concept. The main feature

of robust concepts is that the number of examples and the time required to learn a robust

concept can be bounded as a function of the robustness (denoted by a parameter �), and do

not depend on the total number of attributes. The model and the parameter � are defined

precisely in Section 2. As we discuss there, the model is very closely related to Large Margin
classifiers studied in machine learning, that are in turn the basis for Support Vector Machines

(Vapnik, 1995; Cortes & Vapnik, 1995).

In the robust concept model, the main new observation is that we can employ a general

procedure to reduce the dimensionality of examples, independent of the concept class. While

reducing the dimensionality of examples, we would like to preserve concepts. So, for example,

if our original concept class is the set of half-spaces (linear thresholds) in n-dimensional space,

we would like to map examples to a k-dimensional space, where k is much smaller than n,

and maintain the property that some half-space in the k-dimensional space correctly classifies

(most of) the examples. We show that Random Projection, the technique of projecting a set

of points to a randomly chosen low-dimensional space, is suitable for this purpose. It has

been observed that random projection (approximately) preserves key properties of a set of

points, e.g., the distances between pairs of points (Johnson & Lindenstrauss, 1984); this has

led to efficient algorithms in several other contexts (Kleinberg, 1997; Linial, et al., 1994;

Vempala, 2004). In Section 3, we develop “neuronal” versions of random projection, i.e., we

demonstrate that it is easy to implement it using a single layer of perceptrons where the weights

of the network are chosen independently and from any one of a class of distributions; this class

includes discrete distributions such as the picking 1 or−1 with equal probability. Our theorems
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here can be viewed as extensions/refinements of the work of Johnson & Lindenstrauss (1984)

and Frankl and Maehara (1988).

Then we address the question of how many examples are needed to efficiently learn a

concept with robustness �. We begin with the concept class of half-spaces with n attributes.

In this case, it is already known that one needs O(1/�2) examples (Bartlett & Shawe-Taylor,

1998; Vapnik, 1995; Freund & Schapire, 1999). Here we show that a simple algorithm based

on random projection gives an alternative proof of such a guarantee.

Next we consider other rich concept classes, namely intersections of half-spaces and

ellipsoids. Using neuronal random projection, we demonstrate that the examples can first

be projected down to a space whose dimension is a function of �, and in some cases an

additional parameter of the concept class (e.g. the number of half-spaces when the concept

class is intersections of half-spaces etc.), but does not depend on the number of attributes

of the examples. This then allows us to bound the number of examples required to learn the

concepts as a function of �, independent of the original number of attributes, via well-known

generalization theorems based on the VC-dimension (Vapnik & Chervonenkis, 1971).

The proposed algorithms are fast—their running time is linear in n — since after random

projection (which takes time linear in n), all the work happens in the smaller-dimensional

space with a small number of sample points. Indeed, this suggests that the algorithms studied

here could be used in SVM’s in place of current solutions (Cortes & Vapnik, 1995; Freund

& Schapire, 1999) such as quadratic optimization in a dual space called the kernel space.

In Section 4.4, we mention the noise tolerance properties of the algorithms, notably that

agnostic learning is possible, and (equivalently) that it is possible to find hypotheses that

minimize the number of misclassified points, for fairly low robustness.

1.1. Related work

The main contribution of this paper is a new perspective on learning via a connection to

dimension reduction. This facilitates efficient algorithms which use small sample sizes. It

also gives a simple intuitive way to see the O(1/ε2) sample complexity bounds of margin

classifiers (SVM’s) (Bartlett & Shawe-Taylor, 1998). It is related to previous work (Schapire

et al., 1998) which showed that generalization error can be bounded in terms of the observed

margin of examples (a more refined notion of margin is used there, but is similar in spirit).

As we discuss in Section 5.1, it seems to fit well with attempts to model cognition on a

computational basis (Valiant, 1998), and predicts the commonly observed phenomenon that

finer distinctions take more examples. From a purely computational viewpoint, these are

simple new algorithms for fundamental learning theory problems, that might be practical.

There have been further applications of random projection in learning theory subsequent

to this work. Garg, et al. (2002) and Garg and Roth (2003) have pursued similar ideas,

developing the related notion of projection profile. Recently, Balcan, et al. (2004) have

used random projection to give an efficient new interpretation of kernel functions. Klivans

and Servedio (2004) have used polynomial threshold functions in the context of robust

concepts to get substantially improved time bounds. Specifically, they give faster algorithms

for learning intersections (and other functions) of t half-spaces (with some increase in the

sample complexity). Finally, Ben-David, et al. (2002) have used random projection to show

an interesting lower bound on learning with half-spaces. They prove that “most” concept

classes of even constant VC-dimension cannot be embedded into half-spaces where the

dimension of the Euclidean space is small or the margin is large. Thus, algorithms based on

first transforming to half-spaces cannot gain much in terms of the margin or the dimension.
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2. The model

To describe the model, we adopt the terminology used in the literature. We assume that

attributes are real valued; an example is a point in Rn ; a concept is a subset of Rn . An

example that belongs to a concept is labelled positive for the concept, and an example that

lies outside the concept is labelled a negative example.

Given a set of labelled examples drawn from an unknown distributionD in Rn , and labelled

according to an unknown target concept the learning task is to find a hypothesis with low

error. A hypothesis is a polynomial-time computable function. The error of a hypothesis h
with respect to the target concept is the probability that h disagrees with the target function

on a random example drawn from D. Thus, if h has error ε, then the probability for a random

x that h(x) disagrees with the target concept is at most ε. So, given an error parameter ε and

a confidence parameter δ, with probability at least 1 − δ, the algorithm has to find a concept

that has error at most ε on D (Valiant, 1984).

The basic insight of the new model is the idea of robustness (implicit in earlier work). Intu-

itively, a concept is “robust” if it is immune to attribute noise. That is, modifying the attributes

of an example by some bounded amount does not change its label. Another interpretation is

that points with different labels are far apart. This is formalized below:

Definition 1. For any real number � > 0, a concept C in conjunction with a distribution D
in Rn , is said to be �-robust, if

PD (x | ∃y : label(x) �= label(y), ||x − y|| ≤ �) = 0

The norm ||x − y|| is the Euclidean distance between x and y. This can be replaced by other

norms, but we use the Euclidean norm in this paper. The probability is over all points x with

the property that there is some point y with a different label within a distance �. In other words,

a concept is �-robust if there is zero probability of points being within � of the boundary of

the concept. The definition could be weakened by requiring only that the above probability

should be negligible (e.g. 1/2n). WhenD is over a discrete subset of Rn , then this has a simple

interpretation. A ball of radius � around any point x of non-zero probability lies entirely on

one side of the concept, i.e., every point in the ball has the same label as x . To avoid scaling

issues, we usually consider only distributions whose support is (a subset of) the unit ball in

Rn , i.e., all examples given to the algorithm will have length at most 1 (alternatively, one

could incorporate normalize the distance between examples by their length, but we find our

definition more convenient). Given access to examples from a robust concept, and parameters

ε, δ, a learning algorithm succeeds and is said to (ε, δ)-learn if, with probability at least 1 − δ,

it produces a hypothesis that is consistent with at least 1 − ε of the example distribution.

Note that strictly speaking this is not PAC-learning since robustness restricts the example

distribution.

In what follows, we present tools and algorithms for learning robust concepts. It is worth

noting that “robustness” refers only to the target concept; it is not required of all concepts in

the class.

2.1. Connection to existing models

The model is closely related to large margin classifiers used in Support Vector Machines

(Bartlett & Shawe-Taylor, 1998). Indeed, for the concept class of half-spaces, the robustness
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as defined here is exactly the largest possible margin of a correctly classifying half-space

(with the normalization that all the examples are from the unit ball). In general, however,

there is a subtle but important difference. Whereas in SVM’s the margin is measured in

the “lifted” space where concepts have been transformed to half-spaces, in our model we

measure robustness in the space in which examples are presented to us (and hence the natural

relationship with attribute noise). The robustness is also closely related to the parameter γ

used in the definition of the fat-shattering dimension (Kearns & Schapire, 1994; Bartlett

& Shawe-Taylor, 1998), and once again coincides (up to a scaling factor) in the case of

half-spaces.

3. The main tool: “neuron-friendly” random projection

In this section we develop “neuronal” versions of random projection, including a discrete

version, and provide probabilistic guarantees for them, all with transparent proofs. Besides

being neuron-friendly, these versions of random projection are easier to implement.

To project a given point u ∈ Rn to a k-dimensional space, we first choose k random vectors

R1, . . . , Rk (we will shortly discuss suitable probability distributions for these vectors).

Then we compute a k-dimensional vector u′ whose coordinates are the inner products u′
1 =

RT
1 · u, . . . , u′

k = RT
k · u. If we let R be the n × k matrix whose columns are the vectors

R1, . . . , Rk , then the projection can be succinctly written as u′ = RT u. To project a set of

points u1, . . . , um in Rn to Rk , we choose a random matrix R as above, and compute the

vectors RT u1, . . . , RT um .

Given the matrix R, the above procedure is a simple computational task. It has been

shown that if R is a random orthonormal matrix, i.e., the columns of R are random unit

vectors and they are pairwise orthogonal, then the projection preserves all pairwise distances

to within a factor of (1 + ε) for a surprisingly small value of k of about log n/ε2 (Johnson

& Lindenstrauss, 1984). The main observation of this section is to show that this is a rather

robust phenomenon, in that the entries of R can be chosen from any distribution with bounded

moments. In particular it suffices to use random matrices with independent entries chosen

from a distribution with bounded support. It is then an easy consequence that the task of

random projection can be achieved by a simple 1-layer neural network, viz., k perceptrons

(which compute linear combinations of their inputs) each with one output and the same n
inputs. The weights of the neural network are assumed to be random and independent. This

is illustrated in Fig. 1. Let r ∈ Rn be a random vector whose coordinates are independent

and identically distributed. We highlight the following two possibilities for the distribution

of the coordinates: (a) the standard normal distribution, with mean 0 and variance 1, referred

to as N (0, 1), (b) the discrete distribution defined by ri = 1 with probability 1
2

and ri = −1

with probability 1
2
, which we will refer to as U (−1, 1). Following the conference version of

this paper (Arriaga & Vempala, 1999), another proof for the case U (−1, 1) has also appeared

(Achlioptas, 2001). The following well-known lemma will be useful. We provide a proof for

convenience.

Lemma 1. Let X be drawn from N (0, σ ), the normal distribution with mean zero and stan-
dard deviation σ . Then for any α < 1

2σ 2 ,

E(eαX2

) = 1√
1 − 2ασ 2

.
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Fig. 1 Neuronal Random
Projection

Proof: We recall the density function of N (0, σ ), the normal distribution with mean 0 and

standard deviation σ , to be

1√
2πσ

e− x2

2σ2 .

Using this,

E(eαX2

) =
∫ ∞

−∞
eαx2 1√

2πσ
e− x2

2σ2 dx

=
∫ ∞

−∞

1√
2πσ

e− x2

2σ2 (1−2ασ 2) dx

= 1√
1 − 2ασ 2

∫ ∞

−∞

√
1 − 2ασ 2

√
2πσ

e− x2

2σ2 (1−2ασ 2) dx

= 1√
1 − 2ασ 2

.

Here we have used the observation that the integrand is the normal density with standard

deviation σ/
√

1 − 2ασ 2. �

We begin with the case when each entry of the projection matrix is chosen independently

from the standard Normal distribution.

Lemma 2. Let R = (ri j ) be a random n × k matrix, such that each entry ri j is chosen
independently according to N (0, 1). For any vector fixed u ∈ Rn, and any ε > 0, let u′ =

1√
k
(RT u). Then, E(||u′||2) = ||u||2 and

Pr[||u′||2 > (1 + ε)||u||2] ≤ ((1 + ε)e−ε)k ≤ e−(ε2−ε3) k
4

Pr[||u′||2 < (1 − ε)||u||2] ≤ ((1 − ε)eε)k ≤ e−(ε2−ε3) k
4 .
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Proof: The expectation follows from a simple calculation. To obtain the bound on the con-

centration near the mean, let X j = (RT
j · u)/||u|| and observe that

X =
k∑

j=1

X2
j =

k∑
j=1

(
RT

j · u
)2

||u||2

where R j denotes the j th column of R. Each X j has the standard normal distribution (since

each component of R j does). Also note that

||u′||2 = ||u||2
k

X.

Using Markov’s inequality, we can then estimate the desired probability as

P(||u′||2 ≥ (1 + ε)||u||2) = Pr (X ≥ (1 + ε)k) = Pr (eαX ≥ e(1+ε)kα)

≤ E(eαX )

e(1+ε)kα

= 	k
j=1E

(
eαX2

j
)

e(1+ε)kα
=

(
E
(
eαX2

1

)
e(1+ε)α

)k

.

In the last line above, we have used the independence of the X j ’s.

Similarly,

P(||u′||2 ≤ (1 − ε)||u||2) ≤
(

E
(
e−αX2

1

)
e−(1−ε)α

)k

.

ιFrom Lemma 1,

E
(
eαX2

1
) = 1√

1 − 2α

for any α < 1
2
. Thus we get,

Pr(X ≥ (1 + ε)k) ≤
(

e−2(1+ε)α

(1 − 2α)

) k
2

.

The optimal choice of α is ε/2(1 + ε). With this,

Pr(X ≥ (1 + ε)k) ≤ ((1 + ε)e−ε)
k
2 ≤ e−(ε2−ε3) k

4 .

Similarly,

Pr(X ≤ (1 − ε)k) ≤
(

e2(1−ε)α

(1 + 2α)

) k
2

≤ ((1 − ε)eε)
k
2 ≤ e−(ε2−ε3) k

4 .

�

The main theorem of this section shows that this phenomenon is not specific to the Normal

distribution. In the statement below, the condition that E(r2) = 1 is for convenience. Instead
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one could have an arbitrary finite value σ 2 for this expectation, and scale the projection by

σ .

Theorem 1. Let R be a random n × k matrix, with each entry r chosen independently from
a distribution D that is symmetric about the origin with E(r2) = 1. For any fixed vector
u ∈ Rn, let u′ = 1√

k
RT u.

1. Suppose B = E(r4) < ∞. Then for any ε > 0,

P
(
[||u′||2 ≤ (1 − ε)||u||2)] ≤ e− (ε2−ε3)k

2(B+1) .

2. Suppose ∃L > 0 such that for any integer m > 0, E(r2m) ≤ (2m)!
2m m!

L2m. Then for any ε > 0,

P
(||u′||2 ≥ (1 + ε)L2||u||2) ≤ (

(1 + ε)e−ε
)k/2 ≤ e−(ε2−ε3) k

4 .

Proof: Without loss of generality, assume that ||u||2 = 1. Let

Xi = RT
i u for i = 1, . . . , k.

We have

E
(
X2

i

) = E
((

RT
i u

)2) = E

((
n∑

j=1

Ri j u j

)2)
=

n∑
j=1

E
(
R2

i j

)
u2

j = 1.

Then, if we define Y as follows

Y :=
k∑

i=1

X2
i = k||u′||2, E(Y ) =

k∑
i=1

E
(
X2

i

) = k.

The deviation below the mean is relatively easy to bound, using the independence of the

Xi ’s and Markov’s inequality.

P(||u′||2 < (1 − ε)||u||2) = P(Y < (1 − ε)k)

= P(e−αY > e−α(1−ε)k)

≤ E(e−αY )

e−α(1−ε)k

= (
E
(
e−αX2

1
)
eα(1−ε)

)k

and, using that e−αX2
1 ≤ 1 − αX2

1 + α2 X4
1/2, we get

P(||u′||2 < (1 − ε)||u||2) ≤
((

1 − αE
(
X2

1

) + α2

2
E
(
X4

1

))
eα(1−ε)

)k

.
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We can evaluate the moments easily: E
(
X2

1

) = 1 and, if we observe that the expectation of

odd powers of r is zero because of symmetry, we have (using the fact that B ≥ 1),

E
(
X4

1

) = E

((
n∑

j=1

R1 j u j

)4)

=
n∑

j1, j2, j3, j4=1

E
(
R1 j1 R1 j2 R1 j3 R1 j4

)
u j1 u j2 u j3 u j4

=
n∑

j=1

E
(
R4

1 j

)
u4

j + 3
n∑

j1 �= j2, j1, j2=1

E
(
R2

1 j1 R2
1 j2

)
u2

j1 u2
j2

≤ B
n∑

j=1

u4
j + 3

n∑
j1 �= j2, j1, j2=1

u2
j1 u2

j2

≤ (B + 2)

( ∑
j

u2
j

)2

= B + 2.

Therefore, using the Taylor expansion of ex , (in particular, e−x+x2/2 ≥ 1 − x for x ≥ 0 and

small enough).

P(||u′||2 < (1 − ε)||u||2) ≤
((

1 − α + α2

2
(B + 2)

)
eα(1−ε)

)k

≤ (
e−α+ α2(B+2)

2
− 1

2
(α− α2(B+2)

2
)2

eα(1−ε)
)k

≤ e− (ε2−ε3)k
2(B+1) .

The last line above is obtained by setting α = ε/(B + 1) and noting that B ≥ 1.

Similarly, for the deviation above the mean,

P(||u′||2 > (1 + ε)L2||u||2) ≤
(

E
(
eαX2

1

)
eαL2(1+ε)

)k

.

The main task is bounding E(eαX2
1 ) from above using the assumptions of the theorem. This

expectation is hard to evaluate directly since we don’t know the distribution explicitly. How-

ever we have bounds on all the moments of X2
1. Therefore, if we define a random variable Z

whose moments are all at least the moments of X2
1, then E(eαZ ) will be an upper bound on

the required expectation. The following claim will be useful.

Claim 1. Let f, g be distributions on R that are symmetric about the origin with the property

that for any nonnegative integer m, E(Y 2m) ≤ E(Z2m) where Y, Z are drawn from f, g re-

spectively. Let Y1, . . . , Yn be i.i.d. from f , Z1, . . . , Zn be i.i.d from g. Then for any u ∈ Rn ,

the random variables Ŷ = ∑n
j=1 u j Y j and Ẑ = ∑n

j=1 u j Z j satisfy E((Ŷ )2m) ≤ E((Ẑ )2m) for

every nonnegative integer m.
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The claim is easy to prove. Compare the expectations of individual terms of (Ŷ )2m and

(Ẑ )2m . Since Yi , Zi are symmetric about the origin, all terms in which they appear with an

odd power have an expectation of zero. For any term in which all powers are even, by the

assumption, the term from E((Ẑ )2m) dominates.

To apply this to our setting, we know that

X1 =
n∑

j=1

u jr j

where each r j is drawn from the given distribution D. Define

Y1 =
n∑

j=1

u jr
′
j

where each r ′
j is drawn from N (0, L). Then for all j , and any integer m > 0,

E
(
r2m

j

) ≤ (2m)!

2mm!
L2m = E

((
r ′

j

)2m)

using the well-known formula for the moments of N (0, L). So, E(X2m
1 ) ≤ E(Y 2m

1 ). Moreover,

the distribution of Y1 is N (0, L). Therefore,

E
(
eαX2

1
) ≤ E

(
eαY 2

1
) = 1√

1 − 2αL2
.

Using this,

P
(||u′||2 > (1 + ε)L2||u||2) ≤

(
e−2αL2(1+ε)

1 − 2αL2

) k
2

.

The optimal choice of α is ε/2L2(1 + ε), and we get that for any ε > 0,

P(||u′||2 > (1 + ε)L2||u||2) ≤ ((1 + ε)e−ε)
k
2 ≤ e−(ε2−ε3) k

4 .

The last inequality was obtained by using the inequality ln(1 + ε) ≤ ε − ε2/2 + ε3/2. �

Corollary 1. If every entry of an n × k matrix R is chosen according to U (−1, 1), then for
any fixed vector u ∈ Rn and any ε > 0, the vector u′ = 1√

k
RT u satisfies

P(||u′||2 ≥ (1 + ε)||u||2) ≤ e−(ε2−ε3) k
4 and P(||u′||2 ≤ (1 − ε)||u||2) ≤ e−(ε2−ε3) k

4 .

Proof: For r drawn from U (−1, 1), E(r2m) = 1 for any integer m > 0. Therefore, we can

apply Theorem 1 with L = B = 1 to get the conclusion of the corollary. �
Springer
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Let R be an n × k matrix whose entries are chosen independently from either N (0, 1)

or U (−1, 1), independently. The following theorem summarizes the results of this section.

Alternative proofs for the case of N (0, 1) appeared in Indyk and Motwani (1998) and DG.

Theorem 2 (Neuronal RP). Let u, v ∈ Rn. Let u′ and v′ be the projections of u and v to
Rk via a random matrix R whose entries are chosen independently from either N (0, 1) or
U (−1, 1). Then,

P[(1 − ε)||u − v||2 ≤ ||u′ − v′||2 ≤ (1 + ε)||u − v||2] ≥ 1 − 2e−(ε2−ε3) k
4 .

Proof: Apply Theorem 1 to the vector u − v. �

We conclude this section with a useful corollary. A similar proof can be found in

Ben-David, et al. (2002).

Corollary 2. Let u, v be vectors in Rn s.t. ||u||, ||v|| ≤ 1. Let R be a random matrix whose
entries are chosen independently from either N (0, 1) or U (−1, 1). Define u′ = 1√

k
RT u and

v′ = 1√
k

RT v. Then for any ε > 0,

P(u · v − c ≤ u′ · v′ ≤ u · v + c) ≥ 1 − 4e−(ε2−ε3) k
4 .

Proof: Applying Theorem 2 to the vectors u, v and u − v, we have that with probability at

least 1 − 4e−(c2−c3) k
4 ,

(1 − c)||u − v||2 ≤ ||u′ − v′||2 ≤ (1 + c)||u − v||2

and (1 − c)||u + v||2 ≤ ||u′ + v′||2 ≤ (1 + c)||u + v||2.

Then,

4u′ · v′ = ||u′ + v′||2 − ||u′ − v′||2

≥ (1 − c)||u + v||2 − (1 + c)||u − v||2

= 4u · v − 2c(||u||2 + ||v||2)

≥ 4u · v − 4c.

Thus u′ · v′ ≥ u · v − c. The other inequality is similar. �

In what follows, we will apply random projection by picking entries of the projection ma-

trix independently from N (0, 1) or U (−1, 1). We remark that one could use other distributions

via Theorem 1.
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4. Learning efficiently by reducing dimensionality

In this section, we describe learning algorithms for robust concepts and derive bounds on

the number of examples required and the running times. Our bounds will be functions of

the robustness parameter l, and the ε, δ learning parameters, but will be independent of the

actual number of attributes of the concept class.

We are given labelled examples from an unknown distribution D. The generic algorithm

for learning robust concepts is based on the following two high-level ideas:

1. Since the target concept is robust, random projection of the examples to a much

lower-dimensional subspace will “preserve” the concept.

2. In the lower-dimensional space, the number of examples and the time required to learn

concepts are relatively small.

Before applying this approach to specific concept classes, we recall some fundamental

theorems in learning theory. For the concept class C under consideration, let C(m, k) denote

the maximum number of distinct labellings of m points that can be obtained by using concepts

from C in Rk . The following well-known theorem (see Kearns & Vazirani (1994) or Blumer et

al. (1989)) gives a bound on the size of the sample so that a hypothesis that is consistent with

the sample also has, with high probability, small error with respect to the entire distribution.

Theorem 3. Let C be any concept class in Rk . Let w be a concept from C that is consistent
with m labelled examples of some concept in C. Then with probability at least 1 − δ, w

correctly classifies at least (1 − ε) fraction of D provided

m >
4

ε
log C(2m, k) + 4

ε
log

2

δ
.

The notion of VC-dimension (Vapnik & Chervonenkis, 1971) is closely connected to the

number of distinct labelings as expressed in the following basic theorem.

Theorem 4 (Blumer et al. 1989). Let C be a concept class of VC-dimension d. Then, the
number of distinct labelings of m points by concepts in C is at most

C[m] ≤
d∑

i=0

(
m

i

)
.

If the algorithm finds a hypothesis that is nearly consistent with the sample (rather than

fully consistent as in the previous theorem), this too generalizes well. The number of samples

required increases by a a constant factor. The theorem below is a slight variant of a similar

theorem from Blumer et al. (1989). We give a self-contained proof in the appendix for the

reader’s convenience.

Theorem 5. For ε ≤ 1/4, let w be a concept from C in Rk that correctly classifies at least
a (1 − ε/8) fraction of a sample of m points drawn from D such that

m ≥ 32

ε
log C(2m, k) + 32

ε
log

2

δ
.
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Then with probability at least 1 − δ, w correctly classifies at least a 1 − ε fraction of D.

4.1. Half-spaces

We begin with the problem of learning a half-space in Rn (a linear threshold function).

This is one of the oldest problems studied in learning theory. The problem can be solved

in polynomial-time by using an algorithm for linear programming on a sample of O(n)

examples (note that this is not a strongly polynomial algorithm—its complexity depends only

polynomially on the number of bits in the input). Typically, however, it is solved by using

simple greedy methods. A commonly-used greedy algorithm is the Perceptron Algorithm
(Agmon, 1954; Rosenblatt, 1962), which has the following guarantee: Given a collection of

data points in Rn , each labeled as positive or negative, the algorithm will find a vector w such

that w · x > 0 for all positive points x and w · x < 0 for all negative points x , if such a vector

exists.1 The running time of the algorithm depends on a separation parameter (described

below). However, in order for the hypothesis to be reliable, we need to use a sample of �(n)

points, since the VC-dimension of half-spaces in Rn is n + 1.

Let Hn be the class of homogenous half-spaces in Rn . Let (h,D) be a concept-distribution

pair such that the half-space h ∈ Hn is �-robust with respect to the distribution D over Rn .

We restrict D to be over the unit sphere (i.e., all the examples are at unit distance from the

origin). The latter condition is not really a restriction since examples can be scaled to have

unit length without changing their labels. The parameters k and m in the algorithm below

will be specified later.

Half-space Algorithm:

1. Choose an n × k random matrix R by picking each entry independently from N (0, 1) or

U (−1, 1).

2. Obtain m examples from D and project them to Rk using R.

3. Run the following Perceptron Algorithm in Rk : Let w = 0. Perform the following oper-

ation until all examples are correctly classified:

Pick an arbitrary misclassified example x and let w ← w + label(x)x .

4. Output R and w.

A future example x is labelled positive if w · (RT x) ≥ 0 and negative otherwise. This is of

course the same as checking if (wRT ) · x > 0, i.e., a half-space in the original n-dimensional

space.

We can assume that h, the normal vector to the concept half-space, is of unit length. The

idea behind the algorithm is that when k is large enough, in the k-dimensional subspace

obtained by projection, the half-space through the origin defined by RT h, i.e., (RT h) · y ≥ 0,

classifies most of the projected distribution correctly. We will show that in fact this half-

space remains robust with respect to a projected sample of sufficiently large size. To find a

consistent half-space, we use the classical perceptron algorithm. It is well-known (see Minsky

& Papert (1969)) that the convergence of this algorithm depends on the margin, i.e., in our

terminology, the robustness of the target half-space.

Theorem 6. (Minsky & Papert, 1969) Suppose the data set S can be correctly classified by
some unit vector w. Then, the Perceptron Algorithm converges in at most 1/σ 2 iterations,

1 A zero threshold can be achieved by adding an extra dimension to the space.
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where

σ = min
x∈S

|w · x |
||x || .

For an �-robust half-space, we have σ ≥ �. The theorem says that the perceptron algorithm

will find a consistent half-space in at most 1/�2 iterations. We can now state and prove the

main result of this section.

Theorem 7. An �-robust half-space in Rn can be (ε, δ)-learned by projecting a set of m
examples to Rk where

k = 100

�2
ln

100

ε�δ
, m = 8k

ε
log

48

ε
+ 4

ε
log

4

δ
= O

(
1

�2
· 1

ε
· ln

1

ε
ln

1

ε�δ

)

in time n · poly( 1
�
, 1

ε
, log 1

δ
) time.

Proof: For an example point x , we let x ′ denote its projection. We let h′ denote the projection

of h, the normal to the target half-space. We would like the following events to occur (by the

choice of the projection matrix R):

1. For each example x , its projection x ′ has length at most 1 + �
2
. Similarly, ||h′|| ≤ 1 +

�
2
.

2. For each example x , if h · x ≥ �, then h′ · x ≥ �
2
; if h · x ≤ −�, then h′ · x ′ ≤ − �

2
.

We now bound the probability that one of these events does not occur. For any single example

x , applying Corollary 2 with ε = �/2 and our choice of k, the probability that ||x ′|| > 1 + �
2

is at most

e−( �2

4
− �3

8
) k

4 ≤ e− �2k
32 ≤

(
ε�δ

100

) 100
32

<
δ

4(m + 1)
.

Adding this up over all the m examples and the vector h, we get a failure probability of at

most δ/4.

Next, by Corollary 2, with u = h and v = x , the probability that the second event does

not occur for any particular example x is at most δ/4m. Again this contributes a total failure

probability of at most δ/4. Thus, both events occur with probability at least 1 − δ/2.

These events imply that the half-space in Rk defined by h′ correctly classifies all the

m examples after projection (with probability at least 1 − δ/2). Moreover, after scaling the

examples to have length at most 1, the margin is at least

σ ≥ �/2

1 + �
2

≥ �

3
.

Now, by Theorem 6, the perceptron algorithm will find a consistent half-space in 9/�2

iterations.

Finally, we need to show that m is large enough that hypothesis found generalizes well.

We will apply Theorem 3 to half-spaces through the origin in Rk . The VC-dimension of the
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latter concept class is k and so, by Theorem 4, we get the following well-known bound on

the number of distinct half-spaces (see e.g. Kearns & Vazirani (1994)):

C(2m, k) ≤
k−1∑
i=0

(
2m

i

)
≤

(
2em

k

)k

. (1)

Our choice of m satisfies

m = 8k

ε
log

48

ε
+ 4

ε
log

4

δ
>

4

ε
log C(2m, k) + 4

ε
log

4

δ
.

Therefore, applying Theorem 3 with δ/2 in place of δ, the half-space found by the algorithm

correctly classifies at least 1 − ε of the original distribution with probability at least 1 − δ/2.

This gives an overall success probability of at least 1 − δ. �

The perceptron algorithm and its variants are known to be resistant to various types

of random classification noise (Bylander, 1994; Blum et al., 1996). It is a straightforward

consequence that these properties continue to hold for the algorithm described here. In the

concluding section, we discuss straightforward bounds for agnostic learning.

4.2. Intersections of half-spaces

The next problem we consider is learning an intersection of t half-spaces in Rn , i.e., the posi-

tive examples all lie in the intersection of t half-spaces and the negative examples lie outside

that region. It is not known how to solve the problem for an arbitrary distribution. However

efficient algorithms have been developed for reasonably general distributions assuming that

the number of half-spaces is relatively small (Blum & Kannan, 1993; Vempala, 2004). Here,

we derive efficient learning algorithms for robust concepts in this class.

We assume that all the half-spaces are homogenous. Let the concept class of intersections

of half-spaces be denoted by H(t, n). A single concept in this class is specified by a set of

t half-spaces P = {h1, . . . , ht }, and the positive examples are precisely those that satisfy

hi · x ≥ 0 for i = 1 . . . t . Let (P,D) be a concept-distribution pair such that P is �-robust

with respect to the distribution D. We assume that the support D is a subset of the unit sphere

(and remind the reader that this as well as homogeneity are not really restrictive, as they

can be achieved by scaling and adding an extra dimension, respectively; see e.g. (Vempala,

2004)).

Let denote C(m, t, k) denote the maximum number of distinct labellings of m examples

in Rk using concepts from H(t, k). Then,

C(2m, t, k) ≤
( k−1∑

i=0

(
2m

i

))t

≤
(

2em

k

)tk

. (2)

This can be seen as follows: For t = 1, this is just (1), the number of ways to assign +
or −1 to 2m points using a half-space. If we give each point t labels, one for each of t half-

spaces, then the total number of possible labellings is the middle term in (2). We consider two

labellings distinct iff the subset of points that are labelled + by all t half-spaces is different.

Thus the total number of distinct labellings by t half-spaces can only be smaller than this

bound.
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Given m examples, we can always find a consistent hypothesis (if one exists) using a

brute-force algorithm that enumerates all the combinatorially distinct half-spaces and pick t
of them (with replacement). We apply this to learning a robust intersection of t-half-spaces

after projecting a sufficiently large sample to a lower-dimensional subspace. The parameters

k and m below will be specified shortly.

t-Half-spaces Algorithm:

1. Choose an n × k random matrix R for projection by choosing each entry independently

from N (0, 1) or U (−1, 1).

2. Obtain m examples from D and project them to Rk using R.

3. Find a hypothesis Q = {w1, . . . , wt } where each wi ∈ Rk such that the intersection of

the half-spaces wi · x ≥ 0 for i = 1, . . . , t is consistent with the labels of the projected

examples.

4. Output R and Q.

A future example x is projected down as RT x and labelled according to Q, i.e., it is positive

if wi · (RT x) ≥ 0 for all i = 1, . . . , t .

Theorem 8. An �-robust intersection of t half-spaces in Rn can be (ε, δ)-learned by project-
ing m examples to Rk where

k = 100

�2
ln

100t

ε�δ
and m = 8kt

ε
log

48t

ε
+ 4

ε
log

4

δ
= O

(
t

ε�2
log

t

ε
log

t

�εδ

)

in time O(nmk) + ( 48t
ε

log 4t
εδ

)kt .

Proof: The proof is similar to that of Theorem 7 and we only sketch it.

Let the original set of half-spaces be h1 · x ≥ 0, . . . , ht · x ≥ 0, where each hi is a unit

vector in Rn . We consider the projections of these, h′
i = 1√

k
RT hi , and the following events:

For each example x and normal vector hi , if hi · x ≥ �, then h′
i · x ′ > 0; If hi · x ≤ −�, then

h′
i · x ′ < 0.

For our choice of k and m, it follows from Corollary 2 that these events all happen

with probability at least 1 − δ/2. Therefore, after projection, with this probability, there is a

hypothesis from H(t, k) that is consistent with all m examples. Using Theorem 3 along with

(2), it follows that any hypothesis consistent with a sample of size

m = 8kt

ε
log

2t

ε
+ 4

ε
log

4

δ

will correctly classify (1 − ε) of the distribution with probability at least 1 − δ/2. This gives

an overall success probability of at least 1 − δ. The running time of the enumerative algorithm

is O((2em/k)kt ). �

If t, �, ε, δ are all constant, then the algorithm runs in linear time. If only �, ε, δ are con-

stant, then the algorithm has running time O(nt log3 t) + (t log t)O(t log t). This is significantly

faster than the best-known algorithms for the general case (see Section 1.1 for recent im-

provements). Both results do not need any further assumptions on the distribution D besides
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robustness. Previous algorithms for the problem assumed thatDwas either symmetric (Baum,

1990), uniform (Blum & Kannan, 1993) or non-concentrated (Vempala, 1997). Recently, an

improved time complexity for learning robust intersections of half-spaces was obtained in

Klivans and Servedio (2004) using an algorithm for learning polynomial threshold functions

in the projected space in place of the enumerative algorithm used here. The improvement in

the time complexity comes along with a substantial increase in the sample complexity.

4.3. Balls

Finally, we briefly discuss the concept class of balls in Rn , illustrating how robustness plays

a role in learning nonlinear concepts.

A Ball B(x0, r ) in Rn is defined as

B(x0, r ) = {x ∈ Rn : ||x − x0|| ≤ r}

where x0 (the center) is a fixed point in �n and r (the radius) is a fixed real value. The set of

points in B(x0, r ) are labelled positive and those outside are labelled negative.

It is well-known that the VC-dimension of balls in Rn is n + 1 and so the number of

examples required to (ε, δ)-learn a ball is O( n
ε

log 1
ε

+ 1
ε

log 1
δ
). How many examples do

we need to learn an �-robust ball? The following theorem follows easily from the neuronal

projection theorem.

Theorem 9. An �-robust ball of radius in Rn of radius at most 1 can be (ε, δ)-learned by
projecting m examples to Rk where

k = 100

�2
ln

100

ε�δ
and m = 8k

ε
log

48

ε
+ 4

ε
log

4

δ

and then finding a ball in Rk consistent with the projected examples.

Proof: With probability 1, any positive example x drawn from the distribution D will satisfy

||x − x0|| ≤ r − l

while any negative example x will satisfy

||x − x0|| ≥ r + l.

Using Theorem 2 with our choice of k and ε = �/2, for any one x , its projection x ′ satisfies

(
1 − �

2

)
||x − x0|| ≤ ||x ′ − x ′

0|| ≤
(

1 + �

2

)
||x − x0||

with probability at least 1 − δ
2m . So, with probability 1 − δ/2, all the projected examples

satisfy the above inequality. Further, since the radius of the concept ball is at most 1,

||x − x0|| + �

2
≤ ||x ′ − x ′

0|| ≤ ||x − x0|| + �

2
.
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Thus, the ball B(x ′
0, r ) in Rk is consistent with the projected examples and the theorem

follows. Finally, we can use Theorem 3 to verify that m is large enough for this to be an

(ε, δ)-learning algorithm. �

4.4. Noise tolerance

Here we note that the algorithms can be adapted to be resistant to malicious classification

noise (agnostic learning). In a sample of s examples, let the labels of at most γ s of them be

corrupted arbitrarily. Fix a hypothesis class H and let f (�) be the bound on the number of

examples required to learn concepts with robustness �. Then to deal with this noise “rate” γ ,

we obtain f (�)/(1 − γ ) examples, and for every subset of size f (�) of the sample, we run the

learning algorithm for the hypothesis class and output a hypothesis that correctly classifies

the subset. The total number of runs of the algorithms is at most 22 f (�). So, for example,

half-spaces in Rn can be learned in poly(n) time for robustness as low as
√

log log n
log n . Another

way to interpret this is that we can find hypothesis that minimize the number of mistakes.

This was observed by Avrim Blum.

5. Discussion

5.1. A robust model of categorization

The model studied in this paper can be viewed as a rudimentary model of human learning.

In this model, at the outer level of processing, there is a layer of neurons that produces

a random summary of any stimuli presented. It is the summary that is then processed by

learning algorithms. The outer level plays the role of random projection. The main insight

of the model is that even a random summary that is independent of any specific concept and

independent of the distribution on examples (stimuli), can preserve the essential elements

necessary for learning the category. The ease of learning and the extent to which the summary

preserves the concepts depends on their robustness—the more robust a concept, the shorter

a summary needs to be and the easier it is to learn. In this section, we draw from work in

cognitive and neuropsychology to see how the predictions of this model hold up. Our model

goes beyond previous ones that made similar predictions in suggesting a simple physiological

mechanism.

An interesting prediction of our model is that learning concepts that are more robust re-

quires fewer examples. This prediction is supported by many psychological studies (Glass,

et al., 1979; Komatsu, 1992; Reed, 1982; Reed & Friedman, 1973; Rosch, 1978; Rosch

et al., 1976), in particular those that refer to concept formation as stemming from the family

resemblence perspective (for a detailed account of other prominent views, see (Komatsu,

1992; Rakinson & Oakes, 2003)). The family resemblence perspective argues that categories

(concept classes) as formed by humans are hierarchical (Reed, 1982), with three clear levels

called the Superordinate, Basic and Subordinate. For example, for the Superordinate category

of Mammals, some Basic level categories are Elephant, Dog, Human, and the Subordinate

categories for Elephant would be African Elephant and Indian Elephant. Similarly, the Su-

perordinate category of Musical Instruments has below it the Basic level categories of Guitar,

Piano, Drum, etc. and Guitar, has below it Subordinate categories such as Folk Guitar and

Steel Guitar. The Basic level categories are considered the most important, and are the most

clearly demarcated from each other. In our terminology they are the most robust, and we
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expect them to be easier to learn. This is indeed the case as noted by Rosch et al. (1976),

“...basic level categories are the most differentiated from one another and they are therefore

the first categories we learn and the most important in language.”

A related theory of how humans form categories is based on the notion of Prototypes
(Glass, et al., 1979; Komatsu, 1992). The essential predictions of this theory can also be

derived from robustness. Prototypes represent the most typical members of a category. The

theory says that we abstract a prototype for a category by forming some weighted average

of (a subset of) the defining features of examples from the category. A subsequent instance

is compared to the prototype, and if it has a sufficient degree of similarity to the prototype

then it is judged to be a member of the category. This explains the results of studies where it

is found that when asked to list examples of a category, subjects consistently list members

that are closer to the prototype both earlier and more often (e.g., for the category Bird,

the examples Sparrow and Robin are produced more often than Ostrich) Rosch (1978).

Further when asked to classify instances, it is found that examples closer to the prototype

are classified more quickly. Similar results were found in studies with artificially generated

categories (Reed & Friedman, 1973).

For a prototype P , we could define a family of nested concepts within the category of P
according to the distance from P . Then the members of the innermost concept are very similar

to P , the members of the next concept are a bit more varied, and the variation increases as

the maximum distance of the concepts from P grows. In other words the innermost concept

is the most robust in terms of demarcating the category from objects that are not members

(of the family category), and the robustness decreases as we move outward. The arguments

in this paper imply that the inner concepts would be easier to learn and label than the outer

ones. This is exactly what was observed in the aforementioned studies.

In our model as the organism is presented with a given stimulus, a random summary

of its characteristics is captured. After another member of the same family is observed

another summary of characteristics is abstracted. The characteristics that are shared among

stimuli from the same “family” would in time lead to a set of summaries with analogous

characteristics. These analogous characteristics would give rise to a protypical family member

(say Robin for the bird family) because it embodies many of the characteristics which have a

greater probability of appearing in these “random summaries” since they are more common in

the family (small, feathers, flies) and not other characteristics which are likely to be atypical

(large, does not fly for Ostrich or has no feathers for Penguin).

Another question that our model addresses concerns the need to make distinctions between

perceptual (red, square, loud) or conceptual categories (dessert vs. salad or good vs. evil). This

issue is prominent in current research on categorization (Mandler, 2003). While the examples

we have mentioned (birds, elephants and guitars) can be described as perceptual (object-

based) categories, it is worth noting that our model also applies to conceptual categories. The

idea is that along with physical characteristics, abstract characteristics (that are also ultimately

functions of the stimuli, e.g. “soulfulness” might include Steel Guitar and Saxophone) are

preserved by the random summaries. The predictions of our model are similar to those of the

family resemblance view; the latter has been successfully used to go beyond object-based

categores to psychological phenomena such as emotions and personality traits (Komatsu,

1992). At the outer-level mechanism of our model, there is no need for separate learning

systems for categorization.

In the same vein, the current model also speaks to the broad neuropsychological issue of

whether it is necessary to propose a multiple-system (i.e., various brain regions) model as

opposed to a single-system model (general brain processing) to account for object recognition

on the one hand and categorization on the other (Knowlton, 1999). We see our model as a
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single-system model that provides a general physiological “outer-level” for learning. As such

we believe this model partially answers the call to “develop formalized single-system and

multiple-system mathematical models of categorization, to collect rich sets of parametric

data using both normal and brain-damaged population and to test the ability of the respective

models to account quatitatively for the data.” (Nosofsky & Zaki, 1969).

5.2. Open problems

In the discrete setting, an �-robust concept is one where a positive example retains its label

even if an �-fraction of its attributes are changed. An important open problem in computational

learning theory is that of learning DNF formulae from the uniform distribution without

membership queries. This concept class can be viewed as intersections of half-spaces with

robustness 1/
√

n. If there is an algorithm for learning DNF formulae in time polynomial

in n and 1/�, this would solve the problem of learning DNF formulae without membership

queries.

We have seen how robustness reduces the learning complexity of some important concept

classes. We conclude with the following questions: What are concept classes for which

robustness does not reduce learning complexity? In particular, what is the complexity of

learning robust polynomial threshold functions?

Appendix

Proof: (of Theorem 5.) We basically mimic the proof of the fundamental VC theorem. The

only difference is that in that theorem, it is assumed that there is a hypothesis consistent with

the entire sample. Here we can only assume that there is a hypothesis that correctly classifies

1 − ε/4 fraction of the sample.

Let us call a hypothesis a bad hypothesis if it has error more than ε on the distribution.

Let A be the event that there exists a bad consistent hypothesis, i.e., a hypothesis that has

error less than ε/8 on the sample and error greater than ε on the distribution. We would like

to show that the probability of event A is at most δ. To do this, we define B to be the event

that for a sequence of 2m examples, there is a concept that has error less than ε/8 on the first

m and greater than ε/2 on the remaining m.

Next we observe that Pr (A) ≤ 2 · Pr(B). This is because

Pr(B) ≥ Pr(A and B) = Pr(A) · Pr(B/A)

The probability of B given A, Pr(B/A) is the probability that a hypothesis that has error ε on

the distribution has error at least ε/2 on a set of m examples. Using Chebychev’s inequality,

this latter probability is at least 1/2.

To complete the proof we will bound the probability of B. Fix any set of 2m examples and

consider a random partition of them into two equal-sized sets S1 and S2. Let ĥ be a hypothesis

which disagrees with the target hypothesis on at least εm/2 of the 2m examples. This is a

candidate for causing event B.

Let Xi , for i = 1, . . . , m denote the event that ĥ makes an error on the i’th example in S1.

Then E(Xi ) = ε/4. Define

X =
m∑

i=1

Xi .
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Then E(X ) = εm/4. By Chernoff’s inequality,

Pr(X ≤ ε

4
(1 − c)) ≤ e− εmc2

8

That is,

Pr(X ≤ ε

8
) ≤ e−εm/32.

The total number of distinct hypothesis for the set of 2m examples is at most C(2m, k). In

other words, this is the number of distinct ways to partition 2m points using concepts from

C in Rk . Adding up over all the hypotheses, we get that

Pr(B) ≤ C(2m, k)e−εm/32.

For the value of m considered in the theorem, we have Pr(B) < δ/2 and hence Pr(A) < δ as

required. �
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