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Abstract. Orthogonal Variable Spreading Factor (OVSF) codes are used in UMTS to share the radio spectrum
among several connections of possibly different bandwidth requirements. The combinatorial core of the OVSF
code assignment problem is to assign some nodes of a complete binary tree of height h (the code tree) to
n simultaneous connections, such that no two assigned nodes (codes) are on the same root-to-leaf path. A
connection that uses a 2−d fraction of the total bandwidth requires some code at depth d in the tree, but this
code assignment is allowed to change over time. Requests for connections that would exceed the total available
bandwidth are rejected. We consider the one-step code assignment problem: Given an assignment, move the
minimum number of codes to serve a new request. Minn and Siu propose the so-called DCA algorithm to
solve the problem optimally. In contrast, we show that DCA does not always return an optimal solution, and
that the problem is NP-hard. We give an exact nO(h)-time algorithm, and a polynomial-time greedy algorithm
that achieves approximation ratio �(h). A more practically relevant version is the online code assignment
problem, where future requests are not known in advance. Our objective is to minimize the overall number of
code reassignments. We present a �(h)-competitive online algorithm, and show that no deterministic online
algorithm can achieve a competitive ratio better than 1.5. We show that the greedy strategy (minimizing the
number of reassignments in every step) is not better than �(h) competitive. We give a 2-resource augmented
online algorithm that achieves an amortized constant number of (re-)assignments. Finally, we show that the
problem is fixed-parameter tractable.
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1. Introduction. Recently UMTS (Universal Mobile Telecommunications System,
for more details see [17] and [20]) has received a lot of attention, and also raised new
algorithmic problems. In this paper we focus on a specific aspect of its air interface W-
CDMA (Wideband Code Division Multiple Access) that turns out to be algorithmically
interesting, more precisely on its multiple access method DS-CDMA (Direct Sequence
Code Division Multiple Access). The purpose of this access method is to enable all
users in one cell to share the common resource, i.e. the bandwidth. In DS-CDMA this
is accomplished by a spreading and scrambling operation. Here we are interested in
the spreading operation that spreads the signal and separates the transmissions from the
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(a)

(a,-a)(a,a)

N leaves

height h

assigned code blocked code

level bandwidth

0

1

2

3

1

2

4

8

Fig. 1.1. A code assignment and blocked codes.

base-station to the different users. More precisely, we consider spreading by Orthogonal
Variable Spreading Factor (OVSF) codes [2], [17], which are used on the downlink and
the dedicated channel of the uplink. These codes are derived from a code tree. The
OVSF-code tree is a complete binary tree of height h that is constructed in the following
way: The root is labeled with the vector (1), the left child of a node labeled (a) is labeled
with (a, a), and the right child with (a,−a). Each user in one cell is assigned a different
OVSF code. The key property that separates the signals sent to the users is the mutual
orthogonality of the users’ codes. All assigned codes are mutually orthogonal if and
only if there is at most one assigned code on each leaf-to-root path. In DS-CDMA users
request different data rates and get OVSF codes of different levels. (The data rate is
inversely proportional to the length of the code. Note that a code at depth d has code
length 2d , since the code length of a child is twice the code length of the parent.) In
particular, it is irrelevant which code on a level a user gets, as long as all assigned codes
are mutually orthogonal. We say that an assigned code in any node in the tree blocks all
codes in the subtree below it and all codes on the path to the root, see Figure 1.1 for an
illustration. A maximal subtree of unblocked codes is called a gap tree (see Figure 7.6(a)
in Section 7).

As users connect to and disconnect from a given base station, i.e. request and release
codes, the code tree can get fragmented. Then it can happen that a code request for a
higher level cannot be served at all, because lower level codes block all codes on this
level. For example in Figure 1.1 no code can be inserted on level 2 without reassigning
another code, even if there is enough available bandwidth. This problem is known as
code blocking or code-tree fragmentation [20], [21]. One way of solving this problem
is to reassign some codes in the tree (more precisely, to assign different OVSF codes
of the same level to some users in the cell). In Figure 1.2 some user requests a code on
level 2, where all codes are blocked. Still, after reassigning some of the assigned codes
as indicated by the dashed arrows, the request can be served. Here and in many of the
following figures we only depict the relevant parts (subtrees) of the single code tree.

request for code on level 2level

0

1

2

Fig. 1.2. A code insertion on level 2 into a single code tree T , shown without the top levels.
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The process of reassigning codes necessarily induces signaling overhead from the base
station to the users whose codes change. This overhead should be kept small. Therefore,
a natural objective already stated in [21] and [23] is to serve all code requests as long as
this is possible, while keeping the number of reassignments as small as possible. (In fact,
as long as the total bandwidth of all simultaneously active code requests does not exceed
the total bandwidth, it is always possible to serve them, see Corollary 2.2.) The problem
has been studied before with the focus on simulations. In [21] the problem of reassigning
the codes for a single additional request is introduced. The Dynamic Code Assignment
(DCA) algorithm is presented and claimed to be optimal. In this paper we prove that
this algorithm is not always optimal and analyze natural versions of the underlying code
assignment (CA) problem. We present a first rigorous analysis of this problem.

After some preliminaries on the problem in Section 2 we give a counterexample to
the optimality of the DCA algorithm in Section 3, then prove the original problem stated
by Minn and Siu to be NP-complete for a natural, compact input encoding (where the
initial code assignment is specified by a list of positions of assigned codes) in Section 4.
In Section 5 we give a dynamic programming algorithm that solves the problem with
running time nO(h), where n is the number of assigned codes in the tree. In Section 6
we give an involved analysis showing that a natural greedy algorithm already mentioned
in [21] achieves approximation ratio h for the problem of assigning a single additional
request. We tackle the online-problem in Section 7. It is a more natural version of the
problem, because we are interested in minimizing the signaling overhead over a sequence
of operations rather than for a single operation only. We present a �(h)-competitive
algorithm and show that the greedy strategy that minimizes the number of reassignments
in every step is not better than �(h)-competitive in the worst case. We also give an
online algorithm with constant competitive ratio that uses resource augmentation, where
we give our code tree one more level than the adversary. Finally, we show that the
original problem is fixed-parameter tractable for some natural parameters, assuming a
non-compact input encoding (where the initial code assignment is specified by a bit
vector indicating for each position whether it has an assigned code or not).

1.1. Problem Definition. We consider the combinatorial problem of assigning codes
to users. The codes are the nodes of an (OVSF) code tree T = (V, E). Here T is a
complete binary tree of height h. The set of all users using a code at a given moment
in time can be modeled by a request vector r = (r0, . . . , rh) ∈ Nh+1, where ri is the
number of users requesting a code on level i (with bandwidth 2i ). The levels of the tree
are counted from the leaves to the root starting at level 0. We denote by l(v) the level of
node v. Each request is assigned to a position (node) in the tree, such that for all levels
i ∈ {0, . . . , h} there are exactly ri codes on level i , and on every path pj from a leaf j
to the root there is at most one code assigned. We call every set of positions F ⊂ V in
the tree T that fulfills these properties a code assignment. For ease of presentation we
denote by F the set of codes. Throughout this paper a code tree is the tree together with a
code assignment F . If a user connects to the base station, the resulting additional request
for a code represents a code insertion (on a given level). If some user disconnects, this
represents a deletion (in a given position). A new request is dropped if it cannot be served.
This is the case, if its acceptance would exceed the total bandwidth. By N we denote the
number of leaves of T , i.e. N = 2h , and by n the number of assigned codes |F |. After
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an insertion on level lt at time t , any CA algorithm must change the code assignment Ft

into Ft+1 for the new request vector r ′ = (r0, . . . , rlt + 1, . . . , rh). The size |Ft+1\Ft |
corresponds to the number of reassignments. This implies that for an insertion, the new
assignment is counted as a reassignment. We define the number of reassignments as the
cost function. Deletions are not considered in the cost function, they are charged to the
insertions. When we want to emphasize the combinatorial side of the problem we call a
reassignment a movement of a code.

We state the original CA problem studied by Minn and Siu together with some of its
natural variants:

One-step offline CA. Given a code assignment F for a request vector r and a
code request for level l. Find a code assignment F ′ for the new request vector
r ′ = (r0, . . . , rl + 1, . . . , rh) with a minimum number of reassignments.

General offline CA. Given a sequence S of code insertions and deletions. Find
a sequence of code assignments so that the total number of reassignments is
minimum, assuming the initial code tree is empty.

Online CA. In this setting requests are served as they arrive without knowledge of
the future requests. The cost function is again the total number of reassignments
over the whole request sequence.

Insertion-only online CA. This is the online CA with insertions only.

1.2. Related Work. It was a paper by Minn and Siu [21] that originally drew our
attention to this problem. There the one-step offline version is defined together with an
algorithm that is claimed to solve it optimally. As we show in Section 3 this claim is not
correct, the argument contains errors. Many of the follow-up papers like [4], [6], [8], [10],
[14], [15], [19] and [23] acknowledge the original problem to be solved by Minn and Siu
and study some other aspects of it. Assarut et al. [4] evaluate the performance of Minn
and Siu’s DCA algorithm, and compare it with other schemes. Moreover, they propose
a different algorithm for a more restricted setting [3]. Others use additional mechanisms
like time multiplexing or code sharing on top of the original problem setting in order to
mitigate the code-blocking problem [6], [23]. A different direction is to use a heuristic
approach that solves the problem for small input instances [6]. Dell’Amico et al. [10]
present a dynamic tree partitioning technique and evaluate it in simulations with respect
to blocking probability and number of reassignments over a sequence of call arrivals
and departures. Kam et al. [19] address the problem in the context of bursty traffic and
different QoS (Quality of Service). They come up with a notion of “fairness” and also
propose using multiplexing. Priority-based schemes for different QoS classes can be
found in [9], similar in perspective are [14] and [15].

Fantacci and Nannicini [12] are among the first to express the problem in its online
version, although they have quite a different focus. They come up with a scheme that
is similar to the compact-representation scheme in Section 7, without focusing on the
number of reassignments. Rouskas and Skoutas [23] propose a greedy online-algorithm
that minimizes in each step the number of additionally blocked codes, and provide
simulation results but no analysis. Chen and Chen [7] propose a best-fit least-recently
used approach, also without analysis.
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Fig. 2.1. Correspondence of code assignments in tree of height 4 with codes on levels {0, 1, 1, 1, 2} and prefix
free codes of lengths {4, 3, 3, 3, 2}.

2. Observations on the CA Problem

2.1. Feasibility of Code Assignment. Given a tree T with n assigned codes at levels
l1, . . . , ln and a code insertion c for level ln+1, we examine the existence of the code
reassignment to insert code c. Clearly, this can be done if there exists a code assignment
for desired levels l1, . . . , ln+1. Every assigned code on level l has its unique path from
the root to a node of length h − l. The path can be encoded by a word w ∈ {0, 1}h−l

determining whether we traverse through the left or right child. From the properties of
code assignments the path/node identifiers form a binary prefix-free code. On the other
hand, given a prefix-free code set of lengths {h− l1, . . . , h− ln+1} we can clearly assign
codes on levels li by following the paths described by the code words (see Figure 2.1).
Thus, we have showed that a code assignment for codes on levels l1, . . . , ln+1 exists if and
only if there exists a binary prefix-free code set of given lengths {h − l1, . . . , h − ln+1}.

Now we are ready to use the Kraft–McMillan inequality.

THEOREM 2.1. A binary prefix-free code of code lengths a1, . . . , am exists if and only
if

m∑
i=1

2−ai ≤ 1.(2.1)

PROOF. For example, in [1].

By multiplying (2.1) by 2h we immediately get the following corollary.

COROLLARY 2.2. A code assignment for desired levels l1, . . . , lm into the tree T of
height h with N leaves exists if and only if

m∑
i=1

2li ≤ N .

We see that checking whether we can successfully serve the code insertions can be done
in linear time. Therefore, from now on we assume that the insertions always fit in the
tree capacity, i.e. there exists a code reassignment to insert the code.
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Fig. 2.2. Non-optimality of a code assignment F ′ that reassigns codes also on higher levels than the requested
level.

2.2. Irrelevance of Higher Level Codes. In this section we show that an optimal algo-
rithm for the one-step CA problem moves only codes on levels lower than the requested
level r . A similar result was already given in [21], but here we give an independent and
slightly different statement.

LEMMA 2.3. Let c be an insertion on level r into a code tree T . Then for every code
reassignment F ′ that inserts c and that moves a code on level l ≥ r there exists a code
reassignment F ′′ that inserts c and moves fewer codes, i.e. with |F ′′\F | < |F ′\F |.

PROOF. Let x ∈ F be the highest code that is reassigned by F ′ on a level at or above the
level r and let S denote the set of codes moved by F ′ into the subtree Tx rooted at node x .
We denote by R the rest of the codes that are moved by F ′ (see Figure 2.2). The cost of
F ′ is |S| + |R|. The code reassignment F ′′ is defined as follows: Let y be the position
where F ′ moves the code x . Then F ′′ moves the codes in S into the subtree Ty rooted at
y, leaves the code x at the root of Tx and moves the rest of the codes R in the same way
as F ′. The cost of F ′′ is at least one less than the cost of F ′ since it does not move the
code x . In the example from Figure 2.2 the cost of F ′ is 6 and the cost of F ′′ is 5.

3. Non-Optimality of Greedy Algorithms. Here we look at possible greedy algo-
rithms for the one-step offline CA. A straightforward greedy approach is to select for
a code insertion a subtree with minimum cost that is not blocked by a code above the
requested level, according to some cost function. All codes in the selected subtree must
then be reassigned. So in every step a top-down greedy algorithm chooses the maximum
bandwidth code that has to be reassigned, places it at the root of a minimum cost sub-
tree, takes out the codes in that subtree and proceeds recursively. The DCA algorithm in
[21] works in this way. The authors propose different cost functions, among which the
“topology search” cost function is claimed to solve the one-step offline CA optimally.
Here we show the following theorem:

THEOREM 3.1. Any top-down greedy algorithm Atdg depending only on the current
assignment of the considered subtree is not optimal.
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Fig. 3.1. Example for the proof of Theorem 3.1.

As all proposed cost functions in [21] depend only on the current assignment of the
considered subtree, this theorem implies the non-optimality of the DCA algorithm.

PROOF. Our construction considers the subtrees in Figure 3.1 and the assignment of a
new code to the root of the tree T0. The tree T0 has a code with bandwidth 2k on level
l. Depending on the cost function, it can have in addition a code with bandwidth k on
level l − 1. The subtree T1 contains k − 1 codes at leaf level and the rest of the subtree
is empty. The subtrees T2 and T3 contain k codes at leaf level interleaved with k free
leaves. All other subtrees, in particular, the sibling trees of T1, T2 and T3 (omitted from
the figure) have all the leaves assigned. This pairing rules out all cost functions that do
not put the initial code at the root of T0. We are left with two cases:

Case 1: The cost function evaluates T2 and T3 as cheaper than T1. In this case we
let the subtree T0 contain only the code with bandwidth 2k. Algorithm Atdg reassigns
the code with bandwidth 2k to the root of the subtree T2 or T3, which causes one more
reassignment than assigning it to the root of T1, hence the algorithm fails to produce the
optimal solution.

Case 2: The cost function evaluates T1 as cheaper than T2 and T3. In this case we let
the subtree T0 have both codes. Atdg moves the code with bandwidth 2k to the root of T1

and the code with bandwidth k into the tree T2 or T3, see the solid lines in Figure 3.1. The
number of reassigned codes is 3k/2+2. However, the minimum number of reassignments
is k + 3, which is achieved when the code with bandwidth k is moved in the empty part
of T1 and the code with bandwidth 2k is moved to the root of T2 or T3, see the dashed
lines in Figure 3.1.

4. NP-Hardness of One-Step Offline CA. Here we prove the decision variant of the
one-step offline CA to be NP-complete. The (canonical) decision variant of it is to decide
whether a new code insertion can be handled with cost less than or equal to a number cmax,
which is also part of the input. First, we note that the decision variant is in NP, because
we can guess an optimal assignment and verify in polynomial time, if it is feasible and
if its cost is lower than or equal to cmax. Now the NP-completeness is established by a
reduction from the three-dimensional matching problem (3DM) that we restate here for
completeness (see [16]):
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Fig. 4.1. Sketch of the construction.

PROBLEM 4.1 (3DM). Given a set M ⊆ W×X×Y , where W , X and Y are disjoint sets
having the same number q of elements. Does M contain a perfect matching, i.e. a subset
M ′ ⊆ M such that |M ′| = q and no two elements of M ′ agree in any coordinate?

Let us index the elements of the ground sets W, X, Y from 1 to q. To simplify the
presentation, we introduce the indicator vector of a triplet (wi , xj , yk) as a zero–one
vector of length 3q that is all zero except at the indices i, q + j and 2q + k. The idea
of the reduction is to view the triplets as such indicator vectors and to observe that the
problem 3DM is equivalent to finding a subset of q indicator vectors out of the indicator
vectors in M that sum up to the all-one vector.

Figure 4.1 shows an outline of the construction that we use for the reduction. An
input to 3DM is transformed into an initial feasible assignment that consists of a token
tree on the left side and different smaller trees on the right. A code insertion request is
given at the level indicated in the figure. The construction is set up in such a way that
the code must be assigned to the root of the left tree, the token tree, in order to minimize
the number of reassignments. For the same reason, the q codes that are forced to move
from the left to the right tree must be assigned to the roots of triplet trees. The choice
of the q triplet trees reflects the choice of the corresponding triplets of a matching. All
codes in the chosen triplet trees find a place without any additional reassignment if and
only if these triplets really represent a 3D matching.

Let us now look into the details of the construction. The token tree consists of q codes
positioned arbitrarily on level lstart with sufficient depth, for example, depth �log(|M | +
21q2 + q)� + 1. The triplet trees have their roots on the same level lstart. They are
constructed from the indicator vectors of the triplets. For each of the 3q positions of the
vector such a tree has four levels—together called a layer—that encode either zero or
one, where the encodings of zero and one are shown in Figure 4.2(a) and (b). Figure 4.2(c)
and (d) shows how layers are stacked using sibling trees (the sibling tree of a zero-tree
is identical to that of a one-tree shown in the figure). We have chosen the zero-trees and
one-trees such that both have the same number of codes and occupy the same bandwidth,
but are still different.

The receiver trees are supposed to receive all codes in the chosen triplet trees. These
codes fit exactly in the free positions, if and only if the chosen triplets form a 3DM, i.e.
if their indicator vectors sum up to the all-one vector. This equivalence directly tells us,
how many codes the trees must receive on which level: On every layer the receiver trees
must take q − 1 zero-trees, 1 one-tree and q sibling-trees, so that on the four levels of
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Fig. 4.2. Encoding of zero and one.

each layer there must be exactly 0, q + 1, 5q − 3, resp. q + 2, free codes (plus q extra
codes on the very last level). For each one of these 3q · 7q + q = 21q2 + q codes we
build one receiver tree. The receiver tree for a code on level l ′ is a tree with root on level
lstart with the following properties. It has one free position on level l ′, the rest of the tree
is full and it contains 21q + 2 codes, i.e. one more code than a triplet tree. Clearly, such
a tree always exists in our situation.

Finally, the fill trees are trees that are completely full and have one more code than
the receiver trees. They fill up the level lstart in the sibling-tree of the token tree.

An interesting question is, whether this transformation from 3DM to the one-step
offline CA can be done in polynomial time. This depends on the input encoding of our
problem. We consider the following natural encodings:

• A zero–one vector that specifies for every node of the tree whether there is a code or
not.
• A sparse representation of the tree, consisting only of the positions of the assigned

codes.

Obviously, the transformation cannot be done in polynomial time for the first input en-
coding, because the generated tree has 212q+lstart leaves. For the second input encoding the
transformation is polynomial, because the total number of generated codes is polynomial
in q , which is polynomial in the input size of 3DM. Besides, we should rather not expect
an NP-completeness proof for the first input encoding, because this would suggest—
together with the dynamic programming algorithm in this paper—nO(log n)-algorithms
for all problems in NP.

We now state the crucial property of the construction in a lemma:

LEMMA 4.2. Let M be an input for 3DM and let ϕ be the transformation described
above. Then M ∈ 3DM if and only if ϕ(M) can be done with α = 21q2 + 2q + 1
reassignments.
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PROOF. Assume there is a 3DM M ′ ⊂ M . Now consider the reassignment that assigns
the code insertion to the root of the token tree, and the tokens to the q roots of the triplet
trees that correspond to the triplets in M ′. We know that the corresponding indicator
vectors sum up to the all-one vector, so that all codes in the triplet trees that need to be
reassigned fit exactly in the receiver trees. In total, 1 + q + (21q + 1)q = α codes are
(re-)assigned.

Now assume there is no matching. This implies that every subset of q indicator vectors
does not sum up to the all-one vector. Assume for a contradiction that we can still serve
ϕ(M) with at most α reassignments. Clearly, the initial code insertion must be assigned
to the left tree, otherwise we need too many reassignments. The q tokens must not
trigger more than (21q + 1)q additional reassignments. This is only possible if they are
all assigned to triplet trees, which triggers exactly (21q + 1)q necessary reassignments.
Now no more reassignments are allowed. However, we know that the corresponding q
indicator vectors do not sum up to the all-one vector, in particular, there must be one
position that sums up to zero. In the layer of this position the receiver-trees receive q
zero-trees and no one-tree instead of q − 1 zero-trees and one one-tree. However, by
construction the extra zero-tree cannot be assigned to the remaining receiver trees of the
one-tree. It cannot be assigned somewhere else either, because this would cause an extra
reassignment on a different layer. This is why an extra reassignment is needed, which
brings the total number of (re-)assignments above α.

One could wonder whether an optimal one-step offline CA algorithm can ever attain
the configuration that we construct for the transformation. We prove in the next section
in Corollary 4.5 that we can force such an algorithm into any configuration. To sum up,
we have shown the following theorem:

THEOREM 4.3. The decision variant of the one-step offline CA is NP-complete for an
input given by a list of positions of the assigned codes and the code insertion level.

4.1. Enforcing Arbitrary Configurations. In this section we show that for any configu-
ration C ′ and any optimal one-step algorithm A there exists a sequence of code insertions
and deletions of polynomial length, so that A ends up in C ′ on that sequence. Notice
that any optimal one-step algorithm reassigns codes only if it has to, i.e. it places a code
without any additional reassignments if this is possible, and it does not reassign after a
deletion. The result even applies to any algorithm A with these properties.

We start with the empty configuration C0. The idea of the proof is to take a detour and
first attain a full-capacity configuration Cfull and then go from there to C ′. The second
step is easy: It suffices to delete all the codes in Cfull that are not in C ′; A must not do
any reassignments during these deletions. First, we show that we can force A to produce
an arbitrarily chosen configuration Cfull that uses the full tree capacity.

THEOREM 4.4. Any one-step optimal algorithm A can be led to an arbitrary full con-
figuration Cfull with n assigned codes by a request sequence of length m < 3n.

PROOF. Recall that h denotes the height of the code tree. We proceed top-down: On
every level l ′ with codes in Cfull we first fill all its unblocked positions using at most
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2h−l ′ code insertions on level l ′. A just fills l ′ with codes. Then we delete all codes on l ′

that are not in Cfull and proceed recursively to the next level.
Now we have to argue that we do not insert too many codes in this process. To see

this, observe that we are only inserting and deleting codes above the n codes in Cfull, and
we do this at most once in every node. Now if we consider the binary tree, the leaves of
which are the codes in Cfull, then we see that the number of insert operations is bounded
by n + n − 1, where n − 1 is the number of inner nodes of this tree. Together with the
deletions we obtain the statement.

We return to arbitrary configurations.

COROLLARY 4.5. Given a configuration tree C ′ of height h with n assigned codes, there
exists a sequence σ1, . . . , σm of code insertions and deletions of length m < 4nh that
forces A into C ′.

PROOF. We define Cfull from C ′ by filling the gap trees in C ′ (as high as possible) with
codes. Each code causes at most one gap tree on every level, hence we need at most h
codes to fill the gap trees for one code. Altogether we need at most nh codes to fill all
gap trees. According to Theorem 4.4, we can construct a sequence of length m < 3nh
that forces A into Cfull. Then we delete the padding codes and end up in C ′. Altogether
we need at most 4nh requests for code insertion and deletion.

5. Exact nO(h) Dynamic Programming Algorithm. In this section we solve the one-
step offline CA problem optimally using a dynamic programming approach. The key
idea of the resulting algorithm is to store the right information in the nodes of the tree
and to build it up in a bottom-up fashion.

To make this construction precise, we define a signature of a subtree Tv with root
v as an (l(v) + 1)-dimensional vector sv = (sv0 , . . . , svl(v)), in which svi is the number
of codes in Tv on level i . A signature s is feasible if there exists a subtree Tv with a
code assignment that has signature s. The information stored in every node v of the tree
consists of a table, in which all possible feasible signatures of an arbitrary tree of height
l(v) are stored together with their cost for Tv . Here the cost of such a signature s for Tv
(usually s �= sv) is defined as the minimum number of codes in Tv that have to move
away from their old position in order to attain some tree T ′v with signature s. To attain T ′v
it can be necessary to move also into Tv codes from other subtrees but we do not count
these movements for the cost of s for Tv .

Given a code tree T with all these tables computed, one can compute the cost of any
single code insertion from the table at the root node r : Let sr = (sr

0, . . . , sr
h) be the

signature of the whole code tree before insertion, then the cost of an insertion at level l
is the cost of the signature (sr

0, . . . , sr
l + 1, . . . , sr

h) in this table plus one. This follows
because the minimum number of codes that are moved away from their positions in T
is equal to the number of reassignments minus one.

The computation of the tables starts at the leaf level, where the cost of the one-
dimensional signatures is trivially defined. At any node v of level l(v) the cost c(v, s) of
signature s for Tv is computed from the cost incurred in the left subtree Tl of v plus the
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cost incurred in the right subtree Tr plus the cost at v. The costs c(l, s ′) and c(r, s ′′) in the
subtrees come from two feasible signatures with the property s = (s ′0+ s ′′0 , . . . , s ′l(v)−1+
s ′′l(v)−1, sl(v)). Any pair (s ′, s ′′) of such signatures corresponds to a possible configuration
after the code insertion. The best pair for node v gives c(v, s). Let sv = (sv0 , . . . , svl(v))
be the signature of Tv , then it holds that

c(v, s) =




c(l, (0, . . . , 0))+ c(r, (0, . . . , 0)) for sl(v) = 1,

min{s ′,s ′′|(s ′,0)+(s ′′,0)=s}(c(l, s ′)+ c(r, s ′′)) for sl(v) = 0, svl(v) = 0,

1 for sl(v) = 0, svl(v) = 1.

The costs of all signatures s for v can be calculated simultaneously by combining
the two tables in the left and right children of v. Observe for the running time that the
number of feasible signatures is bounded by (n+1)h because there cannot be more than
n codes on any level. The time to combine two tables is O(n2h), thus the total running
time is bounded by O(2h · n2h).

THEOREM 5.1. The one-step offline CA can be optimally solved in timeO(2h ·n2h) and
space O(h · nh).

6. An h-Approximation Algorithm for One-Step Offline CA. In this section we
propose and analyze a greedy algorithm for one-step offline CA, i.e. for the problem of
assigning an initial code insertion c0 into a code tree T with given code assignment F .
The idea of the greedy algorithm Agreedy is to assign the code c0 onto the root g of the
subtree Tg that contains the fewest assigned codes among all possible subtrees. From
Lemma 2.3 we know that no optimal algorithm reassigns codes on higher levels than the
current one; hence the possible subtrees are those that do not contain assigned codes on
or above their root. Then the greedy algorithm takes all codes in Tg (denoted by �(Tg))
and reassigns them recursively in the same way, always processing codes of higher level
first.

At every time t algorithm Agreedy has to assign a set Ct of codes into the current
tree T t . Initially, C0 = {c0} and T 0 = T . Recall that for a given position, code or code
insertion c, its level is denoted by l(c).

ALGORITHM 6.1 (Greedy Algorithm Agreedy).

C0 ← {c0}; T 0 ← T
t ← 0
WHILE Ct �= ∅ DO

ct ← element with highest level in Ct

g← the root of a subtree T t
g of level l(ct ) with the fewest

codes in it and no code on or above its root
/* assign ct to position g */
T t+1 ← (T t\�(T t

g )) ∪ {g}
Ct+1 ← (Ct ∪ �(T t

g ))\{ct }
t ← t + 1

END WHILE
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0

1

l-4
l-3
l-2
l-1

level

T0 T1 T2 T3 Toptl

cnew Aopt

Agreedy

Fig. 6.1. Example for the lower bound for Agreedy.

In [21] a similar algorithm is proposed as a heuristic for the one-step offline CA. We
prove that Agreedy has approximation ratio h. This bound is asymptotically tight: In the fol-
lowing examples we show that Agreedy can be forced to use�(h) ·O PT (re-)assignments
(see Figure 6.1), where OPT refers to the optimal number of (re-)assignments. A new
code cnew is assigned by Agreedy into the root of T0 (which contains the least number
of codes). The two codes on level l − 1 from T0 are reassigned as shown in the figure,
one code can be reassigned into Topt and the other one goes recursively into T1. In total,
Agreedy does 2 · l + 1 (re-)assignments while the optimal algorithm assigns cnew into the
root of Topt and reassigns the three codes from the leaf level into the trees T1, T2, T3,
requiring only four (re-)assignments. Obviously, for this example Agreedy is not better
than (2l + 1)/4 times the optimal. In general l can be �(h).

For the upper bound we compare Agreedy with the optimal algorithm Aopt. Aopt assigns
c0 to the root of a subtree Tx0 , the codes from Tx0 to some other subtrees, and so on. Let
us call the set of subtrees to the root of which Aopt moves codes the opt-trees, denoted
by Topt, and the arcs that show how Aopt moves the codes the opt-arcs (see Figure 6.2).
By V (Topt) we denote the set of nodes in Topt.

A sketch of the proof is as follows. First, we show that in every step t , Agreedy has the
possibility of assigning the codes in Ct into positions inside the opt-trees. This possibility
can be expressed by a code mapping ϕt : Ct → V (Topt). The key property is now that
in every step of the algorithm there is the theoretical choice of completing the current
assignment using the code mapping ϕt and the opt-arcs as follows: Use ϕt to assign the
codes in Ct into positions in the opt-trees and then use the opt-arcs to move codes out of
these subtrees of the opt-trees to produce a feasible code assignment. We will see that

g
c0

x0

an opt-arc greedy assignment

Fig. 6.2. Aopt moves codes to assign a new code c0 using opt-arcs. The opt-trees are subtrees to the root of
which Aopt moves codes. Here, the cost of the optimal solution is 5. The greedy algorithm has cost 6.
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this property is enough to ensure that Agreedy incurs a cost of no more than OPT on every
level.

In the process of the algorithm it can happen that we have to change the opt-arcs in
order to ensure the existence of ϕt . To model the necessary changes we introduce αt -arcs
that represent the changed opt-arcs after t steps of the greedy algorithm.

To make the proof-sketch precise, we need the following definitions:

DEFINITION 6.2. Let Topt be the set of the opt-trees for a code insertion c0 and let
T t (together with its code assignment Ft ) be the code tree after t steps of the greedy
algorithm Agreedy. An α-mapping at time t is a mapping αt : Mαt → V (Topt) for some
Mαt ⊆ Ft , such that, ∀v ∈ Mαt , l(v) = l(αt (v)) and αt (Mαt ) ∪ (Ft\Mαt ) is a code
assignment.

Note that in general Ft is not a code assignment for all codes since it does not contain
the codes in Ct . The set αt (Mαt ) ∪ (Ft\Mαt ) represents the resulting code assignment
(that again does not contain the codes in Ct ) after reassignment of the codes Mαt ⊆ Ft

by αt .

DEFINITION 6.3. Let T t be a code tree, let x and y be positions in T t and let αt be an
α-mapping. We say that y depends on x in T t and αt if there is a path from x to y using
only tree-edges from a parent to a child and αt -arcs. By dept (x) we denote the set of all
positions y that depend on x in T t and αt . We say that an αt -arc (u, v) depends on x if
u ∈ dept (x).

For an illustration of this definition, see Figure 6.3.

DEFINITION 6.4. At time t a pair (ϕt , αt ) of a code mapping ϕt : Ct → V (Topt) and an
α-mapping αt is called an independent mapping for T t , if the following properties hold:

1. ∀c ∈ Ct the levels of ϕt (c) and c are the same (i.e. l(c) = l(ϕt (c))).
2. ∀c ∈ Ct there is no code in T t at or above the roots of the trees in dept (ϕt (c)).
3. The code movements realized by ϕt and αt (i.e. the set ϕt (Ct )∪αt (Mαt )∪ (Ft\Mαt ))

form a code assignment.
4. Every node in the domain Mαt of αt is contained in dept (ϕt (Ct )) (i.e. no unnecessary

arcs are in αt ).

x

αt
αt

αt
αt

αt

Fig. 6.3. The filled subtrees represent all the positions that depend on x .
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Note that ϕt and αt can be viewed equivalently as functions and as collections of
arcs of the form (c, ϕt (c)) and (u, αt (u)), respectively. We write dept (ϕt (Ct )) for the set⋃

c∈Ct
dept (ϕt (c)). Note that if a pair (ϕt , αt ) is an independent mapping for T t , then

dept (ϕt (Ct )) is contained in opt-trees and every node in dept (ϕt (Ct )) can be reached on
exactly one path from Ct (using one ϕt -arc and an arbitrary sequence of tree-arcs, which
always go from parent to child, and αt -arcs from a code c ∈ �(T t ) to αt (c)).

Now we state a lemma that is crucial for the analysis of the greedy strategy, the proof
of which we give in Section 6.1.

LEMMA 6.5. For every set Ct in algorithm Agreedy the following invariant holds:

There is an independent mapping (ϕt , αt )for T t .(6.1)

We remark that Lemma 6.5 actually applies to all algorithms that work level-wise
top-down and choose a subtree T t

g for each code ct ∈ Ct arbitrarily under the condition
that there is no code on or above the position g.

We can express the cost of the optimal solution by the opt-trees:

LEMMA 6.6. (a) The optimal cost is equal to the number of assigned codes in the
opt-trees plus one, and (b) it is equal to the number of opt-trees.

PROOF. Observe for (a) that Aopt moves all the codes in the opt-trees and for (b) that
Aopt moves one code into the root of every opt-tree.

THEOREM 6.7. The algorithm Agreedy has an approximation ratio of h.

PROOF. Agreedy works level-wise top-down. We show that on every level l the greedy
algorithm incurs a cost of at most OPT . Consider a time tl where Agreedy is about to start
a new level l, i.e. before Agreedy assigns the first code on level l. Assume that Ctl contains
ql codes on level l. Then Agreedy places these ql codes in the roots of the ql subtrees on
level l containing the fewest codes. The code mapping ϕtl that is part of the independent
mapping (ϕtl , αtl ), which exists by Lemma 6.5, maps each of these ql codes to a different
position in the opt-trees. Therefore, the total number of codes in the ql subtrees with
roots at ϕtl (c) (for c a code on level l in Ctl ) is at least the number of codes in the ql

subtrees chosen by Agreedy. Combining this with Lemma 6.6(a), we see that on every
level Agreedy incurs a cost (number of codes that are moved away from their position in
the tree) that is at most Aopt’s total cost.

6.1. Proof of Lemma 6.5. We prove the lemma by induction on t . Assume that the code
c0 is to be inserted into the tree initially, and that Aopt assigns it to position x0. For the
base of the induction (t = 0), let ϕ0(c0) = x0 and let α0 consist of all opt-arcs, i.e. all
arcs (u, v) such that Aopt moves a code from u to v. It is easy to see that (ϕ0, α0) is an
independent mapping.

Now let t ≥ 0 and assume that the lemma holds after t iterations of the greedy
algorithm. We show how to construct (ϕt+1, αt+1) from the independent mapping (ϕt , αt ).
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In iteration t + 1, the greedy algorithm Agreedy assigns the code ct of highest level in Ct

to a feasible position g in T t .

Case 1: There is a code c′t in Ct with ϕt (c′t ) = g. If c′t �= ct , we exchange the ϕt values
of c′t and ct while maintaining (ϕt , αt ) as an independent mapping for T t . Thus, we can
assume that ϕt (ct ) = g. We set

ϕt+1 = {(c, ϕt (c)) | c ∈ Ct\{ct } } ∪ {(c, αt (c)) | c ∈ �(T t
g )}

and

αt+1 = αt\{(c, αt (c)) | c ∈ �(T t
g )}.

It is easy to see that (ϕt+1, αt+1) is an independent mapping for T t+1.
We remark that Case 1 could also be handled in the same way as Case 2 below, but

we have chosen to give a direct treatment of Case 1 in order to illustrate some of the
proof ideas on a simple case.

Case 2: There is no code c′t in Ct with ϕt (c′t ) = g. In this case, T t
g can contain a number

of codes, some of which may be in the domain Mαt of αt . Furthermore, there can be ϕt -
arcs and αt -arcs pointing into T t

g . An example is shown in Figure 6.4. We have to define
a ϕt+1-arc for all codes in T t

g , and we must find a new destination outside T t
g for those

ϕt -arcs and αt -arcs pointing into T t
g that we need for the construction of (ϕt+1, αt+1).

First we will define an intermediate generalized independent mapping (ϕ, α) for T t+1

in which we allow loose ends, i.e. we allow a code c to have as head of its α-arc or ϕ-arc
a dummy tree (that is not part of the real tree) of the required capacity. In a second step
we will fix loose ends by finding proper destinations in dep(ϕt (ct )) for them (where dep
refers to the dependency induced by tree-arcs and the current α-arcs). In the end a part
of the resulting (ϕ, α) without loose ends will be used to define (ϕt+1, αt+1).

We proceed as follows. For each assigned code c at a node v in T t
g that is not in the

domain Mαt of αt , define ϕ(c) = v. For each assigned code c in T t
g that has an αt -arc,

define ϕ(c) = αt (c). For all codes c in Ct\{ct }, set ϕ(c) = ϕt (c). Let α = αt\{(u, v) |
u ∈ T t

g }. Finally, replace each of the just defined α-arcs or ϕ-arcs (u, v) for which

. .
 .

c

g

x
y z

ct

Ct:

αt

αt

αt

αt

φt

φt
Agreedy

φt(ct)

Fig. 6.4. T t
g contains the heads of αt -arcs and ϕt -arcs as well as codes with and without αt -arcs.
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dummy trees

Fig. 6.5. The constructed generalized independent mapping (ϕ, α). All shown α-arcs are inactive (indicated
by dashed lines). The rightmost dummy tree is inactive, the other two are active.

v ∈ T t
g by a loose end, i.e. an α-arc or ϕ-arc pointing from u to a dummy tree of height

l(v). The mapping (ϕ, α) constructed in this way is indeed a generalized independent
mapping. Figure 6.5 shows the generalized mapping (ϕ, α) resulting from the situation
in Figure 6.4.

Dummy trees that can be reached from ϕt (ct ) along tree-arcs and α-arcs are called
inactive, all other dummy trees are called active. Active dummy trees have to be fixed
(so that we can eventually obtain an independent mapping without loose ends), while
inactive dummy trees will either become active later or will be discarded in the end.
Similarly, we call all α-arcs that can be reached from ϕt (ct ) along tree-arcs and α-arcs
inactive, and all other α-arcs active. Inactive α-arcs will either become active later or
will be discarded in the end as well.

The active dummy trees will be placed step by step and the functions ϕ and α are
updated after each step. Only inactive trees that are smaller than the assigned active tree
can become active.

Let U denote the capacity of the tree Tg , i.e. U = 2l(g). Note that all dummy trees were
generated from independent subtrees of T t

g . Therefore, the total capacity of all dummy
trees is at most U . Let Ua be the total capacity of active dummy trees and let Ui be the
total capacity of inactive dummy trees. We have Ua +Ui ≤ U .

We want to use dep(ϕt (ct )) for finding new destinations for α-arcs or ϕ-arcs that point
to dummy trees. We say that a path from ϕt (ct ) to some tree node v is strict if it follows
tree-arcs downward from nodes without assigned codes in T t+1 and α-arcs from nodes
with assigned codes in T t+1. Now we can define the available capacity in dep(ϕt (ct )) to
be the number of leaves that are not in dummy trees and that can be reached from ϕt (ct )

along a strict path that does not contain the head of any ϕ-arc or active α-arc. Note that
a position v in dep(ϕt (ct )) can be used as the new head of an α-arc or ϕ-arc if and only
if v is not in a dummy tree, there is no code at or above v, and no ϕ-arc or active α-arc
points to a position in dep(v) or to a position p such that v is in dep(p). Otherwise, the
position v is called unavailable.
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The available capacity in dep(ϕt (ct )) is U − Ui initially, since only the loose ends
in dep(ϕt (ct )) reduce the available capacity. The total capacity of active dummy trees is
Ua ≤ U −Ui . In the following we will maintain the invariant that the total capacity of
active dummy trees is at most the available capacity in dep(ϕt (ct )).

We fix the active dummy trees one by one in order of non-increasing levels. Assume
that we are currently processing a dummy tree of level d that is the head of an α-arc or
ϕ-arc (x, y). Consider all nodes vd of level d in T t+1 that do not have assigned codes and
are reachable from ϕt (ct ) along strict paths. Observe that a node vd is unavailable only if
it is inside an inactive dummy tree or if the path from ϕt (ct ) to vd passes through the head
of an active α-arc or a ϕ-arc. However, it is not possible that all nodes vd are unavailable,
because then the total available capacity in dep(ϕt (ct )) would be zero, contradicting our
invariant. Thus, we can find a node vd that is available (i.e. not unavailable). We replace
(x, y) by (x, vd) and make all α-arcs reachable from vd as well as all inactive dummy
trees reachable from vd active. (Note that no active dummy tree can have been reachable
from vd before this operation, since we fix the active dummy trees in order of non-
increasing levels.) Let U ′ be the total capacity of previously inactive dummy trees that
were made active now. The total capacity of active dummy trees decreases by 2d −U ′,
and the total available capacity in dep(ϕt (ct )) decreases by 2d − U ′ as well (since the
part of dep(ϕt (ct )) that is reachable from vd had available capacity exactly 2d − U ′).
Therefore, the invariant is maintained and the process can be continued until no active
dummy trees are left. The process terminates because the total capacity of active dummy
trees never increases and in each step the number of active dummy trees of the highest
level decreases by one (and only dummy trees of lower levels may become active).
A possible result of applying this process to the generalized independent mapping of
Figure 6.5 is shown in Figure 6.6.

When all active dummy trees are fixed, we let ϕt+1 = ϕ and αt+1 = {(u, v) ∈ α |
(u, v) is active }. Since (ϕ, α) was a generalized independent mapping and (ϕt+1, αt+1)

does not contain loose ends, we have that (ϕt+1, αt+1) is an independent mapping as
required. ✷
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Fig. 6.6. The final generalized independent mapping (ϕ, α) in which all active dummy trees have been fixed.
The independent mapping (ϕt+1, αt+1) is obtained by deleting the inactive α-arcs and discarding the remaining
inactive dummy tree.
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7. Online Code Assignment. Here we study the CA problem in an online setting. We
assume that insertions do not exceed the total available bandwidth.

In an online problem the input is received in an online manner and the output must
be produced online [5], [13]. In the case of the online CA problem the requests for
code insertions and deletions must be handled one after another, i.e. the i th request must
be served before the (i + 1)st request is known. An online algorithm ALG for the CA
problem is c-competitive if there is a constant α such that, for all finite input sequences I ,

ALG(I ) ≤ c · OPT(I )+ α.
In this case the competitive ratio of ALG is c. It is common to think of the input sequence
as a sequence being generated by a (malicious) adversary.

We give a lower bound on the competitive ratio, analyze several algorithms and present
a resource-augmented algorithm with constant competitive ratio.

THEOREM 7.1. No deterministic algorithm A for the online CA problem can be better
than 1.5-competitive.

PROOF. Let A be any deterministic algorithm for the problem. Consider N leaf in-
sertions. The adversary can delete N/2 codes (every second) to get the situation in
Figure 7.1.

Then a code insertion at level h− 1 causes N/4 code reassignments. We can proceed
with the left subtree of full leaf codes recursively and repeat this process (log2 N − 1)
times. The optimal algorithm Aopt assigns the leaves in the first step in such a way that it
does not need any reassignment at all. Thus, Aopt needs N+log2 N−1 code assignments.
Algorithm A needs N + T (N ) code assignments, where T (N ) = 1 + N/4 + T (N/2)
and T (2) = 0. Clearly, T (N ) = log2 N − 1+ (N/2)(1− 2/N ). If CA ≤ c · COPT then

c ≥ 3N/2+ log2 N − 2

N + log2 N − 1
−→N→∞

3

2
.

7.1. Compact Representation Algorithm. This algorithm maintains the codes in the
tree T sorted and compact. For a given node/code v ∈ T we denote by l(v) its level
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Fig. 7.1. Lower bound for the online assignment problem.
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and by w(v) its string representation, i.e. the description of the path from the root to the
node/code, where 0 means a left child and 1 a right child. We use the lexicographic or-
dering when comparing two string representations. By U we denote the set of unblocked
nodes of the tree. We maintain the following invariants:

for all codes u, v ∈ F, l(u) < l(v)⇒ w(u) < w(v),(7.1)

for all nodes u, v ∈ T, l(u) ≤ l(v) ∧ u ∈ F ∧ v ∈ U ⇒ w(u) < w(v).(7.2)

This states that we want to keep the codes in the tree ordered from left to right according
to their levels (higher-level assigned codes are to the right of lower-level assigned codes)
and compact (no unblocked code to the left of any assigned code on the same level).

In the following analysis we show that this algorithm is not worse thanO(h) times the
optimum for the offline version. We also give an example that shows that the algorithm
is not asymptotically better than this.

THEOREM 7.2. Algorithm Acompact satisfying invariants (7.1) and (7.2) performs at most
h code reassignments per insertion or deletion.

PROOF. We show that for both insertion and deletion we need to make at most h code
reassignments. When inserting a code on level l, we look for the rightmost unassigned
position on that level that maintains the invariants (7.1) and (7.2) among codes on level
0, . . . , l. Either the found node is not blocked, so that we do not move any codes, or the
code is blocked by some assigned code on a higher level l ′ > l (see Figure 7.2). In the
latter case we remove this code to free the position for level l and handle the new code
insertion on level l ′ recursively. Since we move at most one code at each level and we
have h levels, we move at most h codes for each insertion.

Handling the deletion operation is similar, we just move the codes from right to left
in the tree and move at most one code per level to maintain the invariants.

COROLLARY 7.3. Algorithm Acompact satisfying invariants (7.1) and (7.2) is O(h)-
competitive.

PROOF. In the sequence σ = σ1, . . . , σm the number of deletions d must be smaller or
equal to the number i of insertions, which implies d ≤ m/2. The cost of any optimal
algorithm is then at least i ≥ m/2. On the other hand, Acompact incurs a cost of at most
m · h, which implies that it is O(h)-competitive.

Fig. 7.2. For a code insertion, Algorithm Acompact finds the leftmost position (blocked or unblocked) that has
no code on it and no code in the subtree below it. It reassigns at most one code at every level.
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Fig. 7.3. Code assignments for levels 0, 0, 1, 2, 3, 4, . . . , h−1 and four consecutive operations: 1. DELETE(h−
1), 2. INSERT(0), 3. DELETE(0), 4. INSERT(h − 1).

THEOREM 7.4. Any algorithm AI satisfying invariant (7.1) is �(h)-competitive.

PROOF. Consider the sequence of code insertions on levels 0, 0, 1, 2, 3, 4, . . . , h − 1.
For these insertions, there is a unique code assignment satisfying invariant (7.1), see
Figure 7.3. Consider now two requests—deletion of the code at level h−1 and insertion
of a code on level 0. Then AI has to move every code on level l ≥ 1 to the right to create
space for the code assignment on level 0 and maintain the invariant (7.1). This takes one
code assignment and h − 2 reassignments. Consider as the next requests the deletion
of the third code on level zero and an insertion on level h − 1. Again, to maintain the
invariant (7.1), AI has to move every code on level l ≥ 1 to the left. This takes again
one code assignment and h − 2 reassignments. An optimal algorithm can handle these
four requests with two assignments, since it can assign the third code on level zero in the
right subtree, where AI assigns the code on level h − 1. Repeating these four requests k
times, the total cost of algorithm AI is then CI = h + 1+ 2k(h − 1), whereas OPT has
COPT = h + 1+ 2k. As k goes to infinity, the ratio CA/COPT becomes �(h).

7.2. Greedy Strategies. Assume we have a deterministic algorithm A that solves the
one-step offline CA problem. This A immediately leads to a greedy online strategy. As
an optimal algorithm breaks ties in an unspecified way, the online strategy can vary for
different optimal one-step offline algorithms.

THEOREM 7.5. Any deterministic greedy online strategy, i.e. a strategy that minimizes
the number of reassignments for every insertion and deletion, is �(h) competitive.

PROOF. Assume that A is a fixed, greedy online strategy. First we insert N/2 codes at
level 1. As A is deterministic we can now delete every second level-1 code, and insert
N/2 level-0 codes. This leads to the situation depicted in Figure 7.4. Then we delete
two codes at level l = 1 (as A is deterministic it is clear which codes to delete) and
immediately assign a code at level l + 1. As it is optimal (and up to symmetry unique)
algorithm A moves two codes as depicted. The optimal strategy arranges the level-1 codes
in a way that it does not need any additional reassignments. We proceed in this way along
level 1 in the first round, then left to right on level 2 in a second round, and continue
toward the root. Altogether we move N/4 codes in the first round and we assign N/23

codes. In general, in every round i we move N/4 level-0 codes and assign N/2i+2 level-i
codes. Altogether the greedy strategy needs O(N ) + (N/4)�(log N ) = �(N log N )
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Fig. 7.4. Requests that a greedy strategy cannot handle efficiently.

(re-)assignments, whereas the optimal strategy does not need any reassignments and
only O(N ) assignments.

7.3. Minimizing the Number of Blocked Codes. The idea of minimizing the number of
blocked codes is mentioned in [23] but not analyzed at all. In every step the algorithm
tries to satisfy the invariant:

the number of blocked codes in T is minimum.(7.3)

In Figure 7.5 we see a situation that does not satisfy the invariant (7.3). Moving a
code reduces the number of blocked codes by one. We can prove that this approach is
equivalent to minimizing the number of gap trees on every level (Lemma 7.7). Recall
that a gap tree is a maximal subtree of unblocked codes.

DEFINITION 7.6. The level of the root of a gap tree is called the level of the gap tree.
The vector q = (q0, . . . , qh), where qi is the number of gap trees on level i , is called the
gap vector of the tree T .

See Figure 7.6 for an example of the definition. Invariant (7.3) implies that there is
at most one gap tree on every level. Having two gap trees on a level l we can move
the sibling tree of one of the gap trees to fill the other gap tree, reducing the number of
blocked codes by at least one (concept from Figure 7.5). Also the other direction of this
implication holds as it is stated in the following lemma.

LEMMA 7.7. Let T be a code tree for requests σ . Then T has at most one gap tree on
every level if and only if T has a minimum number of blocked codes.
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Fig. 7.5. Reassignment of one code reduces the number of blocked codes from three to two.
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Fig. 7.6. Definition of gap trees and gap vector.

PROOF. We prove only the second implication. Suppose T has at most one gap tree
on every level. Since for every tree with two or more gap trees on some level, we can
reduce the number of blocked codes by filling the gap trees, the minimum number of
blocked codes has to be attained at trees with at most one gap tree at every level. The
free bandwidth capacity of T can be expressed as

cap =
h∑

i=0

qi 2
i .

As qi ≤ 1, the gap vector is the binary representation of the number cap and therefore
the gap vector q is unique for every tree serving requests σ with at most one gap tree at
every level. The gap vector determines also the number of blocked codes:

# blocked codes = (2h+1 − 1)−
h∑

i=0

qi (2
i+1 − 1).

Thus, every tree for requests σ with at most one gap tree at every level has the same
number of blocked codes.

Now we are ready to define algorithm Agap (Algorithm 7.8). As we will show, on
insertions Agap never needs any extra reassignments.

ALGORITHM 7.8 (Algorithm Agap).

1. Insert:
• Assign the new code into the smallest gap tree where it fits.

2. Delete:
• If after the deletion a second gap tree appears on some level, move one of their

sibling subtrees into the second gap tree.
• Treat all newly created second gap trees on higher levels recursively.

LEMMA 7.9. Algorithm Agap always has a gap tree of sufficient height to assign a code
on level l and at every step the number of gap trees at every level is at most one.
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j j
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Fig. 7.7. Two gap trees on a lower level than l ′ violate the minimum chosen height of the gap tree.

PROOF. We know that there is sufficient capacity to serve the request, i.e. cap ≥ 2l .
We also know that cap =∑i qi 2i . Since qi ≤ 1 for all i , there exists a gap tree on level
j ≥ l.

Next, consider an insertion into the smallest gap tree of level l ′ where the code fits.
New gap trees can occur only on levels j , l ≤ j < l ′, and only within the gap tree on level
l ′. Also, at most one new gap tree can occur on every level. Suppose that after creating
a gap tree on level j , we have more than one gap tree on this level. Then, since j < l ′,
we would assign the code into this smaller gap tree, which contradicts our assumption
(Figure 7.7). Therefore, after an insertion there is at most one gap tree on every level.

Consider now a deletion of a code. The nodes of the subtree of that code become
unblocked, i.e. they belong to some gap tree. At most one new gap tree can occur in the
deletion operation (and some gap trees may disappear). Thus, when the newly created
gap tree is the second one on the level, we fill the gap trees and then we recursively
handle the newly created gap tree on a higher level. In this way the gap trees are moved
up. Because we cannot have two gap trees on level h − 1, we end up with a tree with at
most one gap tree on each level.

The result shows that the algorithm is optimal for insertions only. It does not need
any extra code movements, contrary to the compact representation algorithm. Similarly
to the compact representation algorithm, this algorithm is �(log N )-competitive.

THEOREM 7.10. Algorithm Agap is �(h)-competitive.

PROOF. The proof is basically identical with the proof of Theorem 7.5.

Algorithm Agap has even a very bad worst case number of code movements. Consider
the four subtrees on level h−2, where the first one has N/4 leaf codes inserted, its sibling
has a code on level h−2 inserted and the third subtree has again N/4 leaf codes inserted
(Figure 7.8). After deletion of the code on level h − 2, Agap is forced to move N/4
codes. This is much worse than the worst case for the compact representation algorithm.
Nevertheless, it would be interesting to investigate the best possible upper bound that
can be proved for the competitive ratio of Agap.

7.4. Resource Augmented Online Algorithm. In this section we present the online
strategy 2-gap and study it by a resource-augmented competitive analysis. This type of
analysis was introduced by Kalyanasundaram and Pruhs [18]. In a resource-augmented
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N/4 codesN/4 codes

Fig. 7.8. Worst case number of movements for algorithm Agap.

competitive analysis one compares the value of the solution found by the online al-
gorithm, when it is provided with more resources, to the value of the optimal offline
adversary using the original resources. In the case of the OVSF online code assignment
problem the resource is the total available bandwidth. The strategy 2-gap uses a tree T ′

of bandwidth 2b to accommodate codes whose total bandwidth is b. By the nature of
the code assignment we cannot add a smaller amount of additional resource. 2-gap uses
only an amortized constant number of reassignments per insertion or deletion.

Algorithm 2-gap is similar to the compact representation algorithm of Section 7.1
(insisting on the ordering of codes according to their level, Invariant (7.1)), only that it
allows for up to two gaps at each level � (instead of only one for aligning), to the right
of the assigned codes on �. The algorithm for inserting a code at level � is to place it at
the leftmost gap of �. If no such gap exists, we reassign the leftmost code of the next
higher level �+1, creating two gaps (one of them is filled immediately by the new code)
at �. We repeat this procedure toward the root. We reject an insertion if the nominal
bandwidth b is exceeded. For deleting a code c on level � we move the rightmost code
on level � into the position c, keeping all codes at level � to the left of the gaps of �. If
this results in three consecutive gaps, we reassign the rightmost code of level � + 1, in
effect replacing two gaps of � by one of �+ 1. Again we proceed toward the root.

More precisely, we keep for every level a range of codes (and gaps) that are assigned
to this level. In every range at most two gaps are allowed. We denote by r� the number
of assigned codes in the range of level � and by q� ∈ {0, 1, 2} the number of gap nodes
in the same range. The alignment condition that all ranges up to the range of level h− 3
have to satisfy is the following:

∀k ∈ {0, . . . , h − 3},
k∑
�=0

2�(r� + q�) ∈ 2k+1 · N.

This notion of a range is in particular important for levels without codes. The levels
close to the root are handled differently, to avoid excessive space usage. The root-code
of T ′ has bandwidth 2b, it is never used. The bandwidth b code of level h can only be
used if no other code is used, there is no interaction with other codes. The b/2 codes of
level h − 1 are kept compactly to the right. In general there is some unused bandwidth
between the b/4 and the b/2 codes, which is not considered a gap. This free space can
be used to assign codes of bandwidth b/4 if by doing so the nominal bandwidth b is not
exceeded. Figure 7.9 shows an example code assignment that follows the rules of the
2-gap strategy for keeping the codes and gaps of a certain level in ranges. Whenever a
code is assigned on a level � the number of codes in the range of level � increases by one
and the number of gaps in the range decreases by one. In the case of a code deletion on
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Fig. 7.9. Example code assignment following the rules of the 2-gap strategy (the labels on the left side �| j
show the level � followed by the bandwidth j of the codes assigned on this level).

level � the number of codes in the range of level � decreases by one and the number of
gaps increases by one. The critical cases that change the range alignments are:

• A code has to be assigned on level � ≤ h− 3 but there is no gap on this level, q� = 0.
In such cases we assign the code to the right of the range of level �. Hence, the number
of codes in the range of level � is increased by one, i.e. r�← r� + 1, and the number
of gaps is temporarily decreased to q� = −1. To bring the number of gaps back to the
allowed values, the algorithm proceeds as follows. Let �+ i be the closest higher level
(but below level h− 2) that has at least one assigned code or gap, or let �+ i = h− 2
if no such level exists. Let v be the leftmost node on level �+ i in the range of �+ i . If
v is occupied by an assigned code, that code is reassigned to the right of the rightmost
code on level �+ i . In the subtree rooted at v this creates, from left to right, two gaps
on level � and one gap on every level �′ ∈ {�+ 1, . . . , �+ i − 1}. The number of gaps
on levels � to �+ i changes according to q�+i ← q�+i − 1, q�← q� + 2 and q ′�← 1
for �′ ∈ {�+1, . . . , �+ i −1}. This results in q� = 1. If q�+i = −1, this is treated like
a critical insertion on level � + i and the procedure propagates to level � + i (unless
�+ i = h − 2).
• A code is deleted from level � ≤ h − 3 whose range already has two gaps, q� = 2.

After the deletion (and a possible reassignment on level � to keep the gaps placed
compactly at the right end of the range) the number of codes on level � becomes
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r� ← r� − 1 and the number of gaps in the range of level � temporarily increases to
three. To bring the number of gaps back to the allowed values the rightmost two gaps
on level � are merged into a level �+ 1 gap, i.e. q�+1 ← q�+1+ 1 and q�← q�− 2. If
the range of level �+ 1 has some assigned codes then the rightmost code is moved to
fill in the newly created gap. We consider recursively a critical deletion on level �+ 1
in case the number of gaps on level �+ 1 exceeds two after the gap merging on level
� (except if �+ 1 = h − 2, in which case nothing more needs to be done).

To compensate the reassignments on levels � ≤ h − 3 (codes of bandwidth ≤ b/8)
we define a potential function computed as the sum of the number of levels without
gaps, and the number of levels having two gaps. With this potential function it is clear
that it is sufficient to charge two (re-)assignments to every insertion or deletion, one for
placing the code (filling the gap), and one for the potential function or for moving a
b/4-bandwidth code. The initial configuration is the empty tree, where the leaf-level has
two gaps, and all other levels have precisely one gap (only the close-to-root levels are
as described above). Note that the potential of the initial configuration is equal to 1 and
that the potential always remains non-negative.

It remains to show that our algorithm manages to host codes as long as the total
bandwidth used does not exceed b. The total bandwidth used in T ′ is the sum of the
bandwidth wasted on gaps, which is at most 2(b/8 + b/16 + · · ·) ≤ b/2, and the
nominal bandwidth b that can be assigned. This adds up to 3b/2 and is less than the
bandwidth 2b of the tree T ′.

THEOREM 7.11. Let σ be a sequence of m code insertions and deletions for a code-
tree of height h, such that at no time is the bandwidth exceeded. Then the above online
strategy uses a code-tree of height h+ 1 and performs at most 2m+ 1 code assignments
and reassignments.

COROLLARY 7.12. The above strategy is four-ompetitive for resource augmentation by
a factor of two.

PROOF. Any sequence of m operations contains at least m/2 insert operations. Hence
the optimal offline solution needs at least m/2 assignments, and the above resource aug-
mented online-algorithm uses at most 2m+1 (re-)assignments, leading to a competitive
ratio of 4.

This approach might prove to be useful in practice, particularly if the code insertions
only use half the available bandwidth.

8. Fixed Parameter Tractability of the Problem. In this section we consider the fixed
parameter tractability of the parameterized one-step offline CA problem. Parameterized
problems are described by languages L ⊆ �∗ × N. If (x, k) ∈ L , we refer to k as the
parameter. The concept of fixed parameter tractability is described for example in [11].
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DEFINITION 8.1 [11]. We say that L is uniformly fixed-parameter tractable if there is
an algorithm A, a constant c and a function f : N→ N such that

1. the running time of A(x, k) is at most f (k)|x |c and
2. (x, k) ∈ L if and only if A accepts (x, k).

We assume that our problem is given by a pair (x, k), where x encodes the code
insertion on level l and the current code assignment and k is the parameter. We assume
the encoding of the code assignment in the zero-one vector form x1, . . . , x2h+1−1 saying
for every node of the tree whether there is an assigned code. For the purpose of this
section denote by n the size of the input, i.e. n := |x | = 2h+1 − 1.

We consider various variants of parameters for the problem. The most natural ones
are the number of moved codes m or the level l of the code insertion. To show the
fixed-parameter tractability, we reuse the ideas of the exact algorithm using dynamic
programming, where we store at every node a table of all possible signatures.

We first show that the problem is fixed-parameter tractable, if the parameters are both
m and l, i.e. we show an algorithm solving the problem in timeO( f (m, l)p(n)) for some
polynomial p(n).

Having a code insertion into the code tree for level l, we know that we only move
codes from lower levels than l. Hence, when building the tables at nodes, we consider
only those signatures that differ on levels 0, . . . , l − 1 from the signature of the current
subtree. From the assumption that we move at most m codes, we have that on each of
these levels, the considered signature can differ by at most m. Hence, the number of
considered signatures in every node is at most (2m + 1)l . To compute all the tables,
we need to combine all the tables from the children nodes, i.e. we have to consider
(2m + 1)2l pairs for every node. From this we get the running time O(2h(2m + 1)2l),
which is certainly of the form f (m, l)p(n).

For the case, where we have only l as the parameter, we immediately get that we move
from every subtree Tv at most 2l codes, hence we bound the number of codes moved
in every subtree by a parameter (we note that we did not bound the overall number of
moved codes) m = 2l .

Consider now the case where only m is the parameter. Since we move at most m codes
within the tree, we know that at most m codes come into the subtree and at most m go
away from the subtree. Hence, assigning for each such possibility a level out of 0, . . . , l,
we get an upper bound of at most (l + 1)2m signatures to be considered at every node on
level l. Since l+ 1 ≤ h for l = 0, . . . , h− 1 we get at every node at most h2m = log n2m

signatures. From [22] we can use the inequality (log n)m ≤ (3m log m)m + n to express
the size of each table in the form g(m) + n. To compute the table for every node, we
need time n(g(m)+ n)2 which is certainly of the form f (m)p(n).

We can summarize the results of this section in the following theorem.

THEOREM 8.2. The one-step offline CA problem is fixed-parameter tractable for the
following parameters:

• level l of the code insertion and
• the number m of moved codes.
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9. Conclusions and Future Work. In this paper we bring an algorithmically interest-
ing problem from the mobile telecommunications field closer to the theoretical computer
science community. We are the first to analyze the computational complexity of the OVSF
code assignment problem. We point out that the algorithm in [21], believed to have solved
the one-step offline CA problem, is erroneous and we prove that, for a natural encoding
of the input, the problem is NP-complete. We present an exact algorithm for the one-step
offline CA problem that has running time nO(h). We also prove that the simplest greedy
algorithm for the one-step offline version is an h-approximation algorithm. Next we in-
troduce and analyze the more realistic online version of the problem. For insertions and
deletions the online strategy that uses the compact representation is O(h) competitive.
We also show that a slight modification of the compact representation algorithm that
uses only twice the available bandwidth is 4-competitive.

Future research on CA could concentrate on the following open problems:

• Is there a constant approximation algorithm for the one-step offline CA problem?
• Can the gap between the lower bound of 1.5 and the upper bound of O(h) for the

competitive ratio of the online CA be closed?
• Is there an instance where the optimal general offline algorithm has to reassign more

than an amortized constant number of codes per insertion or deletion?
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