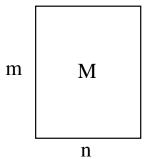
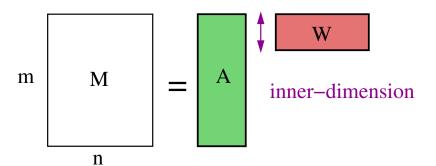
An Almost Optimal Algorithm for Computing Nonnegative Rank

Ankur Moitra

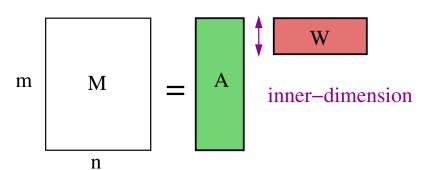
Institute for Advanced Study

January 8, 2013

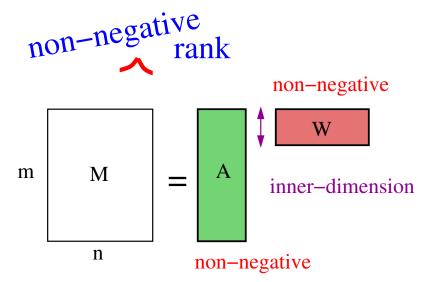




rank



rank non-negative m inner-dimension n non-negative



Applications

- Statistics and Machine Learning:
 - extract latent relationships in data
 - image segmentation, text classification, information retrieval, collaborative filtering, ...

```
[Lee, Seung], [Xu et al], [Hofmann], [Kumar et al], [Kleinberg, Sandler]
```

Applications

- Statistics and Machine Learning:
 - extract latent relationships in data
 - image segmentation, text classification, information retrieval, collaborative filtering, ...

```
[Lee, Seung], [Xu et al], [Hofmann], [Kumar et al], [Kleinberg, Sandler]
```

Combinatorics:

 extended formulation, log-rank conjecture [Yannakakis], [Lovász, Saks]

Applications

- Statistics and Machine Learning:
 - extract latent relationships in data
 - image segmentation, text classification, information retrieval, collaborative filtering, ...

```
[Lee, Seung], [Xu et al], [Hofmann], [Kumar et al], [Kleinberg, Sandler]
```

Combinatorics:

- extended formulation, log-rank conjecture [Yannakakis], [Lovász, Saks]
- Physical Modeling:
 - interaction of components is additive
 - visual recognition, environmetrics

[Vavasis]: It is NP-hard to compute the nonnegative rank.

[Vavasis]: It is NP-hard to compute the nonnegative rank.

[Cohen and Rothblum]: The nonnegative rank can be computed in time $(nm)^{O(nr+mr)}$.

[Vavasis]: It is NP-hard to compute the nonnegative rank.

[Cohen and Rothblum]: The nonnegative rank can be computed in time $(nm)^{O(nr+mr)}$.

[Arora, Ge, Kannan and Moitra]: The nonnegative rank can be computed in time $(nm)^{f(r)}$ where $f(r) = O(2^r)$ and any algorithm that runs in time $(nm)^{o(r)}$ would yield a sub exponential time algorithm for 3-SAT.

[Vavasis]: It is NP-hard to compute the nonnegative rank.

[Cohen and Rothblum]: The nonnegative rank can be computed in time $(nm)^{O(nr+mr)}$.

[Arora, Ge, Kannan and Moitra]: The nonnegative rank can be computed in time $(nm)^{f(r)}$ where $f(r) = O(2^r)$ and any algorithm that runs in time $(nm)^{o(r)}$ would yield a sub exponential time algorithm for 3-SAT.

Theorem

The nonnegative rank can be computed in time $(nm)^{O(r^2)}$.

[Vavasis]: It is NP-hard to compute the nonnegative rank.

[Cohen and Rothblum]: The nonnegative rank can be computed in time $(nm)^{O(nr+mr)}$.

[Arora, Ge, Kannan and Moitra]: The nonnegative rank can be computed in time $(nm)^{f(r)}$ where $f(r) = O(2^r)$ and any algorithm that runs in time $(nm)^{o(r)}$ would yield a sub exponential time algorithm for 3-SAT.

Theorem

The nonnegative rank can be computed in time $(nm)^{O(r^2)}$.

...these algorithms are about an algebraic question, about how to best encode nonnegative rank as a systems of polynomial inequalities

[Cohen, Rothblum]: Yes

[Cohen, Rothblum]: Yes (DETOUR)

$$S = \{x_1, x_2...x_k | B(sgn(f_1), sgn(f_2), ...sgn(f_s)) = "true" \}$$

$$S = \{x_1, x_2...x_k | B(\operatorname{sgn}(f_1), \operatorname{sgn}(f_2), ...\operatorname{sgn}(f_s)) = \text{"true"} \}$$

Question

How many sign patterns arise (as $x_1, x_2, ... x_k$ range over \mathbb{R}^k)?

$$S = \{x_1, x_2...x_k | B(sgn(f_1), sgn(f_2), ...sgn(f_s)) = "true" \}$$

Question

How many sign patterns arise (as $x_1, x_2, ...x_k$ range over \mathbb{R}^k)?

Naive bound: 3^s (all of $\{-1,0,1\}^s$),

$$S = \{x_1, x_2...x_k | B(sgn(f_1), sgn(f_2), ...sgn(f_s)) = "true" \}$$

Question

How many sign patterns arise (as $x_1, x_2, ...x_k$ range over \mathbb{R}^k)?

Naive bound: 3^s (all of $\{-1,0,1\}^s$), [Milnor, Warren]: at most $(ds)^k$, where d is the maximum degree

$$S = \{x_1, x_2...x_k | B(sgn(f_1), sgn(f_2), ...sgn(f_s)) = "true" \}$$

Question

How many sign patterns arise (as $x_1, x_2, ... x_k$ range over \mathbb{R}^k)?

Naive bound: 3^s (all of $\{-1,0,1\}^s$), [Milnor, Warren]: at most $(ds)^k$, where d is the maximum degree

In fact, best known algorithms (e.g. [Renegar]) for finding a point in S run in $(ds)^{O(k)}$ time

[Cohen, Rothblum]: Yes (DETOUR)

[Cohen, Rothblum]: Yes (DETOUR)

• Variables: entries in A and W (nr + mr total)

[Cohen, Rothblum]: Yes (DETOUR)

- Variables: entries in A and W(nr + mr total)
- Constraints: $A, W \ge 0$ and AW = M (degree two)

[Cohen, Rothblum]: Yes (DETOUR)

- Variables: entries in A and W (nr + mr total)
- Constraints: $A, W \ge 0$ and AW = M (degree two)

Running time for a solver is exponential in the number of variables

[Cohen, Rothblum]: Yes (DETOUR)

- Variables: entries in A and W(nr + mr total)
- Constraints: $A, W \ge 0$ and AW = M (degree two)

Running time for a solver is exponential in the number of variables

Question

What is the smallest formulation, measured in the number of variables?

[Cohen, Rothblum]: Yes (DETOUR)

- Variables: entries in A and W(nr + mr total)
- Constraints: $A, W \ge 0$ and AW = M (degree two)

Running time for a solver is exponential in the number of variables

Question

What is the smallest formulation, measured in the number of variables? Can we use only f(r) variables?

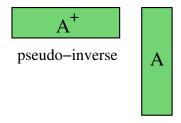
[Cohen, Rothblum]: Yes (DETOUR)

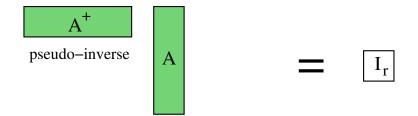
- Variables: entries in A and W(nr + mr total)
- Constraints: $A, W \ge 0$ and AW = M (degree two)

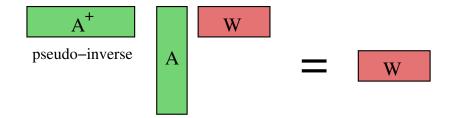
Running time for a solver is exponential in the number of variables

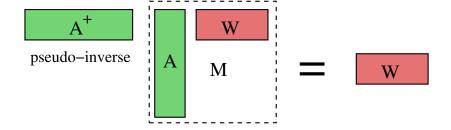
Question

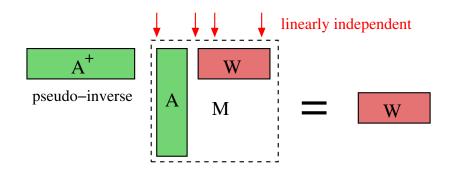
What is the smallest formulation, measured in the number of variables? Can we use only f(r) variables? $O(r^2)$ variables?



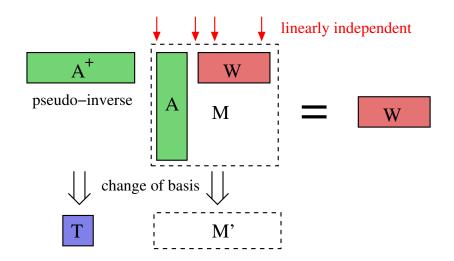


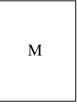


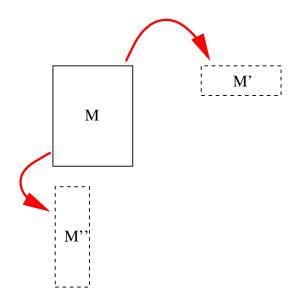


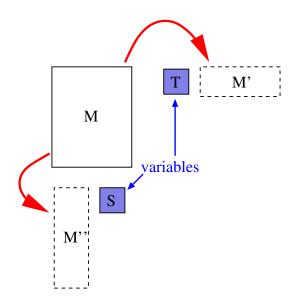


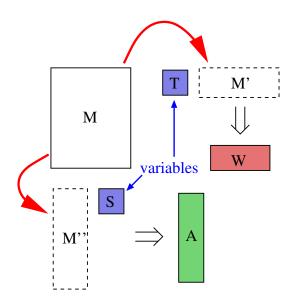
Easy Case: A has Full Column Rank (AGKM)

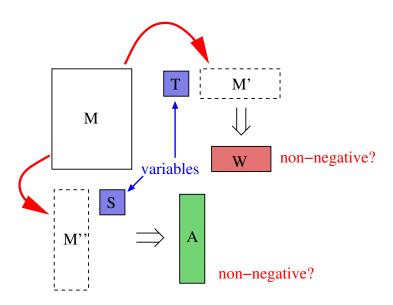


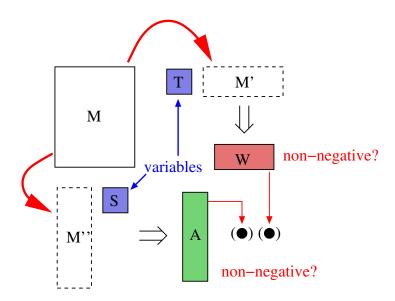


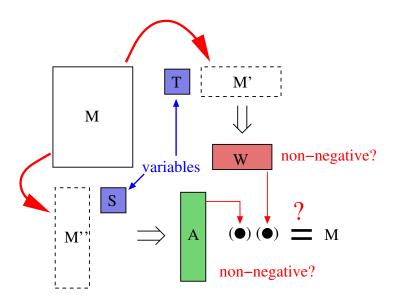












$$\#facets\{conv(A)\} \gg \#vertices\{conv(A)\}$$

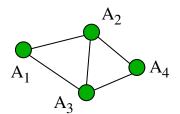
which can only happen if (say) rank(A) = r/2

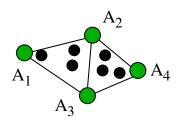
$$\#facets\{conv(A)\} \gg \#vertices\{conv(A)\}$$

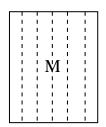
which can only happen if (say) rank(A) = r/2

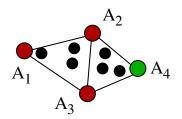
Question

Can we still find the rows of W from many linear transformations of rows of M?

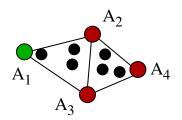


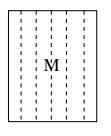






$$\boxed{\mathbf{T}_{1}} = \left(\mathbf{A}_{1}\mathbf{A}_{2}\mathbf{A}_{3}\right)^{+}$$

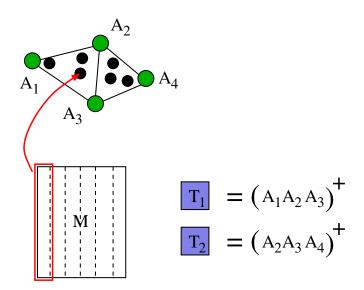


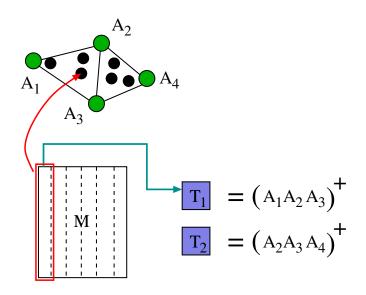


$$T_1 = (A_1 A_2 A_3)^+$$

$$T_1 = (A_1 A_2 A_3)^{\dagger}$$

$$T_2 = (A_2 A_3 A_4)^{\dagger}$$





$$\#facets\{conv(A)\} \gg \#vertices\{conv(A)\}$$

which can only happen if (say) rank(A) = r/2

Question

Can we still find the rows of W from many linear transformations of rows of M?

$$\#facets\{conv(A)\} \gg \#vertices\{conv(A)\}$$

which can only happen if (say) rank(A) = r/2

Question

Can we still find the rows of W from many linear transformations of rows of M?

This could require exponentially many (2^r) linear transformations (e.g. covering the cross polytope by simplices)

$$\#facets\{conv(A)\} \gg \#vertices\{conv(A)\}$$

which can only happen if (say) rank(A) = r/2

Question

Can we still find the rows of W from many linear transformations of rows of M?

This could require exponentially many (2^r) linear transformations (e.g. covering the cross polytope by simplices)

Key

These linear transformations can be defined using a common set of r^2 variables!

Encode nonnegative rank as a semi-algebraic set with $2r^2$ variables

Encode nonnegative rank as a semi-algebraic set with $2r^2$ variables

(i.e. the set is non-empty iff $rank^+(M) \le r$)

Encode nonnegative rank as a semi-algebraic set with $2r^2$ variables

(i.e. the set is non-empty iff $rank^+(M) \le r$)

• We give a new **normal form** for nonnegative matrix factorization (that uses exponentially many $r \times r$ unknown linear transformations)

Encode nonnegative rank as a semi-algebraic set with $2r^2$ variables

(i.e. the set is non-empty iff $rank^+(M) \le r$)

- We give a new **normal form** for nonnegative matrix factorization (that uses exponentially many $r \times r$ unknown linear transformations)
- We use **Cramer's Rule** to write all of these linear transformations using a common set of r^2 variables

Encode nonnegative rank as a semi-algebraic set with $2r^2$ variables

(i.e. the set is non-empty iff $rank^+(M) \le r$)

- We give a new **normal form** for nonnegative matrix factorization (that uses exponentially many $r \times r$ unknown linear transformations)
- We use **Cramer's Rule** to write all of these linear transformations using a common set of r^2 variables
- These transformations recover the factorization A, W, and we can check that it is a valid nonnegative matrix factorization

Encode nonnegative rank as a semi-algebraic set with $2r^2$ variables

(i.e. the set is non-empty iff $rank^+(M) \le r$)

- We give a new **normal form** for nonnegative matrix factorization (that uses exponentially many $r \times r$ unknown linear transformations)
- We use **Cramer's Rule** to write all of these linear transformations using a common set of r^2 variables
- These transformations recover the factorization A, W, and we can check that it is a valid nonnegative matrix factorization

Theorem

The nonnegative rank can be computed in time $(nm)^{O(r^2)}$.

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

Question

Are there other examples of a better understanding of the expressive power of semi-algebraic sets can lead to a new algorithm?

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

Question

Are there other examples of a better understanding of the expressive power of semi-algebraic sets can lead to a new algorithm?

Similar: recent work [Anandkumar et al] on topic modeling is based on understanding how many moments are needed to find the parameters.

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

Question

Are there other examples of a better understanding of the expressive power of semi-algebraic sets can lead to a new algorithm?

Similar: recent work [Anandkumar et al] on topic modeling is based on understanding how many moments are needed to find the parameters.

Observation

The number of variables plays an analogous role to VC-dimension

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

Question

Are there other examples of a better understanding of the expressive power of semi-algebraic sets can lead to a new algorithm?

Similar: recent work [Anandkumar et al] on topic modeling is based on understanding how many moments are needed to find the parameters.

Observation

The number of variables plays an analogous role to VC-dimension

Is there an elementary proof of the Milnor-Warren bound?

Any Questions?

Thanks!