An Almost Optimal Algorithm for Computing Nonnegative Rank

Ankur Moitra

Institute for Advanced Study

January 8, 2013

$4 \square>4$ 司 4 引 4 引

rank

rank

Applications

－Statistics and Machine Learning：
－extract latent relationships in data
－image segmentation，text classification，information retrieval， collaborative filtering，．．．
［Lee，Seung］，［Xu et al］，［Hofmann］，［Kumar et al］，［Kleinberg，Sandler］

Applications

- Statistics and Machine Learning:
- extract latent relationships in data
- image segmentation, text classification, information retrieval, collaborative filtering, ...
[Lee, Seung], [Xu et al], [Hofmann], [Kumar et al], [Kleinberg, Sandler]
- Combinatorics:
- extended formulation, log-rank conjecture [Yannakakis], [Lovász, Saks]

Applications

－Statistics and Machine Learning：
－extract latent relationships in data
－image segmentation，text classification，information retrieval， collaborative filtering，．．．
［Lee，Seung］，［Xu et al］，［Hofmann］，［Kumar et al］，［Kleinberg，Sandler］
－Combinatorics：
－extended formulation，log－rank conjecture ［Yannakakis］，［Lovász，Saks］
－Physical Modeling：
－interaction of components is additive
－visual recognition，environmetrics

The Complexity of Nonnegative Rank

The Complexity of Nonnegative Rank

[Vavasis]: It is $N P$-hard to compute the nonnegative rank.

The Complexity of Nonnegative Rank

[Vavasis]: It is $N P$-hard to compute the nonnegative rank.
[Cohen and Rothblum]: The nonnegative rank can be computed in time $(n m)^{O(n r+m r)}$.

The Complexity of Nonnegative Rank

［Vavasis］：It is $N P$－hard to compute the nonnegative rank．
［Cohen and Rothblum］：The nonnegative rank can be computed in time $(n m)^{O(n r+m r)}$ ．
［Arora， $\mathrm{Ge}, \mathrm{Kannan}$ and Moitra］：The nonnegative rank can be computed in time $(n m)^{f(r)}$ where $f(r)=O\left(2^{r}\right)$ and any algorithm that runs in time $(n m)^{o(r)}$ would yield a sub exponential time algorithm for 3－SAT．

The Complexity of Nonnegative Rank

[Vavasis]: It is $N P$-hard to compute the nonnegative rank.
[Cohen and Rothblum]: The nonnegative rank can be computed in time $(n m)^{O(n r+m r)}$.
[Arora, $\mathrm{Ge}, \mathrm{Kannan}$ and Moitra]: The nonnegative rank can be computed in time $(n m)^{f(r)}$ where $f(r)=O\left(2^{r}\right)$ and any algorithm that runs in time $(n m)^{o(r)}$ would yield a sub exponential time algorithm for 3-SAT.

Theorem
The nonnegative rank can be computed in time $(n m)^{O\left(r^{2}\right)}$.

The Complexity of Nonnegative Rank

[Vavasis]: It is $N P$-hard to compute the nonnegative rank.
[Cohen and Rothblum]: The nonnegative rank can be computed in time $(n m)^{O(n r+m r)}$.
[Arora, Ge, Kannan and Moitra]: The nonnegative rank can be computed in time $(n m)^{f(r)}$ where $f(r)=O\left(2^{r}\right)$ and any algorithm that runs in time $(n m)^{o(r)}$ would yield a sub exponential time algorithm for 3-SAT.

Theorem
The nonnegative rank can be computed in time $(\mathrm{nm})^{O\left(r^{2}\right)}$.
...these algorithms are about an algebraic question, about how to best encode nonnegative rank as a systems of polynomial inequalities

Is NMF Computable?

Is NMF Computable?

Is NMF Computable?

Semi-algebraic sets: s polynomials, k variables, Boolean function B

$$
S=\left\{x_{1}, x_{2} \ldots x_{k} \mid B\left(\operatorname{sgn}\left(f_{1}\right), \operatorname{sgn}\left(f_{2}\right), \ldots \operatorname{sgn}\left(f_{s}\right)\right)=" \text { true" }\right\}
$$

Semi-algebraic sets: s polynomials, k variables, Boolean function B

$$
S=\left\{x_{1}, x_{2} \ldots x_{k} \mid B\left(\operatorname{sgn}\left(f_{1}\right), \operatorname{sgn}\left(f_{2}\right), \ldots \operatorname{sgn}\left(f_{s}\right)\right)=" \text { true" }\right\}
$$

Question
How many sign patterns arise (as $x_{1}, x_{2}, \ldots x_{k}$ range over \mathbb{R}^{k})?

Semi-algebraic sets: s polynomials, k variables, Boolean function B

$$
S=\left\{x_{1}, x_{2} \ldots x_{k} \mid B\left(\operatorname{sgn}\left(f_{1}\right), \operatorname{sgn}\left(f_{2}\right), \ldots \operatorname{sgn}\left(f_{s}\right)\right)=" \text { true" }\right\}
$$

Question
How many sign patterns arise (as $x_{1}, x_{2}, \ldots x_{k}$ range over \mathbb{R}^{k})?

Naive bound: 3^{s} (all of $\{-1,0,1\}^{s}$),

Semi-algebraic sets: spolynomials, k variables, Boolean function B

$$
S=\left\{x_{1}, x_{2} \ldots x_{k} \mid B\left(\operatorname{sgn}\left(f_{1}\right), \operatorname{sgn}\left(f_{2}\right), \ldots \operatorname{sgn}\left(f_{s}\right)\right)=" \text { true" }\right\}
$$

Question

How many sign patterns arise (as $x_{1}, x_{2}, \ldots x_{k}$ range over \mathbb{R}^{k})?

Naive bound: 3^{s} (all of $\{-1,0,1\}^{s}$), [Milnor, Warren]: at most $(d s)^{k}$, where d is the maximum degree

Semi-algebraic sets: spolynomials, k variables, Boolean function B

$$
S=\left\{x_{1}, x_{2} \ldots x_{k} \mid B\left(\operatorname{sgn}\left(f_{1}\right), \operatorname{sgn}\left(f_{2}\right), \ldots \operatorname{sgn}\left(f_{s}\right)\right)=" \text { true" }\right\}
$$

Question

How many sign patterns arise (as $x_{1}, x_{2}, \ldots x_{k}$ range over \mathbb{R}^{k})?

Naive bound: 3^{s} (all of $\{-1,0,1\}^{s}$), [Milnor, Warren]: at most $(d s)^{k}$, where d is the maximum degree

In fact, best known algorithms (e.g. [Renegar]) for finding a point in S run in $(d s)^{O(k)}$ time

Is NMF Computable?

Is NMF Computable?

- Variables: entries in A and W ($n r+m r$ total)

Is NMF Computable?

- Variables: entries in A and W ($n r+m r$ total)
- Constraints: $A, W \geq 0$ and $A W=M$ (degree two)

Is NMF Computable?

- Variables: entries in A and W ($n r+m r$ total)
- Constraints: $A, W \geq 0$ and $A W=M$ (degree two)

Running time for a solver is exponential in the number of variables

Is NMF Computable？

［Cohen，Rothblum］：Yes（DETOUR）
－Variables：entries in A and W（ $n r+m r$ total）
－Constraints：$A, W \geq 0$ and $A W=M$（degree two）

Running time for a solver is exponential in the number of variables

Question

What is the smallest formulation，measured in the number of variables？

Is NMF Computable?

- Variables: entries in A and W ($n r+m r$ total)
- Constraints: $A, W \geq 0$ and $A W=M$ (degree two)

Running time for a solver is exponential in the number of variables

Question

What is the smallest formulation, measured in the number of variables? Can we use only $f(r)$ variables?

Is NMF Computable?

- Variables: entries in A and W ($n r+m r$ total)
- Constraints: $A, W \geq 0$ and $A W=M$ (degree two)

Running time for a solver is exponential in the number of variables

Question

What is the smallest formulation, measured in the number of variables? Can we use only $f(r)$ variables? $O\left(r^{2}\right)$ variables?

Easy Case: A has Full Column Rank (AGKM)

Easy Case: A has Full Column Rank (AGKM)

Easy Case：A has Full Column Rank（AGKM）

Easy Case：A has Full Column Rank（AGKM）

Easy Case: A has Full Column Rank (AGKM)

Easy Case: A has Full Column Rank (AGKM)

Easy Case：A has Full Column Rank（AGKM）

Putting it Together: $2 r^{2}$ Variables

Putting it Together: $2 r^{2}$ Variables

Putting it Together: $2 r^{2}$ Variables

Putting it Together： $2 r^{2}$ Variables

Putting it Together： $2 r^{2}$ Variables

Putting it Together: $2 r^{2}$ Variables

Putting it Together： $2 r^{2}$ Variables

Most interesting case in e．g．extended formulations：

$$
\# \text { facets }\{\operatorname{conv}(A)\} \gg \# \text { vertices }\{\operatorname{conv}(A)\}
$$

which can only happen if（say） $\operatorname{rank}(A)=r / 2$

Most interesting case in e.g. extended formulations:

$$
\# \text { facets }\{\operatorname{conv}(A)\} \gg \# \text { vertices }\{\operatorname{conv}(A)\}
$$

which can only happen if (say) $\operatorname{rank}(A)=r / 2$
Question
Can we still find the rows of W from many linear transformations of rows of M ?

$$
\mathrm{T}_{1}=\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}\right)^{+}
$$

$$
\begin{aligned}
\mathrm{T}_{1} & =\left(\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}\right)^{+} \\
\mathrm{T}_{2} & =\left(\mathrm{A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}\right)^{+}
\end{aligned}
$$

Most interesting case in e.g. extended formulations:

$$
\# \text { facets }\{\operatorname{conv}(A)\} \gg \# \text { vertices }\{\operatorname{conv}(A)\}
$$

which can only happen if (say) $\operatorname{rank}(A)=r / 2$
Question
Can we still find the rows of W from many linear transformations of rows of M ?

Most interesting case in e.g. extended formulations:

$$
\# \text { facets }\{\operatorname{conv}(A)\} \gg \# \text { vertices }\{\operatorname{conv}(A)\}
$$

which can only happen if (say) $\operatorname{rank}(A)=r / 2$

Question

Can we still find the rows of W from many linear transformations of rows of M ?

This could require exponentially many (2^{r}) linear transformations (e.g. covering the cross polytope by simplices)

Most interesting case in e.g. extended formulations:

$$
\# \text { facets }\{\operatorname{conv}(A)\} \gg \text { vertices }\{\operatorname{conv}(A)\}
$$

which can only happen if (say) $\operatorname{rank}(A)=r / 2$

Question

Can we still find the rows of W from many linear transformations of rows of M ?

This could require exponentially many (2^{r}) linear transformations (e.g. covering the cross polytope by simplices)

Key
These linear transformations can be defined using a common set of r^{2} variables!

Goal
Encode nonnegative rank as a semi-algebraic set with $2 r^{2}$ variables

Goal
Encode nonnegative rank as a semi－algebraic set with $2 r^{2}$ variables
（i．e．the set is non－empty iff $\operatorname{rank}^{+}(M) \leq r$ ）

Goal
Encode nonnegative rank as a semi-algebraic set with $2 r^{2}$ variables
(i.e. the set is non-empty iff $\operatorname{rank}^{+}(M) \leq r$)

- We give a new normal form for nonnegative matrix factorization (that uses exponentially many $r \times r$ unknown linear transformations)

Goal
Encode nonnegative rank as a semi-algebraic set with $2 r^{2}$ variables
(i.e. the set is non-empty iff $\operatorname{rank}^{+}(M) \leq r$)

- We give a new normal form for nonnegative matrix factorization (that uses exponentially many $r \times r$ unknown linear transformations)
- We use Cramer's Rule to write all of these linear transformations using a common set of r^{2} variables

Goal
Encode nonnegative rank as a semi-algebraic set with $2 r^{2}$ variables
(i.e. the set is non-empty iff $\operatorname{rank}^{+}(M) \leq r$)

- We give a new normal form for nonnegative matrix factorization (that uses exponentially many $r \times r$ unknown linear transformations)
- We use Cramer's Rule to write all of these linear transformations using a common set of r^{2} variables
- These transformations recover the factorization A, W, and we can check that it is a valid nonnegative matrix factorization

Goal

Encode nonnegative rank as a semi-algebraic set with $2 r^{2}$ variables
(i.e. the set is non-empty iff $\operatorname{rank}^{+}(M) \leq r$)

- We give a new normal form for nonnegative matrix factorization (that uses exponentially many $r \times r$ unknown linear transformations)
- We use Cramer's Rule to write all of these linear transformations using a common set of r^{2} variables
- These transformations recover the factorization A, W, and we can check that it is a valid nonnegative matrix factorization

Theorem

The nonnegative rank can be computed in time $(\mathrm{nm})^{O\left(r^{2}\right)}$.

Concluding Remarks

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

Concluding Remarks

This algorithm is based on answering a purely algebraic question：How many variables do we need in a semi－algebraic set to encode nonnegative rank？

Question

Are there other examples of a better understanding of the expressive power of semi－algebraic sets can lead to a new algorithm？

Concluding Remarks

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

Question

Are there other examples of a better understanding of the expressive power of semi-algebraic sets can lead to a new algorithm?

Similar: recent work [Anandkumar et al] on topic modeling is based on understanding how many moments are needed to find the parameters.

Concluding Remarks

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

Question

Are there other examples of a better understanding of the expressive power of semi-algebraic sets can lead to a new algorithm?

Similar: recent work [Anandkumar et al] on topic modeling is based on understanding how many moments are needed to find the parameters.

Observation

The number of variables plays an analogous role to VC-dimension

Concluding Remarks

This algorithm is based on answering a purely algebraic question: How many variables do we need in a semi-algebraic set to encode nonnegative rank?

Question

Are there other examples of a better understanding of the expressive power of semi-algebraic sets can lead to a new algorithm?

Similar: recent work [Anandkumar et al] on topic modeling is based on understanding how many moments are needed to find the parameters.

Observation

The number of variables plays an analogous role to VC-dimension

Is there an elementary proof of the Milnor-Warren bound?

Any Questions?

[^0]Thanks！

[^0]:

