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Abstract—A regenerative all-optical grooming switch for in-
terconnecting 130 Gbit/s on–off keying (OOK) metro/core ring
and 43 Gbit/s-OOK metro/access ring networks with switching
functionality in time, space, and wavelength domains is
demonstrated. Key functionalities of the switch are traffic
aggregation with time-slot interchanging functionality, optical
time division multiplexing (OTDM) to wavelength division
multiplexing (WDM) demultiplexing, and multi-wavelength
2R regeneration. Laboratory and field demonstrations show
the excellent performance of the new concept with error-free
signal transmission and Q-factors above 20 dB.

Index Terms—All-optical networks; Nonlinear optics;
Routers; switches; and multiplexers.

I. INTRODUCTION

O ptical communication networks have undergone a great
evolution during the last few years due to the enormous

growth of IP traffic. To cope with the bandwidth demand of the
users, very high capacity long-haul links have been deployed
worldwide [1]. Long-haul networks are optimized for optical
transmission and switching of high capacity traffic volume,
thanks to innovations especially in wavelength division mul-
tiplexing (WDM) technology [2]. Simultaneously, new access
technologies are pushing the fiber to the end-user, supporting
new large bandwidth applications such as video-on-demand
and online gaming [3]. Access data rates have increased from
kbit/s to Mbit/s, and new emerging technologies promise even
higher data rates up to Gbit/s per user. Metropolitan area
networks (MANs) will need significant improvement in both
capacity and functionality in order to cope with the foreseen
bandwidth demand [4]. The technology leaps in the backbone
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and access parts of the network have so far not been matched
with progress in the metro part. This is known as the metro
gap [5]. The challenge for next generation metro networks is
to flexibly aggregate, transmit, and switch the high volume
continuous and burst traffic between the backbone and access
networks in a highly cost efficient way [6] in order to handle
the new dynamic services and applications.

Most metro networks today are of a traditional ar-
chitecture and consist of synchronous digital hierarchy
(SDH)/synchronous optical network (SONET) interconnected
rings [7]. SDH/SONET formats were developed when voice was
the dominant end-user application. Therefore this format is
circuit-switching oriented and most efficient for multiplexing a
large number of low rate circuits. The metro network structure
comprises SDH/SONET rings that can be subdivided into
metro/access rings and metro/core rings. Metro/access rings
are also known as edge rings that collect and aggregate the
data from the customer sites. Metro/core rings do further data
aggregation and then feed them to the long-haul network.

Today, optical wavelength (circuit) routers are able to
transparently switch (non-blocking) traffic within the same
network. However, switching of data between networks
(metro/core and metro/access rings) is performed using
costly optical–electrical–optical (OEO) conversion [8,9]. These
electrically switched digital cross-connects (DXCs) are able to
perform time-slot interchange (TSI) and spatial switching. It
should be noted that the use of DXCs at these points of the
network aids bandwidth management by providing excellent
traffic grooming capabilities. Signal regeneration is taking
place at every DXC node.

However, the OEO conversion makes DXCs expensive and
complex, with large footprints and power consumption [8,9].
Furthermore, this electronic technology has proved to be very
restrictive, exhibiting cumbersome provisioning procedures.
For example, a bandwidth upgrade for a ring means that
all DXC interfaces have to be upgraded, which is a costly,
time-consuming, and traffic disruptive procedure.

Future transparent optical switches need to offer the
functionality already available in the electronic domain such
as time and spatial switching as well as traffic grooming.
Optical switches have already shown the potential to overcome
the issues of the electrical-based DXCs and especially the
bandwidth limitation. Optical processing is also considered to
be highly energy efficient and may lead to switches requiring
less overall footprint compared to their electronic counterparts.
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Fig. 1. (Color online) Network scenario and grooming switch node. (a) Two metro/access rings are interconnected to a metro/core ring via the
grooming switch. Each ring carries a multiple of WDM channels, either at 43 Gbit/s-OOK or 130 Gbit/s-OOK per wavelength. (b) Grooming
switch block diagram. Key building blocks are the wavelength selective switch (reconfigurable optical add/drop multiplexer (ROADM)), the
multi-wavelength 2R regenerator (c), the OTDM-to-WDM converter (d), the MEMS space switch, and the WDM-to-OTDM converter (e).

With optical grooming, transparent interconnection of net-
works in terms of protocol, format, and bitrate can be offered
at much higher capacities than for DXCs.

While current optical nodes enable switching, they cannot
provide the necessary transparent mechanism for grooming.
This actually means that there is a need for optical grooming
switches [10,11] that are also able to aggregate traffic from one
network at lower speed traffic to another network with higher
speed traffic.

In this paper we demonstrate a novel optical grooming
switch. It connects a 130 Gbit/s core ring fully transparent
to 43 Gbit/s metro/access rings, which are circuit or burst
switched. Key functionalities of the node are wavelength divi-
sion multiplexing to optical time division multiplexing (OTDM)
traffic aggregation, OTDM-to-WDM demultiplexing, TSI of
TDM tributaries, as well as multi-wavelength 2R regeneration.
A microelectromechanical switch (MEMS) in combination with
all-optical wavelength conversion guarantees non-blocking
space and wavelength switching for any tributary.

II. THE GROOMING SWITCH AND ITS
SUBSYSTEMS

A. The Switch Working Principle and Functionalities

The all-optical grooming switch (the red octagon in Fig. 1(a))
is designed to provide connectivity of a 130 Gbit/s metro/core
ring and two 43 Gbit/s metro/access rings. The traffic of three
43 Gbit/s WDM channels is groomed to form a 130 Gbit/s signal

in one new WDM channel. In principle, this switch proposal is
upgradable to many ports for interconnecting a large number
of rings.

Figure 1(b) presents the block diagram of the grooming
switch. The metro/core ring carries two WDM channels
with 130 Gbit/s on–off keying (OOK) data signals (λcore1,
λcore2). Each of the 130 Gbit/s signals consists of three
OTDM time slots TS1, TS2, and TS3. One of the 130 Gbit/s
metro/core ring data signals is passed through the node and
the multi-wavelength 2R regenerator to the output (λ′core1).
The other one is first dropped to the OTDM-to-WDM converter,
which demultiplexes the OTDM signal with TS1, TS2, and
TS3 into three 43 Gbit/s λ-tributaries (TS1 → λdrop1, TS2 →
λdrop2, and TS3 → λdrop3). A specific switching scenario
for example is that the λ-tributary on wavelength λdrop2
is then dropped to access ring 2 and replaced by a new
λ-tributary (λacc2) from access ring 1. λ-tributaries 1 (λdrop1),
3 (λdrop3), and the new λ-tributary (λacc2) are then directed
to the WDM-to-OTDM converter by means of a MEMS. The
WDM-to-OTDM unit comprises three asynchronous digital
optical regenerator (ADORE) units. Each unit converts one
λ-tributary to an OTDM time slot (i.e., λdrop1 → TS1,λacc2 →
TS2, and λdrop3 →TS3). The OTDM time slots are interleaved
to form the OTDM channel on the new wavelength λ′core2,add .
This signal is finally launched to the metro/core ring through
the multi-wavelength 2R regenerator.

The switch offers the following key functionalities:

Traffic grooming [12,13] is understood in this paper as the
aggregation of low bitrate signals at one wavelength to a high
bitrate signal at a different wavelength, and switching of this
signal afterwards.
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In this example, the node aggregates 3 × 43 Gbit/s λ-
tributaries to a 130 Gbit/s OTDM signal by utilizing
WDM-to-OTDM conversion [14–17]. The OTDM signal is then
switched to the metro/core ring through a reconfigurable
optical add/drop multiplexer (ROADM).

In addition, an OTDM-to-WDM converter [18] enables
demultiplexing of a 130 Gbit/s high bitrate OTDM signal to
three low bitrate 43 Gbit/s λ-tributaries.

Time-slot interchanging [12] is the re-allocation of OTDM
time slots of metro/core ring OTDM signals per wavelength.

The time slots of the OTDM signal dropped from the
metro/core ring can be interchanged from one time slot to any
other time slot. This is achieved by utilizing OTDM-to-WDM
conversion and reconfiguring the MEMS space switch to pro-
vide connections to alternate input ports of the WDM-to-OTDM
converter.

Optical multi-wavelength 2R regeneration [19,20] is the
simultaneous re-amplification and re-shaping of the various
130 Gbit/s OTDM signals that leave the node via the
metro/core ring. In this example, two OTDM signals are
considered.

Wavelength selective optical switching is adding/dropping of
an OTDM channel per wavelength and the switching of this
channel to a specific path of the node.

It is implemented with a reconfigurable optical add/drop
multiplexer and a MEMS space switch.

B. The Reconfigurable Optical Add/Drop Multiplexer

The ROADM enables wavelength channels to be added
(dropped) to (from) the metro/core ring to (from) the
metro/access rings respectively. The traffic that is transmitted
through the node in the metro/core ring is not affected. In our
experiment tunable thin-film filters (TFF) are used.

C. The Wavelength Selective Switch

A ROADM in combination with a space switch (MEMS) is a
wavelength selective optical switch (WSS). The ROADM in the
metro/core ring selects one of the 130 Gbit/s OTDM signals and
drops this channel to the OTDM-to-WDM converter. Following
this, the MEMS space switch can redirect each λ-tributary of
this signal either to access ring 1, access ring 2, or back to the
metro/core ring. Therefore, in our approach a 1×3 WSS is used.

Wavelength tunability of the ROADM and space switching
of the data to the desired output port with the MEMS enable
reconfigurable bandwidth allocation. This is required to adapt
the network for changing traffic demands of the end-users.

D. The OTDM-to-WDM Converter

An OTDM channel from the metro/core ring may be dropped
via the WSS to the OTDM-to-WDM unit.

The OTDM-to-WDM conversion (Fig. 1(d)) implies a
three-stage process. First, the dropped 130 Gbit/s OTDM signal

is replicated onto three different wavelengths by means of
a multi-wavelength converter. The wavelength conversion is
achieved by spectral broadening of the input signal due to
self-phase modulation (SPM) within a highly nonlinear fiber
(HNLF) and subsequent filtering at the desired wavelengths
(the Mamyshev concept [21]). Second, the three replicas are
time aligned using an array of optical delay lines so that the
respective time slots coincide. Finally, a time gating using an
electro-absorption modulator (EAM) extracts every third pulse
inside its corresponding WDM channel. The local clock for the
EAM gating is provided by a clock recovery unit (CRU). The
output 43 Gbit/s λ-tributaries are launched into the MEMS for
space switching.

E. The MEMS Space Switch

Traffic from any of the access rings is switched by means
of the MEMS space switch to either metro/access ring or via
the add path to the WDM-to-OTDM converter. Each add-port
of the MEMS switch relates to a particular time slot of the
OTDM signal. TSI includes the possibility of interchanging the
time slots of the OTDM signals per wavelength by dropping
and looping back one wavelength channel through the add
path. Time-slot interchanging functionality is thus obtained
by reconfiguration of add-ports within the MEMS. In our
experiments an 8×8 MEMS is used.

F. The WDM-to-OTDM Converter

The WDM-to-OTDM converter (Fig. 1(e)) aggregates the
three 43 Gbit/s λ-tributaries to a 130 Gbit/s OTDM signal
on one wavelength. It consists of three dual-gate ADORE
units, each mapping one 43 Gbit/s OOK λ-tributary onto one
OTDM time slot. Each ADORE unit provides regeneration,
retiming, pulse width adaptation, and wavelength conversion.
The OTDM time slots of the 130 Gbit/s signal are assigned by
proper selection of the input λ-tributaries using the MEMS.

The functional principle of the WDM-to-OTDM converter
is as follows. Within each ADORE the data signal on the λ-
tributary is optical-to-electrical converted within a photodiode
(PD) and used to drive two Mach–Zehnder modulators (MZMs).
The detected signal is also mixed with the local clock to detect
the relative phase of the incoming signal. This information
is later used to select the correct sampling phase to ensure
data integrity between the incoming data on the λ-tributary
and the regenerated and retimed signal at the output of the
switch. A mode-locked laser (MLL) generates 2.5 ps (full width
at half-maximum) optical pulses with a repetition rate of
43 GHz which are launched into the three ADORE units. For
each ADORE these clock pulses are duplicated and delayed
by the time of half a bit slot. Then the two trains of clock
pulses are launched into the MZMs in order to encode the
43 Gbit/s data signal onto the MLL pulse trains. In this way,
the incoming data signal is sampled at two points during the
bit slot. Subsequently, one of the data streams is again delayed
by half a bit slot and the two data signals are directed into
a 2 × 1 optical switch. The modulated pulse stream which
is best aligned with the incoming data signal is selected by
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Fig. 2. (Color online) Particular node implementation scenario and corresponding measurement results, where two 130 Gbit/s signals (A & B)
are launched into the node. Signal (A) is regenerated and converted to signal (E); signal (B) is split into its 43 Gbit/s λ-tributaries (C) by means of
an OTDM-to-WDM converter based on self-phase modulation in a highly nonlinear fiber followed by optical filtering and time gating. λ-tributary
λdrop2 is dropped to the access ring 2 and a new λ-tributary (G) is added from access ring 1. The two λ-tributaries λdrop1 and λdrop3 together
with the added λ-tributary are aggregated by means of different ADORE units and corresponding time-interleaving. The groomed OTDM signal
(see D) is mapped back to the core ring (F) via the 2R multi-wavelength regenerator. The spectra of the signals (A) to (F) are also shown.

a phase comparator circuit. The output signal will therefore
be aligned to a fixed output clock phase independent of the
incoming data phase. In this way, the random and time-varying
bit-slot phases of the input λ-tributaries are translated into a
fixed phase. Bit slips from synchronization onto the common
local clock are accommodated within a guard band between
bursts, thus maintaining data integrity. A detailed explanation
of the experimental implementation can be found in [22]. The
tributaries at the output of each ADORE unit are subsequently
bit-slot interleaved to form the 130 Gbit/s OTDM channel.

G. The Multi-Wavelength 2R Regenerator

To guarantee the quality of the traffic in the metro/core
ring, an all-optical multi-wavelength 2R regenerator (Fig. 1(c))
operating at 130 Gbit/s is also included. It relies on SPM
induced spectral broadening, which takes place in a HNLF, and
subsequent filtering at an offset wavelength. This principle is
well known for single-channel operation and is extended for
two wavelengths in this node. To avoid interchannel distortions
by cross-phase modulation (XPM) or four-wave mixing (FWM)
a bidirectional propagation of the two data signals is used to
achieve a rapid “walk-through” of the data pulses within the
adjacent channels [19,20].

III. NODE IMPLEMENTATION AND RESULTS

This section will cover the full demonstration of the switch
functionalities with multiplexing in wavelength and time.

The excellent performance of the solution will be verified by
studying a multitude of switching scenarios, showing dynamic
bandwidth allocation for time-varying traffic demands. The
experimental implementation and results of the switching
scenario are shown in Fig. 2 [23]. The metro/core ring carries
two 130 Gbit/s signals with λcore1 and λcore2 with signal
qualities of Q2 = 18.7 dB and Q2 = 20 dB, respectively. In a
first scenario the 130 Gbit/s metro/core ring signal (A) is passed
through the node and the regenerator to the output (E). The
eye diagram shows a signal quality improvement to 21.2 dB.
The second 130 Gbit/s metro/core ring signal (B) is dropped
to the OTDM-to-WDM converter by means of the ROADM.
The OTDM-to-WDM converter maps the OTDM time slots to
three λ-tributaries (C) at different wavelength. The quality
of the three λ-tributaries is 19.8 dB, 19.2 dB, and 18.3 dB,
respectively. λ-tributary 2 with wavelength λdrop2 is then
dropped to access ring 2 and replaced by a new λ-tributary
from access ring 1 with wavelength λacc2 (G). λ-tributary
1 (λdrop1), λ-tributary 3 (λdrop3), and the new λ-tributary
are guided into the WDM-to-OTDM unit which generates
a 130 Gbit/s OTDM metro/core ring signal on wavelength
λ′core2,add (D). After regeneration, a high quality 130 Gbit/s

signal with a Q2 = 22.8 dB is observed at the output of the
switch (F).

Many more switching scenarios are possible. Two other
scenarios are considered and the corresponding results are
shown in Fig. 3. Scenarios 2 and 3 show the capability of the
switch for performing time-slot interchanging. By reordering
the λ-tributary connections to the ADORE units through the
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Fig. 3. (Color online) Three switching scenarios with tributaries
dropped and looped back onto the core and access network. Scenario
2 and 3 show time-slot interchanging. The signal quality of the eyes of
the OTDM multiplexed signals is excellent in all situations.

MEMS switch, TSI is achieved. The switching scenarios 2 and
3 are actually identical except for the interchanging of time
slots TS1 and TS2. The quality of the OTDM channels after
the 2R multi-wavelength regenerator is 22.9 dB for scenario
2 and 21.4 dB for scenario 3. All Q2 factor measurements are
performed with random signal polarization using an all-optical
sampling scope.

IV. FIELD TRIAL

The field experiment was aimed at demonstrating the key
network functions of the switch dealing with impairments
introduced in installed fiber links [24,25]. The field trial
(Fig. 4(a)) was performed on the Aurora network, an

installed dark fiber network within the UK, dedicated to
research purposes. For this experiment, two fully dispersion
compensated fiber sections were employed. The first section,
Colchester–Ipswich–Colchester, was 100% pre-compensated
using a slope-matched dispersion compensating module and
SMF 28. It had a round trip length of 80 km and represented
a metro/access ring with one 43 Gbit/s channel. The second
section, Colchester–Chelmsford–Colchester, represented a ring
in the metro/core network and had a round trip length of 110
km. It was 80% pre-compensated and 20% post-compensated
and carried two 130 Gbit/s channels.

Several field experiments were implemented. Here we
only report on one specific scenario in which the node
at Colchester described in Fig. 4(b) was separated in two
partial nodes. Partial node 1 (the Ipswich node) connects
the metro/access ring through Ipswich to the metro/core ring
through Chelmsford. Partial node 2 (the Chelmsford node)
drops high bitrate OTDM signals from the metro/core ring to
another access ring. More scenarios can be found in [25].

In detail, the Ipswich node performs WDM-to-OTDM
aggregation of traffic which originates in a 43 Gbit/s edge WDM
domain. The Chelmsford node performs 2R multi-wavelength
regeneration of two 130 Gbit/s OTDM channels and also
OTDM-to-WDM demultiplexing of one of two OTDM channels.

In the experiment one 33% RZ-OOK 43 Gbit/s channel is
transmitted in access ring 1 through Ipswich to the Ipswich
node. Here, another two 43 Gbit/s local channels are launched
to the add path. The data pattern (Fig. 5) consists of a 27 −1
pseudo-random bit sequence (PRBS) of 1 ms duration and
a single modified 219 − 1 PRBS 1 µs guard interval with a
mark-to-space ratio of 52.5%. This ratio is required to detect
the guard interval by observing the change in average power.
The data packets and the guard interval were periodically
repeated. WDM-to-OTDM aggregation was performed with
the assistance of the ADORE unit. The ADORE first detects
the guard interval and then performs synchronization of the

Metro/Access Ring 1
80km dark fiber

Metro/Core Ring
110km dark fiber

Fig. 4. (Color online) Field trial using an actually installed fiber network. (a) Dispersion compensated dark fiber network between Ipswich,
Colchester, and Chelmsford in the UK. (b) Network scenario with 1×43 Gbit/s burst traffic transmitted across the 80 km access network to the
Ipswich node. Here the traffic is aggregated together with two locally generated 43 Gbit/s burst signals. Time-slot interchanging can be induced
depending on the switching scenario. Then the 130 Gbit/s burst traffic has been transported on the metro/core ring over a reach of 110 km to the
Chelmsford node where it is 2R multi-wavelength regenerated, demultiplexed, and dropped off into the access network.
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Fig. 5. (Color online) The data frame of the burst switched network
consists of a repeating 27 −1 pseudo-random bit sequence (PRBS) of 1
ms duration and a single modified 219−1 PRBS of 1 µs duration serving
as a guard interval.

λ-tributary to the local clock by switching between the two
alternate sampling phases. This switching was measured to
take place within 440 ns and entirely inside a guard interval.
This assured data block integrity during variations of data
phase due to runtime differences in the dark fiber.

Point (A) in Fig. 6 shows the 130 Gbit/s OTDM channel at
1556 nm. It consists of the ADORE output λ-tributary and
two local λ-tributaries. These local signals are pulse width
adapted and wavelength converted onto the same MLL as the
ADORE output λ-tributary. The generated 130 Gbit/s signal
was then combined with another 130 Gbit/s signal (B) which
transited through the node. Both channels are sent over the
metro/core ring through Chelmsford. In the Chelmsford node,
they were simultaneously 2R regenerated. One OTDM channel
transited through the Chelmsford node (C). The second OTDM
channel is dropped (D) and OTDM-to-WDM demultiplexed.
After space switching the λ-tributary to the access ring, the
signal quality is measured (eye diagrams, bit-error ratios
(BER) (E)). Excellent eye diagrams and bit-error ratios were
measured at all partial nodes of the field experiment. The
BER curves in Fig. 6 show the results of the 130 Gbit/s-to-43

Gbit/s-EAM-demultiplexed (back-to-back) OTDM channel and
the OTDM–WDM converted λ-tributaries. The power penalty
is around 2 dB and mainly induced by small leading pulses
from the MLL source affecting the CRU performance. The
values of the signal qualities and eye diagrams have been
measured with an all-optical sampling scope unit.

V. CONCLUSION

A novel all-optical switching node with grooming func-
tionality and multi-wavelength regenerative capability has
been successfully demonstrated. The node implementation
demonstrated the high quality interoperability of the OTDM-
to-WDM, WDM-to-OTDM, and 2R regeneration subsystems
for continuous traffic. Also, in a field trial using dark
fiber links, the tolerance to impairments introduced by fiber
transmission together with the switching of data between high
bitrate 130 Gbit/s metro/core rings and lower bitrate 43 Gbit/s
metro/access rings has been demonstrated with exceptional
performance. The node offers switching functionality in
the time, i.e., including time-slot interchanging, space, and
wavelength domains. The switch node is expected to boost the
progress in the metro networks and to match the technological
leaps that have already been carried out at the backbone and
the access parts. This approach offers not only broadband
access for every user but also interoperability with existing
infrastructures providing a smooth migration path from
existing to future infrastructures and supporting a variety of
new services and applications.

Metro/Core Ring
110km dark fiber

Metro/Access Ring 1
80km dark fiber

Fig. 6. (Color online) Eye diagrams, signal quality values, and bit-error ratio of the field trial measurements at various points in the dark fiber
network. Here, we report the specific scenario in which the Ipswich node performs WDM-to-OTDM conversion of burst traffic which originates
in an edge 3×43 Gbit/s WDM domain. The Chelmsford node performs 2R multi-wavelength regeneration of two 130 Gbit/s channels and also
OTDM-to-WDM demultiplexing of the OTDM channel. Eye diagram (A) shows the groomed OTDM signal consisting of the output of the ADORE
unit combined with two MLL pulses converted onto the same wavelength and interleaved. This OTDM signal is combined with a second 130
Gbit/s OTDM signal (B) which transited through the Ipswich node. At the Chelmsford node the two signals are simultaneously regenerated and
one channel is dropped (eye (D)), whereas the other channel is passed through the node (C). The OTDM-to-WDM converter generates lower data
rate tributaries of 3×43 Gbit/s. After space switching the traffic to the access ring, the signal quality of each tributary is measured (E).
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