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Abstract—Multi-region image segmentation aims at partition-
ing an image into several “meaningful” regions. The associated
optimization problem is non-convex and generally difficult to
solve. Finding the global optimum, or good approximations of
it, hence is a problem of first interest in computer vision. We
propose an alternating split Bregman algorithm for a large class
of convex relaxations of the continuous Potts segmentation model.
We compare the algorithm to the primal–dual approach and show
examples from the Berkeley image database and from live-cell
fluorescence microscopy.

I. INTRODUCTION

Image segmentation aims at partitioning an image into a

set of disjoint “meaningful” regions. It is typically a first

step toward image analysis. The criterion used to define a

region depends on the nature of the image at hand. The

simplest criterion used in image segmentation is the gray-

value intensity, which is used in classical models such as the

Mumford-Shah [1] model or its piecewise constant instance of

Chan and Vese [2]. Nevertheless, other features can be used to

define regions, including color, texture, tensors, motions [3],

etc. Here, we consider only variational formulations of the

segmentation problem whereby a segmentation is a (local)

minimizer of an energy function.

It can be shown that piecewise constant segmentation

amounts to a labeling problem [1]. We consider the continuous

Potts model for the L-region labeling problem [4], [5]:

E (ΩL) =
L∑

l=1

(∫
Ωl

El(x) dx+
λ

2
Per(Ωl; ΩI)

)
, (1)

such that

ΩL :=

L⋃
l=1

Ωl = ΩI ⊂ R
d and ∀i �= j, Ωi ∩ Ωj = ∅ . (2)

Per(Ωl; ΩI) denotes the perimeter of the region Ωl in ΩI ⊂
R

d, where d is the dimensionality of the image domain.

Minimizing the Potts model energy amounts to finding a

partitioning ΩL into L subdomains of the image domain ΩI ,

such as to achieve an optimal trade-off between the cumulated

costs El(x) of assigning label l to pixel x and the total length

of the subdomain interfaces.

A. Previous Works

Minimizing the Potts model is a challenging optimization

problem, known to be NP-hard in its discrete form [6]. Finding

the global optimum, or good approximations of it, hence is a

problem of first interest in computer vision. For L = 2, both

the discrete and the continuous formulations can be solved

globally, either by a minimum cut algorithm for the discrete

formulation [6] or by a convex relaxation and subsequent

thresholding in the continuous case, the Globally Convex
Active Contour model [7]. For L > 2 it seems that this is

not possible and finding good approximate solutions with

guarantees has been the subject of much research in the last

decade.

In the discrete case, graph cuts can be used to compute

an approximate solution along with a guarantee in energy

of the proximity to the global optimum [6]. This is a great

improvement over multi-phasic active contours based on level

sets [8] that are implemented via a gradient-descent ap-

proach where the artificial time evolution of a PDE limits

the amount of change at each time step and computes only

solutions corresponding to local minima, hence being sensitive

to initialization. However, these improvements come at the

cost of being limited to an anisotropic length approximation,

leading to the known metrication error. Moreover, the graph-

cut algorithm has a large memory footprint and its efficient

parallelization is still an open question.

In the continuous case, an exact convex relaxation is not

known for L > 2, but several sub-optimal relaxations have

been proposed [5], [9], [10], [11].

Once a convex formulation is chosen, a convex optimizer

is used to obtain a numerical solution of the relaxed problem.

Zach et al. [5] used variable splitting to solve their relaxed

problem by an alternating minimization scheme based on

a gradient descent with projection. Similarly, Lellmann et
al. [9] used a Douglas-Rachford splitting (DRS) algorithm

to solve their relaxed problem. Bae et al. [12] solved the

associated (smoothed) dual problem by a combination of

gradient descent and projection steps. Pock et al. [10] and

Brown et al. [13] exploited the primal–dual formulation of

their convex formulations of the original continuous Potts

model.

B. Present Contributions

We here propose to solve the primal problem associated with

a convex relaxation of the continuous Potts model based on the

alternating split Bregman (ASB) algorithm [14]. Our approach

is an extension to the L-region case of the work by Goldstein
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et al. [15] who were the first to propose and apply ASB for

a globally convex formulation of the 2-region segmentation

problem. Adapting a particular splitting proposed by Setzer

et al. [16] in an image restoration context, our algorithm is

flexible in the sense that an arbitrary number of additional

energy terms can be included. It is also efficient, since ASB

splits the original, hard optimization problem into a set of

subproblems, most of which can be solved analytically.

II. AN ALTERNATING SPLIT BREGMAN ALGORITHM

Scalar fields from ΩI to R
L are in light-faced police, vector

fields from ΩI to R
L in bold-faced police. The scalar product

in L2(ΩI ;R
L) is defined as:

〈u, v〉L2(ΩI ;RL) :=

∫
ΩI

〈u(x), v(x)〉 dx ,

where 〈·, ·〉 is the Euclidean scalar product. Similarly, we

denote ‖·‖L2(ΩI ;RL) the norm induced by the scalar product

in L2(ΩI ;R
L). When the space is not specified, scalar prod-

ucts and norms are understood as acting on vectors in the

L−dimensional Euclidean space. Operators acting on scalar

fields are understood component-wise.
We denote by E(x) the cost vector at pixel x ∈ ΩI of size

L × 1, such that E(x) := (E1(x), · · · , EL(x))
T

, and by M
the soft membership function defined at pixel x ∈ ΩI with the

L × 1 membership vector M(x) := (M1(x), · · · ,ML(x))
T

.

We use the word “mask” as a synonym for the soft membership

function.

A. Problem Formulation
Following Lellmann et al. [9], we relax the domain of opti-

mization from the set of hard membership functions (Eq. (2))

to the set of soft membership functions M , hence:

Ẽ(ΩL) := 〈E,M〉L2(ΩI ;RL) + λJ(M) , (3)

such that M belongs point-wise to the probability simplex of

dimension L, denoted ΔL:

ΔL :=
{
M ∈ BV

(
ΩI ; [0 , 1]

L
) ∣∣∣ ∀x ∈ ΩI ,

L∑
l=1

Ml(x) = 1
}
,

(4)

where BV(ΩI ; [0 , 1]
L
) is the set of functions of bounded

variation mapping ΩI to [0 , 1]
L

(cf. Ref. [17] for a good

introduction to such spaces in image analysis).
The functional J is a convex relaxation of the total length

energy in Eq. (1). Following Chambolle et al. [18] and

Lellmann and Schnörr [19], we consider relaxations of the

form: ∫
ΩI

ψ(DM) ,

where DM is the distributional derivative of M (cf. Ref. [18],

[17] for the precise mathematical meaning). The function ψ is

a continuous, convex and positively homogeneous mapping of

d×L-dimensional vector fields into the positive real numbers.

It is of the form [18], [19]:

ψ(u) := sup
q∈S
〈u(x), q(x)〉 ,

where the closed, convex set S determines the convex relax-

ation used. It can been shown that, if one chooses the set

of vector fields belonging to the unit �∞ ball for all pixels

x ∈ ΩI ,

S∞ :=
{
q
∣∣ ∀x, ‖q(x)‖∞ ≤ 1

}
,

one recovers the relaxation of Zach et al. [5], expressed for

smooth membership functions M as:

J∞(M) :=

∫
ΩI

L∑
l=1

‖∇Ml(x)‖2 dx . (5)

It can further be shown (see Refs. [18] and [20]) that choosing

other sets leads to weaker relaxations, or stronger ones without

an explicit representation such as Eq. (5). For the sake of

simplicity we hence use the relaxation in Eq. (5) of Zach et
al. [5]. It achieves a good compromise between tightness and

implementation simplicity.

In summary, the convex objective functional we are inter-

ested in solving is a sum of three convex functionals coupled

through their arguments (in our case the operator gradient in

the regularizer as shown in Eq. (5)):

Ẽ(ΩL) := 〈E,M〉L2(ΩI ;RL) + λJ(M) + ιΔL
(M) , (6)

where the indicator function ιΔL
of the convex set ΔL is used

to incorporate the simplex constraint (4). It assumes the value

0 if M ∈ ΔL and ∞ otherwise.

B. The Proposed ASB Scheme

Goldstein et al. [15] proposed the ASB scheme to solve

a convex relaxation of the 2-region segmentation problem.

We extend their approach to the L-region case considering a

splitting in the spirit of Setzer et al. [16], originally developed

for image deblurring. The advantage of this splitting is to

accommodate a convex optimization problem written as a sum

of many convex functionals coupled through their arguments,

as is the case in our model in Eq. (6).

We omit the detailed derivation of the algorithm, but instead

summarize the ideas behind the splitting scheme. The logical

flow can be decomposed into three steps:

1) Introduce a dummy term in the energy functional as-

suming the value 0 everywhere:

Ẽ(ΩL) = 〈0,M〉L2(ΩI ;RL) + Ẽ(ΩL) .

2) Decouple the sum of functionals by introducing as many

new variables as the number of functionals in the sum.

In our case, the new variables are:

w1 =M, w2 = ∇M , and w3 =M.

3) Apply ASB (cf. Refs. [14], [15], [16], [21]) to this new,

constrained optimization problem.

Our ASB-based scheme to minimize the energy in Eq. (6)

is summarized in Algorithm 1. The step size γ is the only

parameter of the algorithm, and it can be shown under mild

regularity conditions (see, e.g., the work of Setzer [16],

[21]) that the ASB algorithm converges for any value of
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Algorithm 1 ASB-based L-region segmentation for the con-

tinuous Potts model
Input: An image u0, a label cost functional E, the number of

labels L, an initial mask M , the step size γ, and a stopping

rule.

Output: A soft membership labeling M
b01 ← 0, b02.← 0, b03 ← 0
w0

2 ← u0,w
0
2 ← ∇u0, w0

3 ← u0
while stopping criterion is false do

Mk+1 ← argmin
M

∥∥bk1 +M − wk
1

∥∥2
2

+
∥∥∥bk2 +∇M −wk

2

∥∥∥2
2
+

∥∥bk3 +M − wk
3

∥∥2
2

wk+1
1 ← argmin

w1

〈E,w1〉+ 1

2γ

∥∥bk1 +Mk+1 − w1

∥∥2
2

wk+1
2 ← argmin

w2

λ

∫
ΩI

ψ(w2(x)) dx

+
1

2γ

∥∥∥bk2 +∇Mk+1 −w2

∥∥∥2
2

wk+1
3 ← argmin

w3

ιΔL
(w3) +

1

2γ

∥∥bk3 +Mk+1 − w3

∥∥2
2

bk+1
1 ← bk1 +Mk+1 − wk+1

1

bk+1
2 ← bk2 +∇Mk+1 −wk+1

2

bk+1
3 ← bk3 +Mk+1 − wk+1

3

end while
return M ←Mk+1

γ. This is a very attractive feature in practice as it renders

the algorithm virtually parameter-free. Nevertheless, as we

observe in Sec. III-A, the particular value of γ impacts both

the number of iterations needed and the energy of the final

solution. Similarly, the stopping criterion also influences both

aspects of the solution. Following Refs. [5] and [9], we obtain

a hard membership function by assigning each pixel the label

having the largest value in the soft membership function M
(the so-called “argmax” rule). We now discuss the individual

subproblems resulting from the above splitting approach.

1) The M−subproblem: The M−subproblem is a smooth,

convex optimization problem that decouples through the label

space. Therefore, this subproblem reduces to L independent

optimization subproblems with the Euler-Lagrange equations

(2I+∇T∇)Ml = wk
1l−bk1l+∇T (wk

2l−bk
2l)+w

k
3l−bk3l . (7)

We use homogeneous Neumann boundary conditions and solve

the linear system in Eq. (7) by a spectral method based on the

discrete cosine transform DCT-II [22], [16].

2) The w1−subproblem: The w1−subproblem trivially ad-

mits a closed-form solution where the scalar field w1 is

updated point-wise as:

wk+1
1 (x) = −γ E(x) + bk1(x) +Mk+1(x) .

3) The w2−subproblem: The w2−subproblem amounts to

a projection onto the set S , which can be computed either

analytically or numerically (cf. Refs. [18], [20] for other

examples and further discussion). For the regularizer J∞ this

subproblem decouples through the membership function, and

the analytical solution is the coupled soft-thresholding operator

evaluated point-wise in the image domain:

wk+1
2l =

Bk
l (x)∥∥∥Bk
l (x)

∥∥∥
2

max
(∥∥∥Bk

l (x)
∥∥∥
2
− λγ, 0

)
,

with Bk
l (x) := bk2l(x) +∇Mk+1

l (x).
4) The w3−subproblem: The solution of the

w3−subproblem is the point-wise projection over the image

domain ΩI of the vector bk3(x)+M
k+1(x) onto the probability

simplex ΔL. This can be computed exactly in O(L logL)
operations [23] or in O(L) expected operations [24]. We

implement the strategy of Michelot [23].

III. NUMERICAL EXPERIMENTS

We demonstrate the algorithm in different numerical exper-

iments on both synthetic and real-world images. We compare

our ASB strategy to the recently published general-purpose

primal–dual (PD) algorithm of Chambolle and Pock [25] for

which convergence-rate guarantees are known.

A. Synthetic Benchmark

We consider the triple-junction inpainting benchmark in-

troduced by Chambolle and Pock [18]. Figure 1a shows the

initial data u0 with the region to be inpainted in gray. The

known optimal solution is shown in Fig. 1b, three regions of

different colors meeting at a triple junction with an angle of

2π/3. We use the relaxed continuous Potts model with the

following data-fidelity term:

El(x) =
∑

c={R,G,B}
(u0(x)− βcl)2 ,

where {βl := [βRl, βGl, βRl]
T }l=1,...,3 is a vector of prede-

fined colors. In this example we set them to the ground truth.

We observe that the sole parameter of ASB influences the

convergence behavior of the algorithm. For a large step size

γ we observe premature convergence on energy levels higher

than the PD reference, resulting in a less binary mask (cf.
Figs. 1c and f). For a smaller step size the final energy reached

by ASB at iteration n = 104 is comparable (γ = 5) or better

(γ = 0.1) than PD (cf. Fig. 1f). Nevertheless, the convergence

behavior differs: for the intermediate step size (γ = 5), ASB is

initially faster and then slows down compared to PD. For the

smaller step size (γ = 0.1), ASB is initially slower than PD,

but then reaches lower energy levels quickly. The final masks

of these two cases, however, are visually indistinguishable

from the mask obtained by PD (cf. Fig. 1e).

B. Natural Scenes Segmentation

We demonstrate the applicability of our algorithm to natural

scene images from the Berkeley database [26]. We use the

same energy model as in the previous subsection, except that

the L color vectors are now estimated from the data using
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Fig. 1. Triple-junction inpainting benchmark. (a) The data image with the
grey region to be inpainted. (b) The ground truth solution. All experiments are
done with a regularization parameter λ = 1/5. (c) The final mask obtained
by the ASB algorithm for γ = 250. (d) The final mask from the primal–
dual algorithm and ASB for γ = 0.1 and γ = 5. Only one mask is shown
because the three are visually indiscernible. (e) The segmentation obtained
after applying the “argmax” rule. It is the same for all cases. (f) The
log− log trace of the energy E normalized by the best energy E� obtained
among all experiments.

a k-means algorithm. Figure 2 shows the original images

and the segmentations obtained by ASB after 500 iterations.

We do not show the results obtained by PD as they are

visually indistinguishable from the ASB ones. Nevertheless,

we indicate their relative energy differences and observe that

they are small. For all images the final masks are almost

everywhere binary, indicating that the solutions obtained from

the relaxed continuous Potts model are in these examples close

to the global solution of the original non-convex model.

C. Biological Image Segmentation

We exemplify a biological application by segmenting a

confocal microscopy image of a mammalian cell with fluores-

cently labelled endosomes (Fig. 3a). To accommodate for the

Poisson statistics inherent to such low-intensity microscopy

techniques, we use a Poisson negative-log-likelihood data-

fidelity term. We set the regularization parameter to λ = 0.15
and the step size to γ = 10. The ASB algorithm is stopped

when the relative change in the primal energy (Eq. (6)) is

below machine precision. The intensity values are estimated

by k-means with L = 5 regions. The resulting masks capture

the background (Fig. 3c), the cytoplasm (Fig. 3d), and the

endosomes (Fig. 3e). The endosomes are divided into three

masks according to their different brightness (Fig. 3f1–f3).

IV. DISCUSSION AND CONCLUSION

We followed the idea of Goldstein et al. [15] in applying

the alternating split Bregman (ASB) algorithm to image seg-

mentation. We extended their work to the multi-region case

a) b)

c)

e)

g)

d)

f)

h)

L = 5 ΔrE = 8.1e−3

L = 5 ΔrE = 3.8e−4

L = 5 ΔrE = −3.2e−4

L = 6 ΔrE = −1.0e−2

Fig. 2. Natural scene segmentation. The first column (a, c, e, g) shows the
input images. The second column (b, d, f, h) shows the final masks obtained
from the PD and ASB algorithms. The masks from the two algorithms are
visually indiscernible and only one is shown. The regularization parameter is
set to λ = 1/5 and the step size for ASB is γ = 5. We also show below
each segmentation the number of regions L used and the relative difference in
energy between the two algorithms defined as ΔrE = (EASB −EPD)/EPD.

e)

c)

a) b)

d)

f1) f2) f3)

Fig. 3. Segmentation of fluorescently labelled endosomes. (a) Inverted
fluorescence microscopy image corrected for the background using a top-hat
filter. (b) The reconstructed inverted image with L = 5 regions. (c–f) The
soft membership functions for increasing fluorescence intensity levels: (c)
The mask corresponding to the image background; (d) The mask capturing
the cytoplasmic compartment; (e) The sum of the remaining three masks
capturing the endosomes. (f1–f3) The three endosome masks individually.
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by introducing an ASB-based algorithm for solving a large

class of convex relaxations of the continuous Potts model

using a splitting proposed by Setzer et al. [16]. This results

in an efficient decoupling of the different energy terms. The

resulting optimization problem decomposes into one least-

square problem and several independent proximal mapping

problems (the w-subproblems). Most of the subproblems can

be solved exactly, either analytically or numerically. We have

demonstrated the potential of the algorithm on synthetic test

cases and real-world images, using the primal–dual (PD)

approach of Chambolle and Pock [25] as a benchmark.

The results show that our approach compares well with the

theoretically well-grounded PD algorithm. The results also

suggest that an adaptive strategy for the only parameter of

the algorithm could lead to better performance. Moreover,

the theoretical understanding of the ASB algorithm should

be improved, e.g., by exploring connections between ASB

algorithms and other well-known algorithms [27], [21].

From a modeling point of view, one can accommodate

other energy terms such as the label-cost prior of Yuan and

Boykov [28] and Delong et al. [29]. The ease of adding an

additional energy term mainly depends on the ability to solve

the associated proximal problem (i.e., the w−subproblem).
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