
May 21, 2009 21:3 WSPC/185-JBCB 00421

Journal of Bioinformatics and Computational Biology
Vol. 7, No. 3 (2009) 521–545
c© Imperial College Press

AN ALMOST LINEAR TIME ALGORITHM FOR A GENERAL
HAPLOTYPE SOLUTION ON TREE PEDIGREES WITH NO

RECOMBINATION AND ITS EXTENSIONS

XIN LI∗ and JING LI†

Department of Electrical Engineering and Computer Science
Case Western Reserve University

10900 Euclid Ave, Cleveland
Ohio 44106, USA
∗xin.li2@case.edu
†jingli@case.edu

Received 11 July 2008
Revised 21 November 2008
Accepted 26 November 2008

We study the haplotype inference problem from pedigree data under the zero recom-
bination assumption, which is well supported by real data for tightly linked markers
(i.e. single nucleotide polymorphisms (SNPs)) over a relatively large chromosome seg-
ment. We solve the problem in a rigorous mathematical manner by formulating genotype
constraints as a linear system of inheritance variables. We then utilize disjoint-set struc-
tures to encode connectivity information among individuals, to detect constraints from
genotypes, and to check consistency of constraints. On a tree pedigree without miss-
ing data, our algorithm can output a general solution as well as the number of total
specific solutions in a nearly linear time O(mn · α(n)), where m is the number of loci,
n is the number of individuals and α is the inverse Ackermann function, which is a
further improvement over existing ones. We also extend the idea to looped pedigrees
and pedigrees with missing data by considering existing (partial) constraints on inheri-
tance variables. The algorithm has been implemented in C++ and will be incorporated
into our PedPhase package. Experimental results show that it can correctly identify all
0-recombinant solutions with great efficiency. Comparisons with other two popular algo-
rithms show that the proposed algorithm achieves 10 to 105-fold improvements over a
variety of parameter settings. The experimental study also provides empirical evidences
on the complexity bounds suggested by theoretical analysis.

Keywords: Haplotype inference; linear system; disjoint-set.

1. Introduction

Experimental data have shown that genetic variation is structured in haplotypes
rather than isolated SNPs1 and haplotypes may provide substantially increased
power in detecting gene-disease association. However, the human genome is a diploid
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and, in practice, haplotype data are not collected directly, especially in large scale
sequencing projects mainly due to cost considerations. Hence, efficient and accurate
computational methods and computer programs for the inference of haplotypes from
genotypes are highly needed.

Recent years have witnessed intensive research on haplotyping methods (see
review Refs. 2–6), mainly driven by the HapMap project.1 For family data, there
exist two types of haplotyping methods, statistical methods and combinatorial (or
rule-based) methods. There is a tendency to merge these two types of approaches.7,8

In general, the goal of statistical approaches9 is to find a haplotype assignment
for each individual with the maximum likelihood or to output all consistent solu-
tions with their corresponding probabilities. Recently, population haplotype fre-
quencies have been taken into considerations9 to account for correlations among
tightly linked markers (known as linkage disequilibrium). A key step in most statis-
tical approaches is to enumerate all possible inheritance patterns and to check
the genotype consistency for each of them.9 Due to the large degrees of free-
dom, this step usually leads to high time complexity (usually exponential hence
computational intractable for large data sets). On the other hand, rule-based
algorithms first partially infer haplotypes or inheritance vectors based on geno-
type constraints, and then search final solutions from the reduced space. There-
fore, rule-based algorithms7,10–13 can potentially gain advantage over statistical
methods in efficiency. The zero recombinant assumption states that recombina-
tion is nonexistent within a pedigree for a sufficiently large number of tightly
linked markers. As a realistic assumption, it has been used in both statistical
approaches as well as rule-based approaches. Furthermore, a solution to the prob-
lem with no recombinant can be served as a subroutine of a general procedure
to solve the general haplotype inference problem. Therefore, investigation of effi-
cient algorithms to obtain all 0-recombinant solutions from a pedigree is of high
interests.

For a given pedigree, the goal of the zero recombinant haplotype configuration
(ZRHC) problem is to identify all possible haplotype assignments with no recom-
bination. An important advance in the development of rule-based algorithms for
haplotype inference in pedigrees in general and the ZRHC problem in particular is
the introduction of variables to represent uncertainties. The problem can then be
discussed and solved with mathematical rigor. Li and Jiang11 first formulate the
problem as a linear system on “ps” (a binary indicator of parental source) variables
and solve it using Gaussian elimination with a complexity of O(m3n3), where m

is the number of markers and n is the number of individuals. More recently, Xiao
et al.13 formulate another linear system on “h” (a binary indicator of inheritance
relationship) variables, and lower the complexity to O(mn2 + n3 log2 n log log n).
For loop-free (tree) pedigrees, Xiao’s method can produce a general solution in
O(mn2 + n3) and a particular solution in O(mn + n3) time. Here, a particular
solution means a specific assignment for each variable which satisfies the con-
straints, while a general solution is a description of all solutions in a general form
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where some variables are designated as free (meaning that they are allowed to take
any value), and the remaining variables are represented by a linear combination
of these free variables. For tree pedigrees, Chan et al.10 further reduce the com-
plexity of finding a particular solution to a linear time O(mn) by manipulating
the constraints on a graph structure. Liu and Jiang12 also propose an algorithm
to produce a particular solution in O(mn) and a general solution in O(mn2) by
further exploring features of their h-variable system on a tree pedigree. However,
with missing data, it has been shown that ZRHC is NP-hard.14 Therefore, it seems
impossible to incorporate missing data into a pure linear constraint system without
enumerations. Li and Jiang7 propose an integer linear programming algorithm for
the minimum recombinant haplotype inference problem, and it can solve ZRHC
with missing data as a special case. However, because it does not use zero recombi-
nant constraints explicitly, it may need to enumerate almost all possible haplotype
assignments.

In this paper, we propose an elegant and more efficient algorithm for detecting,
recording and consistency checking of constraints on h-variables. Notice that it is
not necessary to solve the h-variable system explicitly, as it was in Ref. 13. Instead,
we encode constraints on h variables using disjoint-set forests. By applying an
adapted disjoint-set union-find procedure, we can update the disjoint-set structures
incrementally upon new constraints, and determine the consistency of the encoded
linear system simultaneously. Based on the disjoint-set union-find procedure, the
proposed algorithm can produce a general solution in almost linear time (O(mn ·
α(n)) for a tree pedigree, where α is the inverse Ackermann function,15 improved
from the best known algorithm with O(mn2) time complexity.12 We further extend
the algorithm to looped pedigrees and pedigrees with missing data, by utilizing
the constraints imposed from existing data. Experimental results show that the
algorithm can output all solutions with zero recombinant and it is much more
efficient than two popular existing algorithms because of the significant reduction
of the enumeration space.

The rest of the paper is organized as follows. In Sec. 2, we introduce the linear
system on h variables together with some basic concepts and notations concern-
ing the ZRHC problem. By representing constraints using a linear system, one can
formally investigate different strategies to solve the problem in a rigorous man-
ner. Different strategies of manipulating and integrating the constraints will result
in different complexities. Our algorithm of detecting and processing constraints
from pedigree data is presented in Sec. 3. In both sections, we assume that input
genotype data have no missing alleles and the ZRHC problem under this case is
polynomially solvable. Our algorithm is almost optimal by achieving a nearly linear
time complexity on tree pedigrees with complete data. In Sec. 4, we show how to
extend the algorithm to cope with missing data and looped pedigrees by effectively
reducing the search space before enumerations. The performance of our algorithm
and comparisons with other two programs are examined in Sec. 5. We discuss future
directions and make concluding remarks in Sec. 6.
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(a) (b) (c)

Fig. 1. (a) A pedigree graph. We use a circle to represent a female, and a square to represent a male
in a pedigree. (b) A haplotype is composed of all alleles on one chromosome segment. Each allele
is an integer value representing the status of a marker at a chromosome locus. (c) A recombination
event occurs when a child does not inherit a complete haplotype from its parents. Individual 3
has a paternal haplotype 11 which is not seen in his father. So there must be a crossover between

two chromosomes of his father in meiosis, which results in a recombinant haplotype.

2. Preliminaries

A pedigree graph indicates the parent–child relationships among an extended family.
Figures 1(a) and 2(a) present pedigrees in a conventional manner. The pedigree
in Fig. 1(a) has a mating loop, where an offspring (node 9) is produced by the
mating of two relatives (nodes 6 and 7). A pedigree without mating loops is called
a tree pedigree. A nuclear family only consists of both parents and their children.
For any pair of homologous chromosomes from a diploid organism such as human,
exactly one is from its father and the other one is from its mother, as illustrated
in Fig. 1(b). A physical position on a chromosome is called a locus and the status
of a locus is called an allele, represented using an integer ID. We focus on single
nucleotide poly-morphism (SNP) data in this study thus assume that there are only
two alternative alleles (i.e. bi-allelic data), which turns out to be the hardest case for
ZRHC.11,13

At each locus i, a child may inherit either of the paternal or maternal allele.
We use a binary variable to indicate the parental sources (ps) of the two alleles in
a child.

Definition 1. ps variable px
i ∈ {0, 1} is defined for each locus i of each individual

x. px
i = 0 if the smaller allele of locus i is of paternal source, px

i = 1 if it is of
maternal source. We technically let px

i = 0 if locus i is homozygous (two alleles
being the same).

Loosely speaking, a haplotype consists of all alleles on a chromosome. Recombi-
nation events or crossovers occur when a child inherits a shuffled version of its par-
ent’s two haplotypes (see Fig. 1(c) for an example). However, for a sufficiently large
segment of chromosome with m SNPs, the likelihood of recombination between
a parent–child pair is extremely small. For example, a rough estimation of the
relationship of genetic distances and physical distances is about 1Mbps/cM. The
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average marker interval distance of a 500K SNP chip is about 6Kbps. Therefore,
the probability of seeing a single recombination event from a parent–child pair of
170 SNP markers (∼1 Mbps) is only ∼ 1%. One can assume that a child inherits an
entire haplotype segment from a parent for a sufficiently large number of SNPs (i.e.
zero recombinant assumption). In such a case, the inheritance behavior between a
parent–child pair is unique throughout all m loci, and it is convenient and prac-
tically appealing to use a single binary variable (h) to indicate the inheritance
behavior between a parent–child pair.

Definition 2. Inheritance variable hx1x2 ∈ {0, 1} is defined between a parent x1

and a child x2. hx1x2 = 0 if x2 inherits the paternal haplotype of x1, hx1x2 = 1 if
x2 inherits the maternal haplotype of x1.

2.1. Mendelian constraints as a linear system

Mendelian laws of inheritance impose constraints on ps and h variables for each
parent–child pair at each locus. These constraints can be represented by a lin-
ear relationship of ps and h variables over the group (Z2, +) (where 0 + 0 = 0,
0+1 = 1, 1+1 = 0). Table 1 summarizes all cases of constraints at a certain locus i

for a parent–child pair. When an individual is homozygous at a certain locus, its ps

variable at this locus is determined by definition. When one or both of the parents
of an individual are homozygous at a certain locus, this individual’s ps variable
at this locus is also determined. In both cases, the ps variable is pre-determined.
In all the other cases, there is a constraint for each parent–child pair between ps

variables and the h variable, as shown in the last three cases in Table 1. The con-
straints introduced by the zero recombinant assumption is enforced by the single h

variable between each parent–child pair. Therefore, the system formed by the sets
of constraints collected based on Table 1 consists of all the constraints from data.
The satisfiability (or consistency) of this system is equivalent to whether there is a
zero recombinant solution.

2.2. Locus graphs

To process constraints, Xiao et al.13 introduced the concept of locus graphs. We
give a brief introduction here for the sake of completeness. A locus graph Li(V, Ei)

Table 1. Constraints for a parent–child pair x, y.

Genotype Constraint

Parent x Child y If x is father If x is mother

1/1 1/2 px
i = 0 py

i = 0 py
i = 1

2/2 1/2 px
i = 0 py

i = 1 py
i = 0

1/2 1/2 py
i = px

i + hxy py
i = px

i + hxy + 1

1/2 1/1 py
i = 0 py

i = px
i + hxy py

i = px
i + hxy

1/2 2/2 py
i = 0 py

i = px
i + hxy + 1 py

i = px
i + hxy + 1
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is constructed for each locus i to record the constraints on h variables. V consists
of all individuals as nodes. There exists an edge in Ei between a parent–child pair
only if the ps variables of this pair are constrained on the correspondent h variable,
i.e. when the parent is heterozygous at locus i (the last three cases in Table 1).
Each edge is also labeled by the h variable and the constant associated with the
constraint. We refer to this kind of constraints (a linear equation consists of ps

variables and an h variable) as edge constraints. Figure 2(b) shows an example of
a locus graph.

The original idea of Ref. 13 was to integrate edge constraints to construct a
new subsystem that only consists of h variables. Their algorithm then solved the
subsystem and used h variable solutions to solve ps variables. We also record edge
constraints on locus graphs. However, instead of explicitly listing and solving the
constraints on h variables, we use disjoint-set structures to collect, encode and thus
examine the consistency of these constraints, which help us achieve a better time
complexity result to obtain a general solution.

2.3. Linear constraints on h variables

There are essentially two types of constraints on h variables in a locus graph Li: path
constraints and cycle constraints. Notice that the classification of constraints here
is more succinct than those in previous work12,13 because our method of handling
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Fig. 2. (a) A pedigree with eight members. (b) Given the genotype at a certain locus i, the
correspondent locus graph Li and h variable constraints. ps variables of shaded members (2, 4,
7, 8) are pre-determined. From this locus graph, we can generate two non-redundant h variable
constraints, one is a cycle constraint, h35 + h36 + h45 + h46 = 0 (formed by individual 3, 4, 5, 6),
the other is a path constraint, h45 + h58 = 0 (from individual 4 to 8 via 5).
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constraints does not require further discrimination of them. According to Table 1,
each edge exy in a locus graph represents an edge constraint in the form px

i + py
i =

hxy + cxy
i , where cxy

i is a constant ∈ {0, 1}. We use a subscript i for cxy
i because

for different loci, the constant between a parent–child pair may be different, which
depends on the genotype at that locus as specified in Table 1. For a path Pfs,t from
individual s to individual t in locus graph Li, if we sum up all edge constraints on
this path, we have

∑

exy∈Pgs,t

(px
i + py

i ) = ps
i + pt

i =
∑

exy∈Pgs,t

(hxy + cxy
i ).

If ps
i and pt

i are pre-determined constants, we end up with a path constraint on h

variables, which is
∑

exy∈Pgs,t

hxy = ps
i + pt

i +
∑

exy∈Pgs,t

cxy
i , (1)

where the right-hand side is a constant. Similarly, for a cycle C in locus graph Li,
which may exist even on a tree pedigree (e.g. when a nuclear family has more than
one heterozygous children), we sum up all edge constraints on C,

∑

exy∈C

(px
i + py

i ) = 0 =
∑

exy∈C

(hxy + cxy
i ),

and finally have a cycle constraint on h variables
∑

exy∈C

hxy =
∑

exy∈C

cxy
i .

3. Methods

By exploiting special features of the constraints on h variables, it is not necessary to
explicitly list every path and cycle constraint to check their consistency. We employ
disjoint-set structures to detect and to check the consistency of constraints on h

variables. For each locus graph Li, we build a disjoint-set structure Di to encode its
connectivity information. We update the disjoint-set structure incrementally upon
processing each edge constraint on a locus graph. Path constraints on a locus graph
are detected during this process and will be stored in another disjoint-set structure
D. The whole algorithm works on m + 1 such disjoint-set structures, one Di for
each locus graph Li and one D for encoding all path constraints.

In this section, we assume that the inputs are tree pedigrees with complete data.
Cycles on a locus graph from a tree pedigree can only be generated within a nuclear
family when it has multiple children. We first discuss a node splitting strategy in
Sec. 3.1 to break all such short cycles, to obtain only path constraints for further
processing. Construction of Di from each locus graph Li to detect path constraints
will be discussed in Sec. 3.2. Processing of constraints and consistency check will
be discussed in Sec. 3.3 and a general solution of h variables will be decoded from
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the disjoint-set structure D. Solutions of ps variables will then be obtained. The
analysis of time complexity and correctness of the algorithm on tree pedigrees will
be discussed in Sec. 3.4. One of the advantages of the proposed algorithm is that it
can be easily extended to the general cases of looped pedigrees and pedigrees with
missing data; we show these extensions in Sec. 4.

3.1. Split nodes to break cycles

In order to simplify the constraint detection, we first transform cycle constraints
to path constraints by breaking cycles in locus graphs. There are essentially two
kinds of cycles in a locus graph: global cycles that are introduced by marriages
between relatives and local cycles that are introduced by multiple children within
one nuclear family [e.g. Fig. 2(b)]. Only local cycles will exist in a tree pedigree and
will be dealt with in this subsection. The treatment of global cycles will be deferred
to Sec. 4.1 when we discuss the extension to looped pedigrees. We break local cycles
for each nuclear family with multiple children by splitting some child nodes and by
remounting their edges on each locus graph. More specifically, when a nuclear family
has multiple children, any child node v (except an arbitrarily fixed one v0) and its
genotypes will be duplicated to create a new node v′ in the same manner across
all locus graphs. New ps variables will be introduced for these duplicated nodes.
For each splitting node v, the edge from its mother (if there is) will be reconnected
to node v′. All other edges regarding node v remain untouched. Figure 3 shows an
example on how node splitting is performed.

By doing so, we technically avoid the treatment of cycle constraints. After the
duplication, all new locus graphs (actually locus trees now) still have the same set
of nodes. Notice that one has to record all local cycle constraints on h variables and
constraints that the ps variables of duplicated nodes must have the same assign-
ments as those in their original copies. Their constraints can be easily dealt with
for local cycles because they only involve local structures (nuclear families). This
will be further discussed in the next subsection.

3.2. Detect path constraints from locus graphs

We develop an incremental procedure to detect all path constraints from a locus
graph by utilizing a disjoint-set structure. As we can see from the constraints on
h variables in Eq. (1), a path constraint is specified by the ps variables of its end
nodes and summation of the constant parity value cxy

i associated with the edge
constraint on each of its edges. Our goal is to detect each non-redundant path on
a locus graph with pre-determined end nodes and meanwhile obtain the constant
parity summation associated with that path.

To do so, we maintain a disjoint-set structure Di for each locus graph Li and
update it incrementally. The disjoint-set structure is defined by a pair of values
repi[v], offset i[v] for each node v in V (Li). We use subscript i here to emphasize
that the disjoint-set structure Di is specific for each locus graph. repi[v] indicates
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Fig. 3. Node splitting applied to a nuclear family at two loci to remove local cycles. (a) The original
locus graph (left), and the locus graph (right) with edges remounted after node 6 was duplicated.
(b) A locus graph at another locus before (left) and after (right) node 6 was split. Though no
local cycle exists in the locus graph in (b), node 6 was also duplicated so that all locus graphs will

still have the same number of nodes after splitting.

the node which acts as the representative of the set containing v. And the offset
of a node offset i[v] indicates the summation of the constants associated with the
edge constraints on the path from v to its repi. Namely, if repi[v] = v0, then
offset i[v] =

∑
exy∈P gv,v0

cxy
i , where P gv,v0 is the path with end nodes v and v0, cxy

i

is the constant associated with the edge constraint on edge exy (as specified in the
last three cases of Table 1).

Initially, for every node in V : repi[v] ← v, offset i[v] ← 0. We examine each
exy ∈ Li and update Di by considering the edge constraint px

i + py
i = hxy + cxy

i

represented by exy. If both p
repi[x]
i and p

repi[y]
i are pre-determined, we report a

path constraint and record it in D for consistency check (see Sec. 3.3). The two sets
represented by repi[x] and repi[y] will always be merged into one because they are
connected by an edge exy and we always let one pre-determined representative be
the representative of the new set if there is such one. At the end, any two nodes
connected by a path in Li will be merged into one set and a set in Di only consists
of connected nodes in Li. By doing so, we can safely detect all path constraints on
Li. Furthermore, the constant associated with a path constraint between two nodes
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s and t in the same set can be reconstructed as
∑

exy∈Pgs,t∈Li

cxy
i = offset i[s] + offset i[t].

The procedure is illustrated in Algorithm 1.

Algorithm 1 Unioni(x, y, cxy
i )

if both p
repi[x]
i and p

repi[y]
i are pre-determined then

Report a path constraint P from node repi[x] to repi[y]:
P

exy∈P hxy
i = c, where c =

p
repi[x]
i + p

repi[y]
i + offseti[x] + offseti[y] + cxy

i . Encode the constraint in D by applying
Union(repi[x], repi[y], c).

end if
if p

repi[y]
i is not pre-determined then

offseti[repi[y]]← offseti[y] + offseti[x] + cxy
i

repi[repi[y]]← repi[x]
else

offseti[repi[x]]← offseti[x] + offseti[y] + cxy
i

repi[repi[x]]← repi[y]
end if

We also need to capture all constraints that may not have been processed yet in
the above procedure due to node splitting. This is easy for a tree pedigree which pos-
sibly only has local cycles to split. There are three possible types of constraints that
need special attention due to node splitting, i.e. local cycle constraints themselves,
ps variables between duplicated nodes and their corresponding splitting nodes, and
some path constraints originally existing in the locus graph before splitting, but
broken by splitting. We examine each of these constraints by case analysis. First
of all, no node splitting is needed if a nuclear family has only one child. Secondly,
a local cycle constraint exists in an original locus graph before splitting if and only
if both parents of a nuclear family with multiple children are heterozygous. There-
fore, we only have two cases for nuclear families (with multiple children): (i) both
parents are heterozygous (local cycles exist); (ii) at least one parent is homozygous
(no local cycles).

We first focus on case one. To collect such a local cycle constraint after node
splitting, we can examine every splitting node v and its duplicate v′. Based on the
splitting strategy, it is easy to see that a cycle constraint exists in the original locus
graph if and only if there exists a path between the two nodes v and v′ in the
new locus graph after node splitting. Notice that when processing edge constraints,
any nodes that are connected have been grouped into one set in Di. Therefore,
the existence of a path between v and v′ can be verified by checking whether their
representatives are the same. That is, for each pair (v, v′), a local cycle constraint
exists in the original locus graph before splitting if and only if repi[v] = repi[v′].
This local cycle constraint now can be represented by a path constraint P that
consists of v′, m, v0, f , v, where m and f are the parent nodes of v, and v0 is the
anchor child node in this nuclear family. The path constraint should have the form
of

∑
exy∈P hxy

i = offset i[v]+offset i[v′]+psv
i +psv′

i . However, one should notice that
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v′ is the duplicate of v and their ps variables should always be the same. Therefore,
we will add a path constraint in the form of

∑
exy∈P hxy

i = offset i[v] + offset i[v′] to
D instead. In this way, both the local cycle constraint and the ps variable constraint
introduced by node splitting have been enforced. It turns out that the third type
of constraints (path constraints originally existing before node splitting that go
through the edge emv) have also been taken care of. Because for each of such a
path P with emv ∈ P , there exists an alternative path P ′ that goes through the
edges m→ v0 → f → v. As long as the local cycle constraint has been enforced, the
two alternative paths will be equivalent. Because our normal procedure will collect
constraint P ′ from a locus graph after node splitting, P is redundant and can be
safely dismissed.

When at least one parent is homozygous (case two), no local cycle constraints
exist. The ps variables of all children, including the duplicated nodes, are predeter-
mined because at least one parent is homozygous. Therefore ps assignments of v

and v′ will always be the same. If a path constraint P consists of edge emv before
splitting, it must end at node v because v is predetermined. It is easy to see that it
is now being replaced by a path constraint P ′ consisting of edge emv′ and ending
at v′. The only difference between the two paths P and P ′ is that edge emv ∈ P is
replaced by emv′ . But the constrains on these two paths are the same and only one
(i.e. constraint on P ′, which has been processed) is needed.

Thus all three types of constraints have been correctly processed. We illustrate
the cases using an example in Fig. 4.

Figure 5 gives an example on how to detect constraints on a locus graph Li. In
the actual implementation of a disjoint-set forest, a node may not directly point
to its set representative. We omit the details (see Refs. 15 and 17) here for clear
demonstration purpose.
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Fig. 4. This example illustrates all possible patterns of locus graphs of a nuclear family on a tree
pedigree. (a) If neither of the parents is homozygous at this locus, then there should be a loop
constraint, h36 + h35 + h45 + h46 = c. Since we split node 6, it is expressed as a path constraint
on path P g6,6′ . Since the locus graph is still connected, no path via this nuclear family will be

broken up due to the split of node 6. (b) and (c) If one or both of the parents are homozygous at
this locus, then both of the children are pre-determined. In this situation, path constraints such
as P g5,6′ will only take the children as end nodes such that they remain on a consecutive path,

unaffected by the split of node 6.
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Fig. 5. An example shows the detection of all constraints from a locus graph after node split-
ting. (a) Locus graph Li of a pedigree with eight nodes at a certain locus i. Shaded nodes are
pre-determined. (b) The disjoint-set forest formed by adding edges 1–4, 4–5′, 3–5, 3–6 and 5–8
of the locus graph Li in (a). No path constraint has been detected so far. We simply merge the
sets containing each pair of nodes. A pointer is annotated with the offset of a node to its repre-
sentative. If we further process edge 4–6 of Li, because both 4 and 6 have a representative with

pre-determined ps variable, a path between the two representatives (nodes 4 and 8) will induce a
path constraint, which is

P
exy∈Pg4,8

hxy = 0. This is a 3rd type of constraint defined in the text.

When dealing with splitting node pair 5 and 5′, the local cycle constraint (1st type) has been
replaced by a path constraint

P
exy∈P g5,5′

hxy = 0. By doing so, the ps variables of nodes 5 and

5′ (2nd type) have been forced to be the same.

3.3. Encode path constraints in disjoint-set structure D

Once we detect a path constraint, we also encode this constraint in a disjoint-set
structure D. As usual, D is defined by a pair of values rep[v] and offset [v] for each
node v ∈ V . rep[v] is a pointer to a node and offset [v] ∈ {0, 1} is a constant. We
maintain this disjoint-set structure D such that any two nodes k and l in the same
set encode a path constraint in the form of

∑
exy∈Pgk,l

hxy = offset [k] + offset [l].
Initially, rep[v] ← v, offset [v] ← 0, for any v ∈ V . When processing a path

constraint
∑

exy∈Pgi,j
hxy = c, we check whether the representatives of the two end

nodes i and j are the same. If they are not the same, which means no constraints on
h variables between these two nodes have been discovered so far, we merge the two
sets represented by rep[i] and rep[j] as illustrated in Algorithm 2. When rep[i] and
rep[j] are the same (a constraint already exists before seeing the current constraint),
we must check the consistency and redundancy between the current constraint
and the previous constraint. This can be easily done by comparing the constant c

associated with the new constraint and the constant associated with the existing
constraint offset [i]+offset [j]. If the two constants are the same, the new constraint
is redundant and will be dropped; otherwise, inconsistency exists and the program
reports no solutions with zero recombination and terminates. The procedure is
summarized in Algorithm 2.
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Algorithm 2 Union(i, j, c)
if rep[i] = rep[j] then

if offset[i] + offset[j]! = c then
Report inconsistency

end if
else

offset [rep[j]]← offset[j] + offset[i] + c
rep[rep[j]] ← rep[i]

end if

After all path constraints have been processed, the nodes will form several inde-
pendent sets. A general solution of h variables can be easily decoded from D. More
specifically, for each set representative v of D, we define a free binary variable αv

(notice αv is not the same as ps variables). A general solution of h variables can be
represented by a linear system of α variables (which are all free) in the form of

hxy = αrep[x] + offset [x] + αrep[y] + offset [y], (2)

where αrep[x] and αrep[y] are free variables, and offset [x] + offset [y] is a constant.
The complete solution of all h variables (the inheritance vector) can be written in
a matrix form,

h = Aα + b. (3)

Suppose the number of h variables is nh and the number of independent sets in
D after adding all constraints is nD, then A is a nh × nD matrix, where each row
either has exactly two “1”s or is all “0”s (in Eq. (2), α variables are canceled out
if x, y are in the same set). Also notice that due to this special structure, the rank
of A is nD − 1. We can prove that the described solution space holds all consistent
configurations of inheritance variables.

Lemma 1. The general solution as provided in Eq. (3) satisfies all path constraints
and there are no other h variable assignments that satisfy all path constraints.

Proof. We can verify that such a solution satisfies all path constraints. For each
path constraint

∑
exy∈Pgi,j

hxy = c, we plug in the above solution of h variables to its
left-hand side:

∑
exy∈Pgi,j

(αrep[x]+offset [x]+αrep[y]+offset [y]) = αrep[i]+offset [i]+
αrep[j] + offset [j], with all intermediate nodes canceled out. Notice that every path
constraint is encoded in D, which means rep[i] = rep[j] (so the α variables are also
canceled out). Based on the construction of D, the left-hand side offset [i]+offset [j]
is the same as the right hand side c, and the constraint is satisfied. We can further
argue that there are no other h variable assignments that satisfy all path constraints.
This can be shown by examining the relationship of the number of non-redundant
path constraints on h variables and the number of freedom defined by Eq. (3).
The degrees of freedom and the number of exact solutions of h variables depend
on the number of independent sets in D. If there are nD sets in D formed after
adding all constraints, there will be 2nD different ways to assign all α variables.
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But due to symmetry (flipping the values of all α variable assignments will yield
the same h variable solution in Eq. (2)), there are only 2nD−1 different h variable
solutions instead. This can also be shown by noticing that the rank of matrix A in
Eq. (3) is actually nD − 1. Assume there are n′ nodes in locus graphs after node
splitting, the number of h variables is n′− 1 because no cycle exists any more. The
number of non-redundant constraints encoded in D is n′−nD because the number
of constraints in each set S ∈ D is |S|−1. Therefore, the possible degree of freedom
in h variables is (n′−1)− (n′−nD) = nD−1 and our general solution has captured
all freedom.

Next, let us consider how to compute ps variable solutions from h variable
solutions. For each node v in Di, v is connected to its set representative repi[v]
through a path P on Li. We have pv

i + p
repi[v]
i =

∑
exy∈P∈Li

(hxy + cxy
i ) =∑

exy∈P hxy +
∑

exy∈P cxy
i =

∑
exy∈P hxy + offset i[v]. By plugging in the solu-

tion of h variables in Eq. (2), we will finally get a general solution for the ZRHC
problem,

pv
i = p

repi[v]
i + αrep[repi[v]] + offset [repi[v]] + αrep[v] + offset [v] + offset i[v]. (4)

If p
repi[v]
i is not pre-determined, we have one more degree of freedom in Eq. (4).

3.4. Analysis of the algorithm on tree pedigrees with complete data

The overall algorithm is summarized in Algorithm 3. We omit the preprocessing
steps (such as node splitting, construction of locus graphs) because all those opera-
tions can be done in linear time. Here we also state our main result of the algorithm
as a theorem.

Algorithm 3 Process All Constraints
for i = 1 to m do

for all edge exy ∈ Li do
Unioni(x, y, cxy

i )
end for
for all splitting node v do

if repi[v] = repi[v
′] then

Union(v, v′, offseti[v] + offseti[v
′])

end if
end for

end for

Theorem 1. For a tree pedigree with complete data, Algorithm 3 correctly outputs
a general solution [Eqs. (2) and (4)] and the number of specific solutions (degrees
of freedom) for the ZRHC problem if it has a solution, and reports inconsistency
otherwise. Its running time is bounded from above by O(mnα(n)), where m is the
number of loci, n is the number of individual and α() is the inverse Ackermann
function.15
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Proof. We first need to show that the proposed algorithm can detect all necessary
constraints if the pedigree is a tree pedigree without missing data. The algorithm
processes every edge constraint from each locus graph Li and every constraint
resulting from node splitting using the Unioni function, and stores connectivity
information using disjoint-set structures Di. During this procedure, path constraints
(including local cycle constraints) are detected and consistency is checked by apply-
ing Union() on D. It is easy to understand that all non-redundant path constraints
in Li have been detected since each Di keeps the connectivity information of all
pairs of nodes from each locus graph. For a tree pedigree, all cycle constraints are
local cycle constraints. By introducing the splitting nodes, such local cycle con-
straints have been expressed as a path constraint ending in a pair of splitting nodes
(e.g. path Pg5,5′ in Fig. 5), and have been correctly processed in Algorithm 3. All
other cases (constraints involving a splitting node) have been discussed in Sec. 3.2.
Therefore, the proposed algorithm can detect all necessary constraints for a tree
pedigree. And any particular h variable solution obtained from Eq. (2) is compatible
with the genotype data.

In terms of time complexity, the outside for-loop in Algorithm 3 is over each
locus i. For each locus i, the total number of union operations on Di (function
Unioni) is bounded by the summation of the number of edges and the number of
splitting nodes in locus graph Li, which is bounded by O(n) even after considering
node splitting. There is at most one union operation on D (function Union) for
each Unioni, therefore, the total number of union operation on D is bounded by the
total number of union operations on Di, which is O(n). The number of elements in
Di and D is the same and also bounded by O(n). Both Unioni() and Union() are
essentially conventional union-find procedures on disjoint-set structures. The extra
cost to maintain the offset value of each node takes only constant time for each
operation, therefore it does no change to the time complexity. Despite the simplified
presentation in Algorithms 1 and 2, we implement the union-find procedure on a
forest structure using Tarjan’s algorithm.15 The worst case time complexity of O(n)
disjoint-set operations on O(n) elements is O(nα(n)),17 where α() is the inverse
Ackermann function. Therefore, the total running time of the algorithm to output
a general solution is O(mn · α(n)), where m is the number of loci, and n is the
number of individuals of the pedigree.

4. Extension to General Cases

4.1. Pedigrees with mating loops

We can further extend the above algorithm to pedigrees with mating loops and
pedigrees with missing data. For a looped pedigree, we apply a similar splitting
rule to locus graphs as we did for a tree pedigree, except that for a mating between
two relatives, all their children are duplicated in order to break a global cycle. We
use the same method described in Secs. 3.2 and 3.3 to detect all path constraints
on each locus graph. However, Theorem 3.1 does not hold anymore in this case
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because the method does not guarantee the detection of all necessary constraints.
The difference lies in the detection of path constraints broken by splitting nodes.
All such path constraints can be recovered when breaking a local cycle but may
not be recovered when breaking a global cycle. Figure 6 gives such an example on
a looped pedigree. In the locus graph Li in Fig. 6(b), we have a path constraint on
path Pg6,6′ , which is originally a cycle constraint before splitting of node 6. This type
of constraints may still be able to be captured with some extra efforts. However, in
another locus graph Lj in Fig. 6(c), there is a path constraint h46 + h56 = 0 in the
original locus graph. But this constraint is not on a consecutive path in Lj after
node splitting. Thus it is not able to be encoded in the disjoint-set structure D.

Although the set of constraints is not sufficient, we can still obtain all the
solutions for a looped pedigree using the following procedure. If there are already
inconsistent constraints during consistency check, no solutions with zero recombi-
nant exist. Otherwise, all the h variable solutions obtained based on the general
solution [Eq. (2)] will be examined. If a specific h variable assignment is not consis-
tent with the genotype, we simply drop that assignment. Otherwise, it will result
in real haplotype solutions. To check the consistency of an h variable assignment
with existing genotypes, we use another disjoint-set structure to encode constraints
on alleles. This step is the same for pedigrees with loops and pedigrees with miss-
ing data, and will be discussed in Sec. 4.2. Essentially for looped pedigrees, we
avoid cycle constraints by splitting nodes with the expense that we may miss some
constraints. We start to enumerate h variables after processing existing partial con-
straints. However, as it will be shown in the experiment, the number of all possible
h variable assignments from this set of partial constraints is usually very small for a
pedigree with complete data, and in most times there is only one solution for pedi-
grees with 20 or more loci. Therefore, the above extension can efficiently handle
looped pedigrees in practice.
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Fig. 6. An example of constraints on a looped pedigree. (a) A pedigree with a mating loop, where
node 6 is produced by the mating of two relatives 4 and 5. (b) One locus graph Li, where there
is a path constraint

P
exy∈P g6,6′

hxy = h24 + h25 + h46 + h56 = 0. (c) Another locus graph Lj ,

where there is a constraint h46 + h56 = 0. Due to the splitting at node 6, this constraint is not on
a consecutive path.
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4.2. Pedigrees with missing data

For an algorithm to be practically useful, it has to be applicable on real data. Most
real data contain missing information. One advantage of the proposed algorithm is
that it can be easily extended to deal with missing data. Extension of the constraint-
finding framework10,12,13 to handle missing data is not trivial at all. As mentioned
earlier, the ZRHC problem with missing data is NP-hard14 in general. Therefore, it
is unlikely that a linear system will exist to incorporate all uncertainties. We take a
similar approach as in Sec. 4.1 to deal with missing data by making use of existing
constraints and verifying every compatible inheritance vector. Partial constraints
on h variables will be collected based on existing genotype data. Solutions of h

variables will be obtained based on the set of partial constraints and will be checked
for consistency with existing genotype data. More specifically, for a pedigree with
missing data, we construct the locus graph Li for each locus i as usual with node
splitting if necessary. The edges in Li will only be constructed by examining every
parent–child pair whose genotypes are complete at this locus i. We apply Algorithm
3 to process all edge constraints from such locus graphs. And from the partial
constraints on h variables, we get a solution in its general form [Eq. (2)]. The
degree of freedom, which is nD − 1 where nD is the number of independent sets,
usually is significantly smaller than the degree of freedom of the original h variables
without constraints, which is usually close to 2n. Therefore, our algorithm has the
potential to be significantly faster than those algorithms based on the enumeration
of all possible h variables (such as Merlin9).

For each specific h variable assignment, the compatibility check with the input
genotype data is also examined by utilizing another disjoint-set structure on allele
variables. Let fx

i (mx
i ) denote the paternal (maternal) allele of individual x at locus

i, which takes the integer value 0 and 1 for the smaller and bigger allele, respectively.
For a fixed assignment of h variables, the relationship of alleles between a parent
and a child is specified by the definition of h variables. This relationship is also
expressed as a linear system on Z2. For example, for a father–child pair x and
y, we have constraint fy

i + fx
i = 0 if hxy = 0, and fy

i + mx
i = 0 if hxy = 1

by Definition 2. Similar constraints can be obtained for each mother–child pair. In
addition, constraints between the two allele variables at each locus for an individual
exist when the genotype data are available. More precisely, if an individual x is
homozygous or pre-determined at locus i, then both fx

i and mx
i are fixed. Otherwise

we have the constraint fx
i + mx

i = 1. All these constraints only involve two variables,
so we can encode this linear system in a disjoint-set structure and develop the same
set manipulating procedure as we did in the integration of constraints on inheritance
variables. By doing so, we can efficiently check the consistency between a given h

variable assignment and the input genotype data, and generate a set of assignments
of alleles that are consistent with the h variable assignment. The total number of h

variable assignments is 2nD−1, and for each assignment, the complexity of genotype
consistency check is O(mn · α(n)).
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5. Experimental Results

We study the performance of our program (denoted as DSS) under different settings
(pedigree size, number of loci, missing rate, pattern of missing) and compare its
performance with two representative programs Merlin9 and PedPhase (the integer
linear programming ILP algorithm in Ref. 7). Merlin is one of the most widely used
statistical packages for linkage analysis, and we only use its haplotyping function-
ality in this comparison. It also uses the zero recombinant assumption. However,
it examines all possible configurations of inheritance variables and only outputs
those compatible ones. PedPhase.ILP is another widely used rule-based algorithm
developed by our own group. It can produce all optimal haplotype solutions with
minimal recombinants for any pedigree structures with missing data. It can solve
the zero recombinant problem as a special case. But because it does not use the
zero recombinant assumption explicitly, its efficiency is expected to be inferior to
the current algorithm. Under the zero recombinant assumption, all three methods
are exact algorithms that output all compatible solutions. Our experiments show
that their implementations indeed generate the same set of haplotype assignments
on the same inputs. This again shows that the ZRHC formulation is valid for tightly
linked markers, and the set of solutions is the same as the set of solution obtained
based on likelihood approaches. Therefore, we only present results on the efficiency
comparison.

We test all three approaches on different sizes of pedigrees (17, 29, 52, 128),
all are real human pedigree structures obtained from literatures. Different num-
ber of loci (20, 50, 100, 200), different missing rates (0.05, 0.10, 0.15, 0.20) and
different missing patterns are considered. We run Merlin and DSS on a Linux
machine with two 3.0-GHz Quad-Core Xeon 5365 processors and 16-G memory.
PedPhase. ILP only has a Windows version, and it was tested on a much slower
Windows machine with a much lesser memory (Pentium 4 3.2-GHz with 2-G mem-
ory). We measure the time needed for each of the algorithms to output all pos-
sible haplotyping solutions of a pedigree. Due to hardware limitations, the result
of PedPhase.ILP on pedigree size 128 is not acquired. To generate genotype data
that closely resemble real data, we use the Simulated Rheumatoid Arthritis (RA)
Data from Genetic Analysis Workshop (GAW) 15. Chromosome 6 of GAW data
mimics a 300-K SNP chip with an average inter-marker spacing of 9586 bp. The
beginning 20, 50, 100 and 200 loci are truncated to test the three algorithms. Pop-
ulation haplotype frequencies are calculated based on the true haplotype assign-
ments in the simulated data, and are then fed to SimPed,16 together with each
pedigree structure. SimPed will then sample founder haplotypes based on their
population frequencies and generate genotype data for each member in a pedigree,
assuming no recombination. The three pedigree structures are shown in Fig. 7,
among which the pedigree with size 17 [Fig. 7(a)] is a looped one. The pedi-
gree with size 128 is too large to fit in one page and will be provided on our
website.
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(a) (b)

(c)

Fig. 7. Pedigree structure used in simulation.

We designate two ways to generate samples with missing data so as to examine
the behavior of the methods with respect to both missing rate and missing pattern
variations. We generate the first set of samples by randomly assigning a locus to be
missing at a specified missing rate. Second, we make all top generation of a pedigree
completely missing for all loci, which is common in real data. For each testing
category, we simulate 100 independent datasets and report the average running
time.
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Fig. 8. (a) comparison of running time (in seconds). (b) average number of solutions.

For the random missing case, Fig. 8(a) shows the running time of the three
programs under different settings, except for the pedigree size 128, for which the
running time of Merlin is too large to be juxtaposed with DSS. The result on the
pedigree with size 128 is listed in Table 2. The running time of Merlin increases
exponentially with the pedigree size, the number of loci and also the missing rate.
The running time of PedPhase.ILP (on a slower machine) also has an exponential
growth with the increase of the missing rate and the number of loci but with a
smaller constant compared to Merlin. It also shows a much smaller growth rate with
the pedigree size. In contrast, DSS scales smoothly with all parameters (except for
the missing rate when the number of loci is 20), and the improvement over Merlin or
PedPhase.ILP is from 10 to 105 folds for large pedigrees with large number of loci or
high rate of missing data. In fact, neither Merlin nor PedPhase.ILP can successfully
infer haplotypes from the pedigree with size 128 when the number of marker is 200.
However, DSS can obtain all solutions within 0.05 second, even for data with 20%
missing information. This shows that by solving the linear system based on partial
constraints from existing data, we significantly reduce the enumeration space of
inheritance variables. The experimental results show that when the number of loci
is large, the program can still maintain the same linear complexity even for data
with 20% missing information. But for small number of loci, the running time of



May 21, 2009 21:3 WSPC/185-JBCB 00421

Efficient Haplotype Inference from Pedigrees with Missing Data 541

T
a
b
le

2
.

C
o
m

p
a
ri

so
n

o
f

ru
n
n
in

g
ti

m
e

(i
n

se
co

n
d
s)

b
et

w
ee

n
D

S
S

a
n
d

M
er

li
n

o
n

p
ed

ig
re

e
si

ze
1
2
8
.

T
h
e

ru
n
n
in

g
ti

m
e

o
f
M

er
li
n

u
n
d
er

so
m

e
d
a
ta

se
tt

in
g
s

ex
ce

ed
s

a
n

h
o
u
r,

a
n
d

is
th

u
s

o
m

it
te

d
fr

o
m

o
u
r

m
ea

su
re

m
en

t.

N
u
m

b
er

o
f
lo

ci
2
0

5
0

M
is

si
n
g

ra
te

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
D

S
S

0
.0

2
6
7

0
.1

5
3
9

0
.3

5
1
7

0
.4

9
9
1

0
.6

5
4
0

0
.0

2
5
9

0
.0

3
6
1

0
.0

3
6
8

0
.0

3
7
8

0
.0

3
6
0

M
er

li
n

7
0

3
0
0

6
0
0

8
0
0

1
1
0
0

3
6
0

8
0
0

1
0
0
0

>
1
3
0
0

—
–

B
lo

ck
-e

x
te

n
si

o
n

0
.0

5
0
.0

5
0
.0

5
0
.0

5
0
.0

5
0
.0

9
0
.1

0
.1

0
.1

0
.1

N
u
m

b
er

o
f
lo

ci
1
0
0

2
0
0

M
is

si
n
g

ra
te

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
D

S
S

0
.0

3
1
1

0
.0

4
2
6

0
.0

3
7
3

0
.0

4
3
1

0
.0

4
6
1

0
.0

4
3
3

0
.0

5
8
7

0
.0

5
1
8

0
.0

5
7
5

0
.0

5
0
3

M
er

li
n

8
0
0

1
2
0
0

>
2
4
0
0

—
–

—
–

—
–

—
–

—
–

—
–

—
–

B
lo

ck
-e

x
te

n
si

o
n

0
.2

0
.2

0
.1

9
0
.2

0
.2

0
.5

3
0
.6

3
0
.6

7
0
.6

4
0
.6

3



May 21, 2009 21:3 WSPC/185-JBCB 00421

542 X. Li & J. Li

DSS increases as missing rate increases (though DSS can finish all the cases within
0.1 second). This is because the number of constraints on h variables is roughly
in proportion to the number of loci. So for small number of loci, the remaining
degrees of freedom on inheritance variables after solving the linear system could
still be high. This number could be partly reflected by the number of all compatible
solutions in the end. Figure 8(b) compares the number of h variable solutions in
different circumstances. It grows with both the pedigree size and the missing rate,
but decreases with the number of loci.

While PedPhase.ILP takes very long time to work on pedigree size 128, we
run Block-extension algorithm also from PedPhase package as a substitute in this
category just for reference purposes. Different from DSS, Merlin and Pedphase.ILP,
Block-extension is a heuristic algorithm which employs some greedy strategy to
obtain a particular solution with minimum recombination. Since it is a heuristic,
it does not explore every possible configuration and may not reach optimality in
all circumstances. As is shown in Table 2, Block-extension does a fast job on this
large pedigree and it scales well with both the number of loci and the missing
rate. And in most cases (>90%), it can find a solution with no recombination. This
high efficiency makes such heuristic approaches useful in certain applications where
completeness or optimality of the solution space is not enforced.

Next, we investigate the performance of all three algorithms on special missing
patterns. Figure 9 gives some representative result on the pedigree with size 52, for
which all individuals at the top generation (members 4, 6, 8, 9) are missing. For
this pedigree, such missing data equal a missing rate of ∼7.7%. In terms of absolute
time, DSS (0.2 ∼ 0.8 s) is much better than the other two algorithms (0.2 ∼ 100 s).
However, the running time is higher than its own running time with a missing
rate of 10%. The running time of Merlin and PedPhase.ILP on this special dataset

0.01

0.1

1

10

100
20 loci 50 loci 100 loci 200 loci

DSS top generation 7.7% DSS random 5% DSS random 10%

Merlin top generation 7.7% Merlin random 5% Merlin random 10%

ILP top generation 7.7% ILP random 5% ILP random 10%

Fig. 9. Comparison of DSS and Merlin on different patterns of missing data.
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is between those of missing rate 5% and 10%. DSS is somewhat sensitive to this
special missing pattern because when all genotypes of an individual are missing,
none of the inheritance variables between her and her parents or children could be
determined. A further investigation on this special missing pattern is warranted.

6. Discussion

We propose an algorithm for haplotype inference from pedigree data without recom-
binant using disjoint-set structures. For each locus, we generate a locus graph based
on the genotype information between each parent–child pair. A disjoint-set struc-
ture Di is built to encode the connectivity information of nodes in each locus graph
Li. We update Di by incrementally adding new edge constraints from locus graph
Li. During this process, we detect all path constraints and encode them in another
disjoint-set structure D. D will be used for consistency check for each new detected
path constraint. Finally, we can generate a general solution for h variables by taking
each set representative in D as a free variable. All the h variable solutions are guar-
anteed to be compatible with the genotype data on each locus for a tree pedigree.
Cycles are broken by splitting nodes. We further extend the algorithm to looped
pedigrees and pedigrees with missing data by enumerating all h variables based on
the set of partial constraints. The compatibility check of each inheritance variable
assignment is performed by collecting constraints on allele variables using another
disjoint-set structure. The proposed algorithm can output a general solution for a
tree pedigree with complete data in time O(mnα(n)), which is a further improve-
ment upon existing results. For a general pedigree, or a pedigree with missing data,
by using the same framework, our method can significantly reduce degrees of free-
dom on inheritance variables and thus narrow down the search scope. Experimental
results show that the algorithm is efficient in practice for both complete data and
missing data, and outperforms two popular algorithms on large datasets. For data
with large number of markers, the performance of the algorithm hardly deteriorates
as the missing rate increases.

Though several theoretical results of ZRHC were recently reported,10,12,13 none
of them have been implemented. The empirical examination of the performance of
our algorithm offers some evidence for the theoretical bounds on the complexity of
such haplotyping approaches based on linear systems.

The performance of our algorithm on pedigrees with missing data depends on the
number of constraints the linear system can capture. We observe that the efficiency
of this linear system is influenced by variation in missing patterns. So as a possible
piece of future work, we can consider a special strategy to handle individuals with all
loci missing. Other possible directions are to combine the proposed algorithm with
statistical approach to assign a probability likelihood for each of the assignments,
and to design algorithms for whole chromosome by calling the current algorithm as
a subroutine. Theoretically, it also remains open whether the linear time complexity
can be observed for a general pedigree with complete data.
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