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Abstract In this paper an all-optical soliton method for

calculating the Fast Fourier Transform (FFT) algorithm is

presented. The method comes as an extension of the cal-

culation methods (soliton gates) as they become possible in

the cubic non-linear Schrödinger equation (3NLSE)

domain, and provides a further proof of the computational

abilities of the scheme. The method involves collisions

entirely between first order solitons in optical fibers whose

propagation evolution is described by the 3NLSE. The

main building block of the arrangement is the half-adder

processor. Expanding around the half-adder processor, the

‘‘butterfly’’ calculation process is demonstrated using first

order solitons, leading eventually to the realisation of an

equivalent to a full Radix-2 FFT calculation algorithm.

Keywords Solitons � 3NLSE domain � All-optical FFT �

Cubic non-linear Schrödinger equation � Soliton collisions �
Soliton computational schemes

1 Introduction

Computational systems based on soliton collisions for

transferring and processing data continues to be a topic

which stands at the forefront of scientific research (Jaku-

bowski et al. 1996, 1997, 2001; Bakaoukas and Edwards

2009b; Steiglitz 2000).

Within this framework, an earlier version of this paper

originally appeared in Bakaoukas (2016). The current

paper has augmented this original work by including an

extensive discussion of the optical solitons background

theory as presented in the remainder of this section, a full

explanation of all the basic concepts and parameters

involved in the formulation of the computational system

proposed for the 3NLSE-domain (Sect. 2), and a detailed

analysis of all the numerical methods currently available

for the simulation of optical solitons propagation down an

optical fibre when the propagation parameters applicable to

the system are those of the 3NLSE-domain (Sect. 3). The

half-adder processor scheme proposed and discussed in the

remainder of the paper, as well as individual soliton

arrangements in the overall computational system, have

been extensively tested and successfully verified using all

these numerical methods.

Generally there are two different types of solitons,

delineating the areas of general interest to create compu-

tational systems from. The, so called, ‘‘spatial solitons’’

and the ‘‘temporal solitons’’, respectively defining the

‘‘spatial solitons computational systems’’ and the ‘‘tempo-

ral solitons computational systems’’. Solitons owe their

existence to the physical alignment between a phenomenon

known as ‘‘Kerr non-linearity’’ (self-phase modulation) and

the phenomenon of ‘‘chromatic dispersion’’ in optical

fibres, which is the primary material allowing for solitons

generation and propagation.

Temporal solitons in optical fibres can be described very

accurately by the ‘‘cubic non-linear Schrödinger equation’’

or ‘‘3NLS equation’’ for sort, while spatial solitons can be

described very accurately by the ‘‘general NLS equation’’

which, although describing a system which is not generally

integrable, never the less enables us to calculate more

accurately more complex phenomena. Solitons in both the
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temporal and the spatial domain can either ‘‘interact’’ with

each other (soliton interactions) or ‘‘collide’’ with each

other (soliton collisions).

Soliton systems which are using fast digital logic gates

and carry and process information through soliton colli-

sions have been proposed for some time now (Jakubowski

et al. 1996, 1997, 2001; Bakaoukas and Edwards 2009a;

Steiglitz 2000; Blair 1998). The logic gates arrangements

used by these systems take advantage of the phase differ-

ence or the frequency difference emerging after each col-

lision between orthogonally polarised solitons to represent

a bit as we know it from classical computational theory.

Other systems of logic gates arrangements have also been

proposed, which make use of the time difference (‘‘soliton

trapping’’) or of the position difference (‘‘soliton drag-

ging’’) emerging between the solitons involved after they

have clash. Particle machines, which perform calculations

using soliton collisions, have been also proposed (Steiglitz

2000). The goal here is to create a global computational

system, which will generally use logic gates of the type

initially introduced by Toffoli (1980) or alternatively of the

type initially introduced by Fredkin and Toffoli (1981) for

processing and storing data very close to the classical.

Most of the major studies been carried out so far in the

direction of computing with solitons are mostly at a purely

theoretical level, especially considering collisions between

first order solitons. Independent and more or less equally

effective numerical methods like: the ‘‘Finite Difference

Runge–Kutta Technique’’ (FDRKT), the ‘‘Split-Step

Fourier Transform’’ (SSFT), the ‘‘Fourier Series Analysis

Technique’’ (FSAT), and the ‘‘Fuzzy Mesh Analysis

Technique’’ (FMAT) have been successfully applied to

provide simulations of solitons propagation down the

optical fibre in the 3NLS equation domain and in general

have been extensively used in theoretical research on col-

liding solitons. These methods give the possibility not only

of theoretical analysis and simulation of collisions between

solitons but also of monitoring the stability and the general

dynamics of non-integrable and non-linear models alike.

There is a number of studies in which the use of soli-

tonic optical pulses for the purposes of carrying out com-

putations has been investigated (Jakubowski et al.

1996, 2001; Bakaoukas and Edwards 2009a; Blair 1998).

In this present paper only temporal solitons (involving a

balance between Kerr type non-linearities and dispersive

effects in glass fibres) are concerned. At this early point the

fact that the interactions between solitons of this type can

be a relatively long-range phenomenon need to be

emphasised, because the Kerr non-linearity is a relatively

weak effect.

In what follows in this introduction section, the dis-

cussion is focusing on the 3NLS equation domain. For a

more extensive and thorough discussion the reader is

referred to Bakaoukas and Edwards (2009b, 2013),

Bakaoukas (2013, 2014, 2015) where the application of

first order and second order solitons, following the Toffoli

gates prototype as well as others, has been presented and

verified regarding their computational abilities in terms of

logic gates formations.

A positive value for ‘‘dispersion’’ parameter describes

the formation of bright optical solitons whilst a negative

value leads to the formation of dark solitons. The 3NLS

equation in general, describes a modulated wave packet

propagating through a non-linear dispersive medium with a

constant velocity. For certain initial pulse shapes (the

‘‘reflectionless potentials’’), the 3NLS equation is com-

pletely integrable and the evolution of a soliton can be

found in closed form by means of the ‘‘Inverse Scattering

Transform’’ (IST) (Ablowitz and Segur 1981). Solitons

arising out of a balance between dispersive and Kerr non-

linearity effects possess dominant characteristic features

one of which is the elastic collisions between them. Solu-

tions described by non-integrable non-linear wave equa-

tions on the other hand are usually referred to as ‘‘solitary

waves’’ and collisions between solitary waves are inelastic

and more complex in character. A solution of the integrable

3NLS equation applicable to pulse propagation in optical

fibres is the hyperbolic secant where an arbitrary positive

number representing the soliton order, the distance along

the fibre, and time, all in normalised dimensionless units,

are the main parameters forming the initial soliton propa-

gation envelope. By coupling pulses in and out of a fibre at

appropriate points (of distance and time), useful compu-

tation could be possible based on collisions between soli-

tons within the fibre.

The material presented in Bakaoukas and Edwards

(2009b), in particular, shows that in situations where

optical solitons are formed within optical fibres (simula-

tions have been carried out using all the above mentioned

numerical techniques), with appropriate practical arrange-

ments, computationally universal systems based on colli-

sions between first order solitons are possible using logical

gates based on the ‘‘controlled’’ type of gates originally

proposed by Toffoli (1980), Fredkin and Toffoli (1981). As

an extension to what presented in the above mentioned

papers, in this present paper, the numerical study of colli-

sions between first order solitons is expanded leading

towards an all-optical Fast Fourier Transform (FFT) cal-

culation. The CN and CCN soliton gates continue to be the

essential ingredient of the computational model.
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2 Soliton collisions and computational

scheme in the 3NLS equation domain

To be able to present and analyse the properties and the

basic features of a soliton computational system in a

domain described by the 3NLS Eq. (1), we need to present

first the basic requirements for computation, which include:

cascadability, fanout, and Boolean completeness. In gen-

eral terms, cascadability requires that the output of one

device can serve as input to another; fanout refers to the

ability of a logic gate to drive at least two similar gates; and

Boolean completeness makes it possible to perform arbi-

trary computation. The 3NLS equation domain system can

be characterised as an ‘‘oblivious’’ system (one that is

governed by totally elastic collisions). As we are about to

see in what follows, ‘‘oblivious’’ soliton systems under

certain conditions, can perform useful computations by a

direct simulation of Toffoli logic gates.

ou

oz
¼ �

j

2
sgnðb2Þ

o
2u

oT2
þ B

o
3u

oT3
þ jcju2ju� Cu ð1Þ

Mathematically, a couple of solitonic pulses, which com-

mences propagating down an optical fibre and possesses all

the properties required to end up in a collision, can be

described by the following equation:

uð0; sÞ ¼ r sechðrðs� q0ÞÞe
jhejvs

þ r sechðrðsþ q0ÞÞe
jhejvs

ð2Þ

where, r represents the amplitude of the solitons, h is the

relative phase value, and q0 is the initial displacement

between the two solitonic pulses.

By solving the basic soliton equation using the IST we

come to know that the velocity of a solitonic pulse depends

on the frequency of the modulated carrier. So if we vary the

frequency of the carrier we simultaneously alter the

velocity of the solitonic pulse itself. The second expo-

nential term in (2) does just that; alters the frequency of the

carrier by a rate corresponding to the value given to its

variable, and simultaneously alters that way the velocity of

the pulse itself by the desired amount (Fig. 1).

For the purposes of this paper only collision situations

between two and three solitons (Figs. 2, 3) will be dis-

cussed and presented in details, since these are the funda-

mental building blocks out of which the 3NLS equation

domain computational system is consisting of (interactions

between solitons have been proved unable to offer com-

putationally useful properties and soliton arrangements

Bakaoukas 2014). In this scheme, two situations can be

distinguished: (a) the solitons collide and are in phase, or

(b) the solitons collide and are out of phase. In physical

terms this can be translated as between the two solitons

emerging an attractive or a repulsive force, respectively

(Fig. 2). The presence and the strength of the repulsive or

attractive force depends on the relative phase values of the

two pulses.

As a first step into starting describing the fundamentals

of the computational system itself now, the encoding rules

for representing bits into the computation system will be

set by initially admitting the existence of only two solitons

in it. One soliton with a phase value of p and one soliton

with a phase value of 0. This way there can only strictly

exist two types of collisions between solitons in the com-

putational system: (a) two solitons collide and are in phase

or, (b) two solitons collide and are out of phase (Fig. 2).

Now the solitons can be directly used as input values to a

solitons defined type of logic gate. The most important fact

of all is that these two types of collisions inherently possess

the property of sequencing, so they can be cascaded.

By using these rules things can be stretched a bit further

and into safely considering collisions between solitons as

the inner process of a solitons defined logic gate, with the

initial solitons formulating the input to the logic gate val-

ues and the two solitons recovered with their original state

intact after the collision, as formulating the output values

of the logic gate. So, basically, we split the whole process

of a collision into two important parts: (a) the logic gate

length, bounded between the point at which solitons begin

to propagate through the medium and that at which the two

solitons emerge intact from the collision with time posi-

tions in reverse order, and (b) the point at which the two

solitons collide, creating a characteristic for their phase

values ‘‘collision envelope’’ (Figs. 3, 4). Introducing a

third soliton into the arrangement, to which we refer to as

‘‘time-gated’’ soliton (Fig. 5) and is a generated by the

system soliton with a phase value also determined

accordingly by it. Effectively what is achieved here is

within a system using three instead of two solitons per

collision (logic gate), and by using appropriate combina-

tions of phase values, the input solitons to be converted to

control specific solitons and data specific solitons,

achieving performing that way useful calculations.

Let us now see how we can use this three solitons

arrangement and its properties as a full computational

element (logic gate). In order to achieve this we assign to

each soliton participating in the arrangement either the

binary value 0 or the binary value 1, the way previously

explained. The next step is to assume that the third soliton

is a ‘‘time-gated’’ soliton with a phase value determined

accordingly by the system as the process progresses. This

practically means that the ‘‘time-gated’’ soliton does not

take part in the calculation process from the start but is

created and begins to propagate down the fibre at another

specific point in time as a result of a decision (command)

initiated by the system. The right point in time for this

‘‘time-gated’’ soliton to start propagating is defined as the
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one immediately following the collision between the two

initial to the logic gate arrangement solitons. This forces

the third (‘‘time-gated’’) soliton to play the role of the

‘‘controlled’’ by the system soliton. Within the boundaries

of the computational system presented here, the phase

value of the created (‘‘time-gated’’) soliton and its propa-

gation timing are decided dynamically by the system after

certain conditions have been taken into consideration,

which in our case are the phase values of the two initial

solitons. Now the arrangement can successfully simulate

the CN and CCN Toffoli logic gates.

In setting the rules under which the system will be able

to distinguish between conditions calling for the generation

of a ‘‘time-gated’’ soliton with a phase value of 0 and those

calling for the generation of a ‘‘time-gated’’ soliton with a

phase value of pi, we assign a Boolean value to each one of

the two envelope types resulting after a collision has taken

place, and located at exactly the midpoint of the whole

collision length (Fig. 4). The collision envelope occurring

when two solitons collide and are in phase, is assigned the

binary value 0, while the collision envelope occurring

when two solitons collide and are out of phase is assigned

the binary value 1. Thus, a system able to ‘‘read’’ the

collision envelope within the mathematically determined

collision point of the two initial solitons (input solitons to

the logic gate arrangement), is also capable of recognising

the nature of the collision, i.e. to recognise immediately

whether the two solitons participating in the collision were

in phase or out of phase. Finally, using these assumptions,

in conjunction with the ‘‘time-gated’’ solitons concept, we

Fig. 1 a Solitonic pulse carrier (the soliton velocity is equal to 0.3) and, b solitonic pulse carrier (the soliton velocity is equal to 1.5)

Fig. 2 Collision between two first order solitons: a the solitons are

out of phase and the repulsive force causes them to change their

propagation direction (the soliton speeds are þ 0:3 and � 0:3) and, b

the solitons are in phase and the attractive force causes them to pass

through each other maintaining their propagation directions (the

soliton speeds are again þ 0:3 and � 0:3). Maximum magnitude for

the soliton envelope exactly at the point of collision is typical for this

type of collision
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can successfully simulate the operation of a CN Toffoli

logic gate in the 3NLS equation domain and build a truth

table for this type of gates (Bakaoukas and Edwards

2009a).

3 Numerical methods for soliton propagation

simulation

In this section, the numerical techniques used for obtaining

the simulation results are briefly described and example

outputs are presented of using them. The recognition that

the mathematical complexity of soliton solutions arises

only because of the dependency of the refractive index n on

spatially varying intensity could eradicate the complexity

if, instead, n could be defined as depended not on a

spatially varying intensity but on the total beam power.

This can be achieved in a heuristic model by assuming that

the medium has a non-local response with a correlation

length much larger than the beam diameter. The non-linear

wave equation then becomes linear and readily solvable,

but the solution for solitons still contains the essential

characteristic features. Physically, the model transforms

the problem into a simple case of linear propagation of thin

beams in a waveguide. With the assumption that the beams

always stay close to the axis, the refractive index makes the

wave equation identical to the ‘‘Time-Dependent Schrö-

dinger Equation’’ (TDSE) for a linear harmonic oscillator,

the solution of which is well known to all physicists. The

physics of solitons can then be readily appreciated.

Fig. 3 Collision between three first order solitons: a the first and the third soliton possess the same phase value, while the second soliton has a

phase difference of p in relation to the other two and, b all three solitons possess the same phase value

Fig. 4 The collision envelope for two solitons in and out of phase. a The collision envelope for two solitons in phase. b The collision envelope

for two solitons out of phase
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3.1 Finite difference Runge–Kutta technique

(FDRKT)

Despite the complicated mathematical analysis and the

advanced mathematical techniques (such as IST) someone

can employ numerical techniques as well in order to ana-

lytically obtain solutions to the 3NLS equation. The

equation itself is but a partial differential equation, which,

by applying appropriate initial and boundary conditions

can be solved by one of the available numerical techniques.

The most popular, mainly because of the high accuracy of

the Runge–Kutta technique involved, is the ‘‘Finite Dif-

ference Runge–Kutta Technique’’. To apply the finite dif-

ference Runge–Kutta technique we need first to express the

derivatives as a set of values representative of the contin-

uous function:

f ðxþ DxÞ ¼ f ðxÞ þ
Dx

1!

of ðxÞ

ox
þ
Dx2

2!

o
2f ðxÞ

ox2

f ðx� DxÞ ¼ f ðxÞ �
Dx

1!

of ðxÞ

ox
þ
Dx2

2!

o
2f ðxÞ

ox2

8

>

>

<

>

>

:

9

>

>

=

>

>

;

)
o
2f ðxÞ

ox2
¼

f ðxþ DxÞ � 2f ðxÞ þ f ðx� DxÞ

Dx2

ð3Þ

In the 3NLSE we substitute the second-order dispersion

driven second derivative (and/or the third-order dispersion

driven third derivative) with its finite difference equivalent

and we obtain a form of the equation directly solvable by

means of the Runge–Kutta technique (Fig. 6).

3.2 Split-step Fourier transform (SSFT)

The ‘‘Split-Step Fourier Transform’’ (SSFT) is considered,

well up to these days, the technique of choice for solving

the 3NLSE and simulating the propagation of optical

solutions for a variety of physical parameters and condi-

tions. However, needs to be emphasised that the SSFT

method will not work well for simulating situations where

there exists a forward and backward propagating wave.

A closer look in (1) reveals that the dispersion and the

non-linearity are decomposed. Taking advantage of this

fact the 3NLS equation can be solved relatively easily

through the SSFT method. In fact, the technique has taken

its name exactly because of this separation between dis-

persion and non-linearity. The first step is to make use of

the operators D̂ and N̂ to correspond to the dispersive and

non-linear terms respectively, so (1) can take the form:

oU

oz
¼ ðD̂þ N̂ÞU ð4Þ

Assuming now that only each one of them operating we

can obtain:

D̂ ¼ U1ðz; tÞ

¼ IFFT exp
j

2
b2x

2 �
j

6
b3x

3 �
a

2

� �

z

� �

FFTðUð0; tÞÞ

� �

ð5Þ

N̂ ¼ Uðz; tÞ ¼ U1ðz; tÞexp jcP0jU1ðz; tÞj
2
z

� �

ð6Þ

At this point we need to note that the N̂ operator multiplies

the field solution and is a function of the solution U(z, t),

while the operator D̂ is a differential operator expressed in

terms of time derivatives that operate on U(z, t). In order to

make the computation more efficient the calculation of D̂ is

performed in the frequency domain with the result of

transforming the derivatives in the time domain to a simple

multiplication in the frequency domain.

Fig. 5 a A collision between two solitons. The second soliton is a ‘‘time-gated’’ input soliton and, b collision between three solitons. The third

soliton taking part in the collision is a ‘‘time-gated’’ soliton in phase with the initial two
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The SSFT method is an iterative method that determines

the field solution for special steps of h. This is performed in

a step-by-step approach and lasts for the entire length of the

fibre. A length of optical fibre L is broken down into SL ¼
L
h

steps of length h (Fig. 7). So, applying the SSFT method

requires the following iterative procedure:

1. The total fibre length is divided into a number of

segments of length h.

2. At the beginning of each of them we compute the FFT

of the every time initial condition U(0, t).

3. The pulse is propagated in the frequency domain for a

distance h
2
under the effect of dispersion only.

4. At the middle of the segment, the IFFT is applied in

order to come back to the time domain and calculate

the contribution of non-Linearity (and if desired fibre

loss) in the whole segment.

5. In the last step another FFT is evaluated to return to the

frequency domain and propagate the field through the

remaining distance h
2
, with dispersion only.

6. The results obtained are used as the initial condition

for the following segment and the process is repeated

until the total fibre distance is achieved.

The initial condition or pulse shape is necessary to start the

calculation. After propagation over a distance of h in both

the linear and non-linear parts, the results can be used as

the initial condition for a further propagation distance of

h. This process is repeated until the required overall

propagation distance is achieved.

Considering the initial fundamental optical fibre

parameters: h ¼ 0:01 Km, b2 ¼ �3
ps2

Km
, c ¼ 2 1

W
Km

,

Full Soliton Width ðFSWÞ ¼ 10 ps, Soliton order ¼ 1,

soliton propagation down the fibre using the SSFT method

is achieved (Fig. 8).

As a final remark the FFT algorithm imposes restrictions

on the sample array format of a nature that cannot be

ignored. The sample array of U(z, t) for each value of z

must have N ¼ 2n points as required by the FFT algorithm.

The initial array U(0, t) must sample the initial pulse Dt

with adequate temporal resolution and be temporally wide

enough to prevent aliasing and wrapping errors. Of course,

as is the case for all similar situations the sampling rate is

to be given by the Nyquist theorem.

Fig. 6 Third-order soliton propagating down a length of fibre (‘‘Finite Difference Runge–Kutta Method’’)

Fig. 7 The SSFT method for one iteration (the length of every step is

h)
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In contrast to what said above in regards to Dt, there is

no strict mathematical restriction on the step-size h for the

SSFT method other than choosing a very small h will result

in a very accurate but very computationally time

demanding simulation. Also, we need to have in mind that

choosing h smaller than the carrier wavelength k0 is

physically meaningless. On the other hand choosing h to be

too large does not conserve spectral energy. The maximum

choice of the step-size depends on the specific dispersive

and non-linear properties.

3.3 Fourier series analysis technique (FSAT)

One of the commonly used set of techniques for solving

‘‘Partial Differential Equation’’ (PDE) systems is the

‘‘separation of variables’’ set, of which the ‘‘eigenfunction

expansion’’ technique is the most representative example,

in which a solution of the following form is assumed:

uðx; tÞ ¼
X

1

n¼1

anðtÞ/nðxÞ ð7Þ

where, /nðxÞ are an orthogonal set of eigenfunctions and

we have assumed that the PDE is now described by a scalar

quantity u(x, t). The /nðxÞ can be any orthogonal set of

functions in which djk is the Dirac function and ð/j;/kÞ ¼
R

/j/
�
kox gives the inner product (Fig. 9).

Depending on the physical problem at hand, the two

most common eigenfunctions used are the Fourier series

and the Chebyshev polynomials, mainly because of their

good correlation with the majority of physical phenomena,

their spectral accuracy properties, and computational

speed.

In order to solve the 3NLS equation computationally, a

Fourier series expansion is used, thus, use can be made of

the standard FFT technique. The ‘‘Fourier Series Analysis

Technique’’ initially expresses the pulse envelope function

in terms of a Fourier series in which ûnðxÞ is the Fourier

amplitude coefficient, and � the fundamental frequency.

This procedure yields:

oûnðxÞ

ox
¼ ½�jrðnÞ � C�ûnðxÞ þ jN2

X

8l�mþk¼n

ûlðxÞû
�
mðxÞûkðxÞ

ð8Þ

where n is an integer �M� n�M and

rðnÞ ¼ n2 �
2

2
þ Bn3�3. The equation represents a set of

2M þ 1 ‘‘First-order Partial Differential Equations’’

(FPDE) of complex variable, which can be separated into

its real and imaginary parts, and solved by a fourth-order

Runge–Kutta method. The 2M þ 1 initial conditions can be

obtained for x ¼ 0. The final solution is in the time domain.

Significant parameters of this method include the time

window DT , within which the signal is sampled for the

Fourier series representation, the step length for integration

Dx, and the integer M, related to the total number of

samples ð2M þ 1Þ.

3.4 Fuzzy mesh analysis technique (FMAT)

The main advantage of this technique is its ability to allow

for variation of the mesh size with the shape of the soliton

pulse along the propagation distance, such that: (a) the

calculation efficiency can be enhanced, and (b) the number

of sampling points required can be greatly reduced. This

technique requires for the soliton equation to be solved by

Fig. 8 A first-order soliton

pulse in the 3NLS equation

domain. The chromatic

dispersion effect blends

perfectly with the Kerr non-

linearity effect and the result is

the creation and propagation of

a solitonic pulse. For simulating

the soliton propagation the

SSFT method was used
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first splitting it into two simpler parts which can be cal-

culated easily, either analytically or numerically, in the

time domain. In addition to that, the mesh size is controlled

by the shape of the soliton pulse such that the number of

sampling points used is in every propagation step

minimised.

In order to implement the ‘‘Fuzzy Mesh Analysis

Technique’’, Eq. () is split into two parts, the linear and

non-linear parts. It is obvious that any error arising as a

result of the splitting operator is proportional to the choice

of DðxÞ, the propagation step. The non-linear part can be

solved analytically in the time domain, and the linear part

can be calculated by means of the ‘‘Finite-Element Anal-

ysis Technique’’ (Shum and Yu 1998). Summarising, the

technique in separate computational steps can be arranged

as follows:

1. The initial input pulse shape is set for computation.

2. The non-linear part is solved analytically in the time

domain for a propagation distance of
DðxÞ
2
.

3. uðxþ DðxÞ
2

; TÞ as obtained from step (2) is used as the

initial condition for solving the Linear part for another

propagation distance of
DðxÞ
2
.

4. Mesh control is adopted each time after the calculation

of the linear part such that the sampling profile can be

optimised for the next calculation.

5. uðxþ DðxÞ; TÞ as obtained from step (3) is used as the

initial condition for solving the non-linear part of

another propagation distance provided that the prop-

agation distance is not reached.

6. Steps (2) to (5) are repeated until the required

propagation distance is reached.

The computational procedure of the algorithm for the

mesh control, in individual steps is as follows:

1. Using cubic shape functions, the temporal soliton pulse

shape at a particular propagation distance is deduced as

a function of T.

2. Based on the calculated cubic shape functions, both the

temporal pulse shape and slope of u(x, T) are obtained.

Fig. 9 Second-order and third-order solitons as simulated using the

FSAT numerical method. a A second-order soliton propagating down

a length of fibre (FSAT using the MATLABTMODE45() function).

b Third-order soliton propagating down a length of fibre (FSAT using

the Runge–Kutta method)

Fig. 10 The two initial stages of the soliton envelope as simulated using the FMAT method. a Second-order soliton intial envelope. b Second-

order soliton envelope after propagating a quarter period down the length of fibre
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Fig. 11 The two final stages of the soliton envelope as simulated

using the FMAT method. a Second-order soliton envelope after

propagating half a period down the length of fibre (FMAT method).

b Second-order soliton envelope after propagating for a full period

down the length of fibre (FMAT method)

Fig. 12 The half-adder

processor
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Hence, the turning points (
ouðx;TÞ
oT

¼ 0) can be located

by comparing the variation of the slope of u(x, T).

3. The distribution of sampling points is defined within a

sampling window along the axis. The left and right

boundaries of this sampling window are defined as the

magnitude of u(x, T) just below 10�3. Based on the

location of turning points, new values of mesh sizes as

well as ai are assigned.

4. The procedures of assignment of mesh sizes can be

described as follows: (a) The number of turning points

N tp is counted within the sampling window, (b) The

sampling window is subdivided into N tp þ 1 regions

with the turning points as the boundaries of each

subdivided region, (c) The sampling points within each

subdivided region are equally spaced, but the number

of sampling points N j can be different between

subdivided regions, (d) If upj and utj are the boundaries

of u(x, T) within a subdivided region, N j can be

defined as N j ¼ RjðupjutjÞ, where Rj is a tuning factor.

Rj is adjusted such that the summation of sampling

points within each subdivided region is equal to N tp,

and (e) If the total number of sampling points assigned

to each subdivided region is more (or less) than the

available sampling points of the sampling window, the

above procedures are repeated for a different Rj until

the optimal mesh size is achieved.

5. Hence, new values of u(x, T) can be calculated using

the optimised node distribution ai.

Fig. 13 a The soliton ‘‘gate’’ NOT(*). The number in the brackets next to each soliton description is the bit value carried by the soliton and b the

soliton ‘‘gate’’ NAND(*). The number in the brackets next to each soliton description is the bit value carried by the soliton

Fig. 14 a The soliton ‘‘gate’’ NOT(**). The number in the brackets next to each soliton description is the bit value carried by the soliton and

b the soliton ‘‘gate’’ NAND(**). The number in the brackets next to each soliton description is the bit value carried by the soliton
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Using this mesh control, more information of the soliton

pulse can be obtained but without increasing the total

number of sampling points (Figs. 10, 11).

4 The half-adder processor scheme

The half-adder processor scheme, first introduced in

Bakaoukas and Edwards (2009b), forms the essential cen-

tral building block on which the overall FFT soliton

computational scheme is wrapped around. The system

reads the collision envelopes at distance and time specified

points and uses this information to generate solitons with

an appropriate phase value to represent the output of each

‘‘gate’’. The phase values of two of the output solitons

determine the ‘‘sum’’ and ‘‘carry’’ outputs at the end of the

computation process whilst all other solitons are superflu-

ous to this calculation. By definition the half-adder (the

sum implementation) is given by:

Fig. 15 a The soliton ‘‘gate’’ NOT(***). The number in the brackets next to each soliton description is the bit value carried by the soliton and

b the soliton ‘‘gate’’ NAND(***). The number in the brackets next to each soliton description is the bit value carried by the soliton

Fig. 16 The soliton ‘‘gate’’

NAND(****). The number in

the brackets next to each soliton

description is the bit value

carried by the soliton
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X � �Yð Þ � �X � Yð Þ ð9Þ

In Fig. 12 the equivalent soliton scheme, originally pre-

sented in Bakaoukas and Edwards (2009b), is reproduced

here for convenience. The points highlighted in this

schematic representation by means of a bold circle indicate

functional points at which a soliton collision, part of a gate,

takes place; while, X and Y denote the initial input data.

Full ‘‘gate’’ arrangements have been named and numbered

(e.g. NAND (*), indicates the first NAND in the compu-

tational arrangement, NAND (**) the second, etc.).

In Figs. 13, 14, 15 and 16, the schematic representation

of Fig. 12 is reflected on actual soliton collision simula-

tions. Each individual gate-soliton collision is presented in

a separate figure for clarity and comparison purposes. The

simulation figures are to be followed in a top-to-bottom

approach in the schematic representation of Fig. 12.

In all the figures the input–output ‘‘gate’’ sequence follows

the soliton propagation direction. The point at which the

soliton propagation begins (point 0 in the propagation scale

across the depth of the figure) also reflects the input side of

the ‘‘gate’’ and respectively, the point at which the soliton

Fig. 17 The three-bit adder

Fig. 18 The alternative half-

adder arrangement. [Logic

gates: (1) NOT, (2) NOT, (3)

NAND, (4) NAND, (5) NAND,

(6) NAND, (7) NOT]
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propagation ends (point 100 in the propagation scale across

the depth of the figure) reflects the output side of the ‘‘gate’’.

At this point and for the approach used for the presentation

of the material to follow in this paper to become clear, we

need to stretch-out the fact that the computational complex-

ities involved are extensively simplified if can become

apparent that the scheme is flexible enough to be gradually

get ‘‘packed’’ in fixed-purpose calculation lengths. This

approach doesn’t suppress the system from its generalisation

properties, as the fixed reading points (as these have been

identified and introduced in Bakaoukas and Edwards

2009a, b) still hold their properties and continue to provide

the system with all the capabilities initially identified as

inherently characteristic of the computational system at hand.

5 The two 2-bit numbers multiplier

In this section we present the ‘‘Two 2-bit Numbers Mul-

tiplier’’, which involves a half-adder as its lying-in-its-heart

functional unit (‘‘Three-bit Adder Arrangement’’). The

particular arrangement forms the compact small-scale

equivalent of the ‘‘Two maximum-number-of-bits Num-

bers Multiplier’’, which for general purpose calculations

must involve full-adders as well as half-adders in its

arrangement. The reason behind choosing the two 2-bit

numbers multiplier is only the fact that the particular

arrangement possesses all the functionalities and properties

need to be demonstrated, while at the same time gives us

the ability to keep the material presented at a minimum of

extension and complexity in this paper.

Starting from the half-adder arrangement, if we now

take a closer look in Fig. 12 we will notice that all the

output solitons need to be ignored after reading and only

the output soliton representing the ‘‘carry’’ value is to be

allowed to propagate further on and enter the cascading

second half-adder arrangement. Is exactly this soliton-bit

that is required for the arrangement to complete the three-

bit adder arrangement output calculation as presented in a

conventional block diagram in Fig. 17.

This ‘‘soliton suppression’’ requirement at the very end

of a computational arrangement is not characteristic only of

the computational scheme here presented but rather a

common characteristic requirement in soliton computa-

tional arrangements as, for example, of the one introduced

in Rand and Steiglitz (2007), where the additional property

of not intersecting (solitons crossing paths but not collid-

ing) is also a vital system characteristic requirement. The

usual formal term coined for such kind of solitons is

‘‘Garbage Solitons’’ and is chosen to emphasise the fact

that these solitons are to play no active role in the cas-

cading calculations following the output of an arrangement.

The way this soliton suppression can be physically

achieved is, in general terms, a technicality, requiring some

hands-on experimental work, in order for different methods

and their corresponding effects on the overall computa-

tional arrangement to be properly studied. For these rea-

sons we postpone, at this point, the explanation of how this

soliton suppression can be accomplished.

In order to present a complete picture of the soliton

arrangements as well as the almost unlimited flexibility

possessed by the computational system (another reason is

that in the view of the author the concept of ‘‘Garbage

Solitons’’ is neither entirely satisfactory nor properly

defined in its physical terms), in Fig. 18 an alternative

soliton arrangement is presented which doesn’t need soli-

ton suppression any more in order for the cascading half-

adder arrangement to commence calculation. In this new

arrangement the general soliton pattern remains the same

as in the original version, with the only difference that now

the third control soliton is starting propagation at a time

position shifted to the left (top) by four time slots (in

Fig. 18 the original third control soliton propagation route

has been maintained as well for comparison purposes). The

order in which the individual gates are presenting their

results is slightly changed as well. Shifting the third control

soliton by four time slots to the left (top) of the arrange-

ment has as a result for the soliton carrying the ‘‘carry’’

value to appear at the end (bottom) of the output soliton

order. So, this soliton can now be taken as the first input

soliton of the new half-adder arrangement (literally, as it

possesses the same propagation angle as the original input

solitons to the half-adder arrangement) which, by use of a

second appropriate input soliton and three control solitons,

Fig. 19 The ‘‘Two 2-bit Numbers Multiplier’’
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as required by the scheme, can provide us with the final

computational result, without the need to include any kind

of soliton suppression procedure.

Having established and demonstrated the three-bit adder

arrangement, we can now build around it the full two 2-bit

numbers multiplier. The overall arrangement requires the

addition of another four AND gates, to accommodate initial

bit multiplications. The conventional diagram arrangement

for the multiplier is as presented in Fig. 19.

In Fig. 20 part of the two 2-bit numbers multiplier is

presented. For illustration purposes generated solitons in

Fig. 20 are shown to be closer together than they should be

in an actual computational arrangement without loosing in

Fig. 20 Part of the ‘‘Two 2-bit

Numbers Multiplier’’ (including

two of the initial AND gates and

the half-adder arrangement

without the corresponding

generated solitons). [Logic

gates: (1) NAND, (2) NOT, (3)

NAND, (4) NOT]

Fig. 21 The full-adder (conventional logic arrangement)

Fig. 22 Basic ‘‘Butterfly’’ computation in the decimation-in-time

FFT algorithm
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computational properties or upsetting the result. Circular

soliton collision points indicate collisions taking place

during the initial AND gates calculations, while square

soliton collision points indicate collisions taking place as

part of the half-adder calculation process. The arrangement

in Fig. 20 illustrates a certain degree of parallelism in the

calculation process, which contributes significantly in

increasing the overall computational speed of the

arrangement. It comes without saying that the two 2-bit

numbers multiplier arrangement illustrated can be extended

to cover any bit length required for the multiplication

between two individual numbers. Again, the purpose here

was to keep the length of the illustration to a minimum.

6 The ‘‘butterfly’’ soliton arrangement

For the remaining part of the ‘‘Butterfly’’ calculation pro-

cess, we need a soliton arrangement to convert a positive

bit-number to a negative one. In order to achieve this we

adopt the method of complementing each digit in a bit-

number in turn (change 1 for 0 and 0 for 1) and then add 1

to the result. That way, the bit-number taken out of the

procedure corresponds to a bit-number representing the

negative equivalent of the initial bit-number.

A series of collisions between the solitons carrying the

bit-number values and a single control soliton with a phase

value opposite to the one possessed by the control soliton

that generated the initial bit-number, is enough to produce

Fig. 23 The ‘‘Butterfly’’ soliton

arrangement. [(1) Multiplier

arrangement, (2) Negation

arrangement, (3) Addition

arrangement, (4) Addition

arrangement]
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the bit-number complement. Since all the control solitons

used so far in the computational arrangements presented

had a phase value of p, corresponding to a bit value of 1,

the appropriate control soliton to achieve the complement

calculation must possess a phase value of 0, in turn cor-

responding to a bit value of 0. The addition of 1 to the

complement can be easily achieved by means of full-adder

arrangements internally consisting of two interconnecting

half-adder arrangements and an OR gate, according to the

conventional logic scheme presented in Fig. 21.

After the complement of a bit-number has been calcu-

lated, subtracting it from another bit-number requires the

addition between the complement calculated and the second

bit-number. That way only half-adder and full-adder

arrangements are required for the realisation of all the cal-

culations involved in the ‘‘Butterfly’’ arrangement. Addition

and subtraction calculations appear at the final stages of the

‘‘Butterfly’’ (Fig. 22), those that actually are giving the

result and passing the values calculated to the next pro-

cessing stage of the overall FFT calculation arrangement.

Having completed the presentation of the individual

parts out of which the soliton ‘‘Butterfly’’ arrangement

consists of, we can now present the schematic of the

overall arrangement required. Fig. 23 presents the soliton

‘‘Butterfly’’ arrangement to full extend omitting, by means

of a ‘‘black box’’ representation, those parts of the

arrangement which have been previously analysed and

illustrated. ‘‘Adder Output’’ (D) and ‘‘Adder Output’’

(E) appear at the end of the arrangement as required for the

cascading ‘‘Butterfly’’ arrangements to continue further

processing the data. All the output soliton propagation

routes shown are indicative, since in an actual calculation

of bit-numbers more than one solitons will represent the

output bit-number of each block of calculation. As it is the

case with the conventional Radix-2 FFT algorithm the first

and the second decimation process results in a ‘‘shuffling’’

of the input data sequence, which has a well-defined order.

7 Conclusions and further research directions

In this paper we surveyed the possibilities of an all-optical

soliton FFT calculation and shown how this can become

possible within the boundaries of the optical soliton

3NLSE domain. The outcome of this investigation is

leading the way towards a fast all-optical soliton FFT

calculation with the FFT phasors (roots of unity) to be

represented directly by solitons of corresponding phase

values. In such a scheme the 8-point FFT phasors, for

example, can be directly represented as:

W0
8 ! Soliton phase value ¼ 2p

W1
8 ! Soliton phase value ¼

p

4

W2
8 ! Soliton phase value ¼

p

2

W3
8 ! Soliton phase value ¼

3p

4

W4
8 ! Soliton phase value ¼ �2p

W5
8 ! Soliton phase value ¼

5p

4

W6
8 ! Soliton phase value ¼

6p

4

W7
8 ! Soliton phase value ¼

7p

4

W8
8 ! Soliton phase value ¼ 2p

while the soliton phase values of p and 0 remain reserved

to represent digit 1 and digit 0 respectively for the control

and data solitons involved. This additional ability, when

properly specified, will provide the overall computational

scheme with a separate, well defined, and of a smaller fixed

length FFT calculation arrangement without the need for it

to consist of individual calculation arrangements based on

the scheme’s ‘‘gates’’.
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