
An All-Reduce Operation in Star Networks
Using All-to-All Broadcast Communication

Pattern

Eunseuk Oh, Hongsik Choi, and David Primeaux

Department of Computer Science, School of Engineering,
Virginia Commonwealth University,

Richmond, VA 23284-3068, USA
{eoh, hchoi, dprimeau}@vcu.edu

Abstract. Most parallel computations require the exchange of data be-
tween processing elements. One of important basic communication op-
erations is all-reduce, a variation of the reduction operation. This paper
presents an all-reduce communication operation scheme using all-to-all
broadcast communication pattern. All-to-all broadcast is the operation
in which each processor sends its message to all other processors, and re-
ceives messages from all other processors in the system. In this paper, we
develop an efficient all-reduce operation scheme in a star network topol-
ogy with the single-port communication capability. Communication time
is compared against known broadcasting schemes to verify the efficiency
of the suggested scheme.

Keywords: all-reduce, all-to-all broadcast, distributed memory parallel
computing systems, inter-processor communication, star network.

1 Introduction

Due to rapid progress in hardware technology, designing a distributed memory
parallel computing system connecting autonomous microprocessors has become
feasible. In such a system, high-performance microprocessors communicate by
message passing and have no shared memory or global clock. Proper imple-
mentation of basic communication operations such as broadcast, reduction, and
all-reduce on various parallel computing systems is key to the design of efficient
parallel algorithms for distributed memory parallel systems.

One-to-all broadcast is an operation that disseminates information across
processors in a multiprocessor system. It is not difficult to see that broadcasting
stands as a foundation for many applications on parallel computing systems. To
list a few applications that use broadcasting, we mention Fast Fourier Transfor-
mation (FFT), parallel matrix algorithms, parallel graph algorithms, and dis-
tributed algorithms. The all-reduce operation combines the arriving content in
the input buffer of each processor using an associative operator (e.g. sum, max-
imum), and the result appears in the result buffer of all processors. All-reduce

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 419–426, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



420 E. Oh, H. Choi, and D. Primeaux

Table 1. Comparison of topological properties for parallel computer models of similar

sizes: n-Cube (hypercube), MCT (mesh connected tree), Dn (de Bruijn network), and

HSn,m (Cartesian product of hypercube and star)

Model Size Degree Diameter Model Size Degree Diameter

S5 120 4 6 S6 720 5 7
7-Cube 128 7 7 10-Cube 1024 10 10

MCT4(3) 81 12 16 MCT6(3) 729 18 24
D7 128 4 7 D10 1024 4 10

HS4,3 144 5 7 HS5,3 720 6 9

is typically used for barrier synchronization on a distributed memory parallel
computing system. Also, all-reduce is one of the most important MPI routines;
a case study reveals that more than 40% of the execution time of MPI routines
is spent in all-reduce or reduction operations [9].

In this paper, we study an all-reduce communication operation in star net-
works by using all-to-all broadcast communication pattern. The all-reduce op-
eration is identical to performing an all-to-one reduction which is followed by
a one-to-all broadcast of the result. Thus, we will compare the communication
time of our scheme with all-reduce operation by using the best known broadcast
scheme proposed in [10]. We first design a recursive all-to-all broadcast scheme
that can be utilized to perform the all-reduce operation.

The star model has attracted considerable interest in the parallel processing
research community [1, 2, 3, 7, 8, 10, 11] due to its numerous desirable properties
for building large parallel computer systems. Basic parameters such as size, de-
gree, and diameter for the models whose size is similar to Sn are shown in Table 1.

Broadcasting schemes vary according to the communication capability of the
channels or links. With single-port communication capability, every processor
can simultaneously send and receive at most one message in one communica-
tion step. Also, a channel or link may be bidirectional or unidirectional. Cost
measurements for the suggested scheme are provided under the single-port and
bidirectional communication capability. Following the terminology used in [4],
our scheme is “NODUP” in that there is no duplication of information on mes-
sages carried during the communication process.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the communication model and the assumptions made about that model. In
Section 3 we present an all-to-all broadcast scheme. In Section 4 we present an
all-reduce operation based on our all-to-all broadcast scheme. In Section 5, we
provide concluding remarks.

2 Model and Assumptions

The network model considered here is the star graph model. An n-star graph, Sn,
consists of n! nodes labeled with the n! permutations on the symbols {1, 2, . . . , n}.



An All-Reduce Operation in Star Networks 421

There is a communication link between two processors pi and pj in Sn if and
only if the permutation label of pj can be obtained from the permutation label
of pi by exchanging the symbol in the first position in pi with the symbol in
some other position in pi. If the label of pj is obtained from the label of pi by
exchanging the first symbol of pi with the symbol in kth position of pi, then pi

and pj are said to be connected along the communication link k.
The pattern of interconnected processors in the star network can be viewed

recursively as follows. S1 is a trivial network with one processor. Suppose that
Sn−1 is defined inductively, then Sn is composed of n graphs, Si

n−1, i = 1 . . . n,
where each Si

n−1 is an isomorphic copy of Sn−1 with symbols {1, . . . , n}− i, and
with symbol i appearing as the nth symbol in each processor in Si

n−1. Connecting
the nodes in different copies Si

n−1 and Sj
n−1 is done with respect to the above

definition. A node u in Si
n−1 is connected to a node v in Sj

n−1, i �= j when the
label of v can be obtained from the label of u by exchanging the first symbol
with the nth symbol.

The communication model for parallel computers varies depending on the
communication hardware and the memory bus bandwidth. Most commercial
systems support the single-port model. In the single-port communication model,
a processor can send a message on only one of its communication links at a time.
The sending and the receiving ports are not necessarily the same. The system
model we consider is as follows; (1) The system is completely connected with
synchronous communication. (2) A processor sends a message to a connected
processor in one communication step. (3) Single-port communication and the
communication links are bidirectional.

3 All-to-All Broadcast

All-to-all broadcast is performed recursively. After performing all-to-all broad-
cast in each Si

n−1, i = 1, . . . , n, all-to-all broadcast in Sn is performed. To avoid
sending a message more than once to the same processor in the network, the pri-
vate memory of each processor will be divided into two parts: the result buffer,
and the outgoing message buffer. The partial sum will be stored in the result
buffer.

All-to-All broadcast in S4: The algorithm first calls itself recursively to per-
form broadcast in each of S1

3 , S2
3 , S3

3 , and S4
3 . The base of the recursion is when

the network is an S2. The algorithm performs broadcast in S2 by a simple ex-
change of messages between the two processors. Then each processor in S2 sends
its message along communication link 3, and saves it in its result buffer. After
that each processor sends its received message along communication link 2, and
broadcast in S3 is terminated. Now each S3 in S4 performs all-to-all broadcast in
parallel fashion. At this point every processor computes its message by concate-
nating the message in its outgoing buffer with the message in its result buffer.
Each processor stores the concatenated message in the result buffer, and writes
a copy of the concatenated message over the current content of the outgoing
buffer. We call this concatenated message the meta message. Then, every pro-



422 E. Oh, H. Choi, and D. Primeaux

cessor sends its meta message along communication link 4, and saves its message
in its result buffer. Once a processor receives the message along communication
link 4, it only needs to broadcast within each S3. It starts this process by send-
ing its message along communication link 3, then 2, meanwhile storing received
messages in the result buffer.

All-to-All broadcast in Sn: In general, suppose inductively that all-to-all
broadcast has been completed within each Si

n−1, i = 1 . . . n, and let us see how
this can be extended to all-to-all broadcast in Sn. Since all-to-all broadcast has
been completed in each Si

n−1, each processor in Si
n−1 has received the messages

from all other processors in Si
n−1, and hence all processors in Si

n−1 share the same
information. Denote the meta message in Si

n−1 by ∆i
n−1. Let ∆n =

⋃n
i=1 ∆i

n−1,
then all-to-all broadcast in Sn is achieved once every processor in Sn holds ∆n.
All-to-all broadcast is performed as follows. In the first stage every processor p in
Si

n−1, i = 1 . . . n, broadcasts its meta message ∆i
n−1 along communication link

n and saves the meta message in its result buffer. After this stage, each Si
n−1

contains all messages in ∆n among its processors. Thus, the only thing left to
be done in the second stage is to propagate the information within each Si

n−1.
This step needs to be done with some care so that to avoid sending a message
more than once to the same processor. Once p receives the meta message ∆j

n−1,
j �= i, along communication link n, it propagates ∆j

n−1 across Si
n−1 by sending

it along communication links n− 1, n − 2, . . . , 2, respectively. Also, the received
message is stored in the result buffer.

Theorem 1. At the termination of all-to-all broadcast, each processor in Sn

holds the meta message ∆n.

4 All-Reduce Operation

We perform all-reduce by using the communication pattern of all-to-all broad-
cast. Throughout this discussion, without loss of generality, we assume that
addition is the associative operation performed in the all-reduce. An illustration
of the all-reduce operation on S3 is given in Figure 1. At each node, the final sum
is obtained by adding the content in the result buffer and the outgoing buffer.

Fig. 1. The all-reduce operation on S3. At each node, parentheses show the local sum

in the outgoing buffer and the contents in the box is the local sum accumulated in the

result buffer



An All-Reduce Operation in Star Networks 423

All-Reduce

1. each Si
n−1 performs All-Reduce recursively;

/* At this point, all processors in Si
n−1 have the sum of corresponding

numbers to be added. */
2. each processor in Si

n−1, i = 1 . . . n, sends the local sum along
the communication link n and saves the local sum in its result buffer;

3. d = n − 1;
4. once each processor in Si

n−1 receives the local sum from
a processor in Sj

n−1, where j �= i, it performs the following
while d ≥ 2 do

send the local sum to a neighbor of Si
n−1 along the communication

link d;
add the number received from the processor and the content of
the result buffer in Si

n−1;
d = d − 1;

5. every processor adds the contents in its result buffer and the outgoing
message buffer;

Fig. 2. All-reduce communication operation scheme

Assume that each number in the box, initially in the result buffer, is a number
to be added.

An all-reduce operation follows the communication steps of all-to-all broad-
cast, but adds two numbers instead of concatenating messages. Thus, each mes-
sage transferred in the all-reduce operation has only one word, where each word
hold the partial sum of numbers. At the termination of the all-reduce operation,
each node holds the sum (1 + 2 + . . . + n!). Figure 3 shows all-reduce performed
in S4. The all-reduce scheme All-Reduce is shown in Figure 2.

Theorem 2. At the termination of the all-reduce operation, each processor in
Sn holds the sum

∑n!
i=1 i.

Proof. The statement is vacuously true when n = 1. Let n > 1, and assume
inductively that when All-reduce on Sn−1 terminates, each processor in Sn−1

contains the sum of corresponding numbers. When All-reduce is called on Sn,
All-reduce calls itself recursively on each Si

n−1, i = 1 . . . n. Since each Si
n−1 is

a copy of Sn−1, by the inductive hypothesis, when each of these recursive calls
terminates, each processor in Si

n−1, i = 1 . . . n, holds the sum of corresponding
numbers.

From the recursive definition of Sn given in Section 2, each Si
n−1 is linked

to the other Sj
n−1, j �= i by exactly (n − 2)! links along communication link n.

Thus, after the execution of step 2 of All-reduce, exactly (n− 2)! processors in



424 E. Oh, H. Choi, and D. Primeaux

Fig. 3. The all-reduce operation on S4

Si
n−1 holds the sum received from Sj

n−1. Also, each processor in Si
n−1 has the

local sum stored in its result buffer. Now, each Si
n−1 holds the partial sums such

that adding all partial sums results in
∑n!

i=1 i. Let p1 be a processor in Si
n−1, and

let
∑

j the partial sum received from Sj
n−1. From the above discussion, we know

that there are exactly (n− 2)! processors in Si
n−1 that hold the partial sum

∑
j .

If p1 is one of these processors then we are done. Suppose this is not the case.
Now from step 4 in All-reduce, we know that each of these processors will send∑

j along communication links n − 1, . . . , 2, respectively. We first claim that no
processor p1 in Si

n−1 is the neighbor of two distinct processors p2 and p3 that hold∑
j at the beginning of step 4. Suppose, for the sake of contradiction, that this

were not the case. Let p1 = σ1 . . . σn, and suppose that p1 is the neighbor of p2

and p3 along communication links x and y ∈ {1, . . . , n− 1}, respectively. Notice
first that x �= y since a processor is connected to exactly one processor along any
given communication link. Since p1 is connected to p2 along communication link
x, p2 = σx, . . . , σ1, . . . σn. Similarly p3 = σy, . . . , σ1, . . . σn. Since both p2 and p3

have
∑

j , both p2 and p3 are connected to Sj
n−1 along communication link n.

Now all processors in Sj
n−1 have the same nth symbol. Since p2 and p3 are the

neighbors of two processors in Sj
n−1 along communication link n, it follows that

both p2 and p3 have the same first symbol and σx = σy, a contradiction, since
σx and σy are two symbols in the representation of processor p1, and hence must
be distinct.



An All-Reduce Operation in Star Networks 425

Table 2. Comparison of all-reduce operations on communication time

Dimension of Sn Size of Sn Tseng [11] Sheu [10] Ours

3 6 12 6 3
4 24 27 12 6
5 120 48 18 10
6 720 75 26 15
7 5040 108 34 21
8 40320 127 42 28
9 362880 192 50 36
10 3628800 243 60 45

It follows from the above claim that the neighbors of the processors possess-
ing the sum

∑
j at the beginning of step 4 of All-reduce are distinct. Now each

processor that holds
∑

j broadcasts it to exactly n− 2 neighbors along commu-
nication links n − 1, . . . , 2. Since all these neighbors are distinct, the number of
processors in Si

n−1 that receive
∑

j from a processor in Si
n−1 at the beginning

of step 4 is (n − 2)(n − 2)!. Thus, the total number of processors in Si
n−1 that

hold
∑

j at the end of All-reduce is (n − 2)! + (n − 2)(n − 2)! = (n − 1)!. It
follows that all processors in Si

n−1 hold
∑

j and in particular p1. Since p1 and j

were arbitrarily chosen, every processor in Si
n−1 possesses every

∑
j at the end

of All-reduce, and hence holds the total sum
∑n!

j=1 j. ��

Theorem 3. All-reduce performs an all-reduce operation on Sn in time n(n−
1)/2.

Proof. The above theorem proves that when the algorithm All-reduce termi-
nates, each processor holds the sum

∑n!
i=1 in the system. Let T (n) be the number

of communication steps performed by All-reduce on Sn. Each Si
n−1 performs

an all-reduce operation within itself and then sends a single message along com-
munication link n, and then along communication links n − 1, . . . , 2. Thus, the
number of communication steps performed by each Si

n−1 is T (n − 1) + n − 1.
Since all the Si

n−1’s do this in parallel, the number of communication steps for
Sn is the same as the number of communication steps performed by each Si

n−1.
Thus, the total number of communication steps performed by each Si

n−1, and
hence, by the whole network is given by the recurrence T (n) = T (n− 1)+n− 1.
It gives T (n) = n(n − 1)/2. ��

5 Concluding Remarks

In this paper we presented an efficient all-reduce communication operation scheme
by using the all-to-all broadcast communication pattern. Our scheme performs
an all-reduce operation on an n-star network with the single-port capability in
n(n − 1)/2 time steps. If we use an all-to-one reduction followed by a one-to-all



426 E. Oh, H. Choi, and D. Primeaux

broadcast, an all-reduce can be performed in time 2
∑n

i=2(�log(i−1)�+1) by the
broadcast scheme proposed in [10] and in time 3(n−1)2 by the scheme proposed
in [11]. In terms of the communication time shown in Table 2, our algorithm
provides an improvement over the algorithms in [10, 11].

References

1. S. B. Akers, D. Harel, and B. Krishnamurthy, “The Star Graph: An At-
tractive Alternative to The n-cube,” Proc. Int’l. Conf. of Parallel Processing, 1987,
pp. 393-400.

2. S. B. Akers and B. Krishnamurthy, “The Fault Tolerance of Star Graphs,”
Proc. 2nd Int’l. Conf. on Supercomputing, 1987, pp. 270-276.

3. S. G. Akl, K. Qiu, and I. Stojmenovic, “Fundamental Algorithms for The
Star and Pancake Interconnection Networks With Applications to Computational
Geometry,” Networks, 1993, vol.23, no. 4, pp. 215-225.

4. M. -S. Chen, P. S. Yu, and K. -L. Wu, “Optimal NODUP All-to-All Broad-
cast Schemes in Distributed Computing Systems,” IEEE Trans. Parallel and Dis-
tributed Systems, 1994, pp. 1275-1284.

5. K. Efe and A. Fernandez, “Computational Properties of Mesh Connected
Trees: Versatile Architecture for Parallel Computation,” Int’l Conference on Par-
allel Processing, 1994, pp. 72-76.

6. Intel Corp. iPSC/2 User’s Guide, Intel Corp., Mar, 1988.
7. I. M. Mkwawa and D. D. Kouvatsos, “An Optimal Neighbourhood Broad-

casting Scheme for Star Interconnection Networks,” J. Interconnection Networks,
2004, vol. 4, pp. 103-112.

8. E. Oh and J. Chen, “Strong Fault-Tolerance: Parallel Routing in Star Networks
with Faults,” J. Interconnection Networks, 2003, vol.4, pp. 113-126.

9. R. Rabenseifner and P. Adamidis, “Collective Reduction Operation on Cray
X1 and Other Platforms,” Proc. the Cray User Group, 2004

10. J. -P. Sheu, C. -T. Wu, and T. -S. Chen, “An Optimal Broadcasting Algo-
rithm Without Message Redundancy in Star Graphs,” IEEE Trans. Parallel and
Distributed Systems 1995, vol.6, no. 6, pp. 653-658.

11. Y. -C. Tseng and J. -P. Sheu, “Toward Optimal Broadcast in A Star Graph
Using Multiple Spanning Trees,” IEEE Trans. Computers 1997, vol. 46, pp. 593-
599.


	Introduction
	Model and Assumptions
	All-to-All Broadcast
	All-Reduce Operation
	Concluding Remarks

