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Introduction

When data scientists write a book on how a supervised deep learning project is to be 

structured, what it is lived at the beginning, i.e., when input data are analyzed, takes 

up only the first third, or so. �e bulk of the story, in fact, is usually considered what 

happens next: with the model training and validation process, and then with the testing 

phases of the outcomes [1].

Unfortunately, the first phase of data analysis and preparation is almost never con-

sidered as a silver bullet, and it often remains an underinvested branch in the deep 
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learning practice. In some sense, our scientific community has not been as effective 

at developing strategies to construct reliable datasets as we have with those to learn 

from them. But that needs to change, under the penalty of severe consequences, rang-

ing from inaccurate predictions to the lack of explainability of our models [2, 3]. Fur-

ther, the progress we need to achieve cannot be in the abundance of data we collect, 

alone. It should be also in our ability to make sure that our project actually bene-

fits from the particular data we choose. Focusing all into a huge amount of data can 

be a good premise, in fact; yet, not asking any questions about their usage, role and 

the value that can be drawn from it, will turn that premise into the first motivation 

behind a failure. In other words, data is just an initial representation of a situation, 

but key remains the way we analyze it. We go so far as to say that data is there, mostly 

to stimulate an accurate analysis. Whether a single piece of data is either descriptive 

or predictive, or even prescriptive, in nature, is just what can be understood through 

an in-depth analysis of that data [4–7].

In this context, the target of our study is to demonstrate that putting a proper data 

analysis at the core of a deep learning project can assist one in identifying the most accu-

rate data descriptors for that project. While it is well known in fact that, in computing, 

a data descriptor is just a structure containing information that describes data, yet data 

descriptors for deep learning can span several diverse aspects, as the data’s provenance 

and type, up to its storage schema. In essence, descriptors encapsulate a basic knowledge 

about the data, and can thus be used as starting points for the construction of a trust-

worthy dataset on which a deep learning model can be safely trained.

Along this line, in this paper we describe a deep learning design experience, where we 

had initially a trouble on developing an appropriate deep learning model able to detect 

failures in mechanical water meter devices, because we tried to train that model by 

merging together the numerical information relative to water consumption with some 

device descriptors based on categorical information, thus resulting into an explosion in 

data dimensionality, that soon determined a deterioration of the prediction accuracy [8, 

9]. After several unsuccessful experiments conducted with alternative methodologies 

that either permitted to reduce the data space dimensionality or employed more tra-

ditional machine learning algorithms, we changed the training strategy. In essence, we 

moved towards an accurate statistical analysis of the initial data, culminating with the 

application of an approximation of the 80/20 Pareto rule, that made us understand that 

categorical descriptors could not be part of the contents our model had to learn. Start-

ing from this changed perspective, we devised a new strategy where categorical descrip-

tors were used just as a driver for data selection, rather than being fed as input to the 

model. �is way, we kept under control the dimensionality of the learning space and, at 

the same time, we achieved satisfying results of model prediction accuracy, in terms of 

detection of defective devices, reaching values in the range from 87 to 90%.

Anticipating a part of the final results shown in this paper, we introduce Fig. 1, where 

the Z, X and Y variables represent, respectively, the prediction accuracies, obtained in 

the following three different situations: (1) �e deep learning model is trained only with 

numerical data (X); (2) �e deep learning model is trained with a mix of numerical and 

categorical data (Y); (3) �e deep learning model is trained with a selection of numerical 

data, based on a Pareto analysis conducted on the categorical data (Z).
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As portrayed in Fig.  1, and discussed at length in the remainder of the paper, Z 

(90%) outperforms Y (83%).

In conclusion, in this paper we demonstrate that it is possible to train a deep learn-

ing model that achieves excellent prediction accuracy levels, even in the presence 

of both numerical and categorical descriptors. �is approach was devised to select 

the training data, based on a Pareto analysis conducted on the categorical descrip-

tors, thus avoiding the explosion of the data space dimensions while keeping intact 

the statistical coherence of the portion of the dataset selected for training. We have 

provided empirical evidence that this approach maintains its validity even if com-

pared with more traditional space dimension reduction methodologies and classical 

machine learning algorithms, as well.

�e remainder of this paper is structured as follows. In the Section devoted to the 

Related work, the focus is put on what can happen to the dimensions of a learning space 

when categorical variables are employed, along with a survey on the techniques usually 

adopted to manage this situation. In the Methodology Section: (i) we present the initial 

dataset on which we have worked, (ii) we illustrate some (unsuccessful) deep learn-

ing model training experiments that employed classical techniques to reduce the data 

dimensionality space, (iii) we describe the approach through which this initial dataset 

was reshaped, along with an analysis that demonstrates that these data re-adjustment 

operations do not change the statistical coherence of the selected data, and (iv) we 

finally illustrate how those data can be used to train a deep learning model. In the Sec-

tion devoted to describing the Results, instead, we present and discuss the results we 

achieved with our approach. �e Section devoted to the Discussion supplies: (i) some 

reflections on the advantages and limitations of our approach, along with a comparison 

with some alternative machine learning methods, and) (ii) a practical guide on how to 

use our classifier culminating with the adoption of the additional technique of Bagging, 

able to further increase the model performances. �e final Section provides the Conclu-

sions and terminates the paper with some concluding remarks.

Fig. 1 Anticipating the results: prediction accuracies on water meter devices (X = 86%, Y = 83%, Z = 90%)
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Related work

At the core of this paper lies the question if all types of descriptors should be presented 

to a deep learning model in a way that is opaque to most of the designers, rather than 

subjecting them to an accurate data analysis before using them for training. In particu-

lar, this problem exacerbates when we have to deal with two very different types of data: 

i.e., numerical vs. categorical. In fact, while numerical data are measurable in nature, and 

easily manageable, categorical data, instead, represents a collection of information, that 

can be divided into groups; e.g., black and white; and, as such, they can take on numeri-

cal values (for example: 1 indicating black, and 2 indicating white), but those numbers 

do not have a precise mathematical meaning. �is is the reason why working with cat-

egorical descriptors can easily lead to an increase of the dimensions of the space under 

investigation. �is phenomenon may go so fast that the available data become sparse, 

with a consequent loss of statistical significance [10].

To understand this phenomenon, take, for example, one of the most common tech-

niques applied to encode categories into numerical values: the one-hot encoding tech-

nique [11, 12]. Consider a categorical variable with the following values: Yes, No, and 

Prefer not to say. �ey can be encoded with the following vectors {[1, 0, 0], [0, 1, 0], [0, 0, 

1]}. �is produces a new, three-dimensional space, with a total amount of twenty-seven 

points. However, the only interesting points remain three, and are orthogonal, equidis-

tant, and sparse. Simply said, we have yielded a three-dimensional vector space, with a 

new dimension for each original value (yes, no, prefer not to say). Unfortunately, things 

can even get worse. If we had three categories, each with three values, we would get a 

nine-dimension space, as this would come with the product of the number of categories 

times the number of possible values [13, 14].

Hence, a general problem can be posed: how to manage categorical variables, while 

keeping the dimensionality of the resulting space under control. To this aim, many statisti-

cal techniques have been proposed in literature that are used to face this problem. Typi-

cally, the recurrent idea behind all those methods is as follows:

 i. Consider a high dimensional categorical space.

 ii. Apply a procedure for reducing the number of variables, without loss of informa-

tion.

 iii. Identify new variables with greater meaning, and finally,

 iv. Keep as the ultimate target that of maintaining visible a lot of points, in this 

reduced space, to be used as representative examples on which a supervised learn-

ing model can be trained.

What is also very common is the fact that the procedure for reducing the dimension-

ality rests upon the idea of representing the categorical space with a few orthogonal 

(uncorrelated) variables that capture most of its [15]. In the remainder of this Section, 

we are going to provide a few details on the principal techniques of this family. Before 

beginning with this review, we briefly anticipate here that our method will be different. 

We will avoid to use categorical descriptors as input to the model to be trained. Instead, 

they will be used as a driver for data selection, thus eliminating, from the start, the need 

for a dimensionality reduction of the categorical space.
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Among the traditional methods mentioned above, probably, the Correspondence Anal-

ysis (with all its variants) is the most known one. Akin to the Principal Component Anal-

ysis, the Correspondence Analysis (or CA) provides a solution for projecting a set of data 

onto lower-dimensional plots. Essentially, CA aims at visualizing the rows and the col-

umns of a contingency table as points in a low-dimensional space, so that a global view of 

the data is made available, yet easily interpretable [16–18]. Identically derived from the 

Principal Component Analysis, we have the CATegorical Principal Components Analysis 

(or CATPCA). Here, again, the final goal is to reduce the data dimensions by projecting 

them onto a low-dimensional plane, with the plus that the relationships among observed 

variables are not assumed to be linear [19].

Of interest in this field, it is also the so-called Multi-Dimensional Scaling (MDS) tech-

nique. Technically speaking, MDS is used to translate information about the pairwise 

distances among a set of n objects into a configuration of n points, mapped into an 

abstract Cartesian space. In essence, this technique is proven to be useful to display the 

information contained in a distance matrix, while providing a form of non-linear dimen-

sionality reduction [20, 21]. Sometimes, also some kind of structural equation modeling 

is employed to individuate groups, or subtypes, in the case of multivariate categorical 

data. �ese are called latent classes, as detailed in the following references [22–25].

Another interesting technique, in the context of multivariate statistics, is that of Bin-

ning. Here the target is somewhat different, since, at the basis, we have a form of data 

quantization. Essentially, all the data values falling into a given interval (the bin, indeed) 

are all replaced by a single representative value. A typical example, which is provided to 

explain this technique, is that of representing the ages of a group of people with intervals 

of consecutive years, rather than with each single age value [26]. Needless to say, going 

for binning is a delicate choice, since some pieces of information can come sacrificed. 

Nonetheless, it may result in a valid option when dealing with categorical variables, 

because a large amount of less frequent values, which could increase the dimensions of 

the resulting space, can be instead all grouped under a unique generic value (e.g., Other). 

�is way, we yield just one dimension for an entire group of categorical values.

In the following Sections, instead, we will illustrate an alternative approach, where 

some categorical descriptors were put to good use in this complex context, without 

any need for dimension reduction. Rather than becoming a portion of the examples on 

which the learning algorithm was trained, they will be used to select the data to be pre-

sented to the learning algorithm.

Methodology

We now present, first, some preliminary information relevant to the present study, sec-

ond, a description of the methods we used to innovate our approach.

Dataset description: type of variables, deep learning and prediction accuracy

As already mentioned, we were presented with the problem of designing a deep learning 

model able to predict the imminent failure of a device that measures water consumption 

in a water distribution network. Initially, we worked on a huge real-world dataset, fed 

with about one million mechanical water meter devices and with over fifteen million 

water meter readings of consumed water, supplied by a company that distributes water 
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over a large area in Northern Italy. �is large dataset spanned a period in time, from the 

beginning of 2014 to the end of 2018. To train our deep learning model, at the end of a 

long validation process which is described at length in [8, 9], we decided to use a smaller 

dataset, comprised of just those water meter devices, with at least three valid numerical 

readings. �is dataset contained exactly 17,714 devices; where 15.652 were non-defective 

ones, and the remaining 2.062 were defective.

�is dataset can be summarized by means of its eight main attributes, as reported in 

Table 1. Besides the first attribute, relative to the ID of the water meter, the second and 

third attributes are of numerical type and are used to report how much water is con-

sumed with the passage of time (Readings and Readings Dates). �e final attribute (i.e., 

8) does not require any explanation.

Instead, attributes from 4 to 7 represent categorical information about the meter 

devices with the following meaning: the attribute # 4 is the type of material of which 

the meter is constructed (this attribute can take on 98 different values) and from now 

on, we will identify this attribute with the categorical variable A. �e attribute # 5 rep-

resents the specific type of the device (this attribute can take on 45 different values). 

From now on, we will identify this attribute with the categorical variable B. �e attribute 

# 6 accounts for the manufacturer of the meter (this attribute can take on 48 different 

values). We will identify this attribute with the categorical variable C. �e attribute # 7 

represents the type of usage of the meter (this attribute can take on 14 different values). 

We will identify this attribute with the categorical variable D.

Before proceeding further, we need now to verify if a correlation exists between the 

values that our four categorical variables (A, B, C and D) can take on and the labels we 

assign to the devices (i.e., defective, non-defective). In fact, if this correlation existed, 

there would be no need to develop a complex deep learning model to predict the failure 

of a given device: it would be sufficient to check if a given device either possesses or not 

that certain characteristic. �is is, for example, the unfortunate case when all the devices 

in a batch, constructed of a given material (or manufactured by a certain producer) are 

defective.

To rule out this hypothesis, we began by developing a preliminary correlation analysis, 

based on the use of both the Cramér’s V technique and the �eil’s U index.

Starting with the Cramér’s V technique, we tried to verify the existence of a possible 

statistical correlation between (the values that) each categorical variable (may take on) 

and the labels (that is, either defective or non-defective) assigned to our devices. Essen-

tially, this method measures the association between two variables, using a Pearson’s chi-

squared statistic [27] and returning results in the continuous interval [0, 1]; where, on 

one side, 0 indicates no association between the investigated variables, while on the 

Table 1 Dataset: main attributes

No Attribute name No Attribute name

1 Water Meter ID 5 Meter Type ID

2 Readings 6 Manufacturer ID

3 Readings Dates 7 Type of Usage

4 Material ID 8 Labels (Faulty/Non Faulty)
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contrary 1 means that a correlation exists. It is based on the following formula: 

V =

√

χ2

min (k−1,r−1)n
. In our case: χ2 is a chi-squared statistic conducted on n, the total 

number of water meter devices, r is the number of values that a given categorical varia-

ble may take on, and k is the number of different labels that can be assigned to a given 

device (i.e., defective and non-defective).

In Table 2, we report the results we got with the Cramér’s V analysis we conducted for 

each categorical variable. As shown in Table 2, the results indicate a very low correlation 

between each of our categorical variables and the labels, with numerical results ranging 

from 0.14 to 0.32.

To have a further confirmation that A, B, C and D did not correlate directly with the 

devices of our dataset, we used also another technique, namely the �eil’s U analysis [28]. 

It measures, again, the plausible degree of an association between two variables, return-

ing a result in the continuous interval [0, 1]. �eil’s U values can be computed based on 

the following formula: U(X |Y ) =
H(X)−H(X |Y )

H(X)
. Here, X and Y are two discrete (random) 

variables. In our case: X is one of our categorical variables, while Y represents the label. 

H(X) is the entropy of X, and H(X|Y) is its conditional entropy. �e results of our �eil’s 

U analysis are reported in Table 3. Again, the results of Table 3 confirm a low correlation 

between our categorical variables and the labels, with a maximum value of just 0.13.

What we can conclude, at this point, is that there is no statistical correlation between 

our categorical variables and the labels we assigned to our devices. �is allows us to rule 

out the hypothesis that predictions can be made by simply observing the values that a 

categorical variable takes on, and simultaneously encourages us to continue on the road 

of a more complex predictive model.

At this point, we developed a deep learning model, whose main characteristics were as 

follows. It was based on two parallel inputs, in order to handle both the numerical time 

series returned by the water readings and the categorical input. �e output of these two 

parallel branches was then concatenated and finally combined in two layers of the model 

to achieve the final prediction. It is worth mentioning that the complete architecture of 

deep learning model was already described in [8]. Rather, it is of some importance to 

Table 2 Correlation between categorical variables and labels, using Cramér’s V index 

Categorical variables Cramér’s V

A/label 0.32

B/label 0.28

C/label 0.26

D/label 0.14

Table 3 Correlation between categorical variables and labels, using Theil’s U index 

Categorical variable Theil’s U

A/label 0.13

B/label 0.09

C/label 0.09

D/label 0.03
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remind that it was implemented using the Keras and Tensorflow frameworks, with Adam 

as the optimization algorithm, for eighty epochs. To measure the accuracy of the predic-

tions, we resorted to the well-known performance metrics termed Area Under the Curve 

(AUC) of the Receiver Operating Characteristic (ROC).

Further, each experiment was developed in the following way. First, we used the 80% 

of the available devices for a traditional ten-fold cross validation procedure [29]. �e 

results of this ten-fold cross validation procedure was given in terms of the AUC-ROC 

metric, and its associated standard deviation. �en, we used again the portion of 80% of 

the devices to train our model and, finally, we tested the prediction ability of the model 

with the remaining unseen 20% of data. In particular, we developed four different experi-

ments, where respectively:

1. In the first experiment, only the available numerical values were used, that is the total 

amount of readings associated to our 17,714 devices;

2. In the second experiment, we used both the readings of our 17,714 devices and the 

categorical values mentioned above (i.e., A, B, C and D). In this case, the correspond-

ent data were prepared using the one-hot encoding technique, with the resulting cat-

egorical space dimensionality increased up to 205. �is is the result of the sum of the 

different types of the four categorical descriptors (98 + 45 + 48 + 14 = 205);

3. In the third experiment, we used again both the readings of our 17,714 devices and 

the categorical values mentioned above (A, B, C and D). Like before, the categori-

cal data were prepared using the one-hot encoding technique, but the learning space 

dimensionality was decreased down to 128, by applying the Principal Component 

Analysis (PCA) technique [17], with a sum of variances of all individual principal 

components approximately equal to 90%.

4. In the fourth experiment, we used again both the readings of our 17,714 devices and 

the already mentioned categorical values (A, B, C and D), encoded with the one-hot 

encoding technique. In this case, the learning space dimensionality decreased down 

to 48, by virtue of the application of the Binning technique [26]. It is to note, here, 

that the 48 one-hot values used for Binning were obtained by selecting the top values 

for each categorical variable, according to a Pareto distribution (that is, appearing in 

the 90% of the dataset), and finally adding 1, for the “other bin” that comprised all the 

remaining infrequent values.

�e results of these four experiments are reported in Table 4 (third and fifth columns), 

where the prediction accuracy of various learning models is returned in term of the 

AUC-ROC metric, as achieved during both the initial ten-fold cross validation phase 

(where also the standard deviation value is reported in the fourth column) and the test-

ing phase.

If we look at the prediction accuracy value achieved without the introduction of the 

categorical variables (experiment #1, 86%), it is evident the impossibility to achieve a 

better prediction accuracy with the introduction of the additional information provided 

by the categorical variables (experiment #1, 83%), as a result of the increase of the learn-

ing space dimensions. Not only that, but also an attempt to reduce the dimensions of 

that space, using traditional techniques like PCA and Binning, either provided no real 
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benefit (experiment #4, 85%, Binning) or caused a further deterioration of the prediction 

accuracy (experiment #3, 81%, PCA).

In essence, we have found a case where there is no way to obtain an improvement 

of the accuracy of the predictions if categorical data are added, whatever technique is 

employed.

At that precise point, we took the decision to adopt an alternative method which is 

described in the following Subsection.

Dimension reduction with a Pareto analysis

Given the failure of the experiments where we tried to increase the prediction accuracy 

by adding categorical information, we decided to better enquire on how the values taken 

by each categorical variable were distributed over our 17,714 water meter devices.

In Fig. 2, histograms are plotted that begin to reveal an important fact. �ere are many 

devices that possess a given characteristic (or take on a specific value) of a certain cat-

egorical variable, while many other characteristics/values are scarcely relevant for those 

devices.

If we better analyze Fig. 2, we see that we have four plots, each one for each analysed 

categorical variable. From top to bottom: A, B, C and finally D. In each plot, one can read 

the number of devices that possess a certain characteristic (or value) for that categorical 

variable, using the scale set at the leftmost side of the y-axis of the Figure, while the n 

different characteristics (or values), for each categorical variable, are distributed over the 

x-axis. Obviously: n = 98 with A; n = 45 with B; n = 48 with C and n = 14 with D. It goes 

without saying that the higher is a histogram, the more are the devices possessing that 

given categorical characteristic.

�ere is another information portrayed in Fig. 2: for each categorical variable, we have 

a dotted curve with the cumulative percentage distribution of those n values over our 

devices. For example, if we consider the dotted curve for the A variable and then we look 

at scale set at the rightmost side of Table 2, we can recognize that the ten most frequent 

characteristics (out of 98) are present in almost the 90% of the devices. As an additional 

note: Fig. 2 has been drawn only for the defective meter devices. For the sake of con-

ciseness, we have omitted to report an additional Figure for non-defective devices, as it 

would show very similar results.

At the end, a careful analysis of Fig. 2 reveals that the distribution of the categorical 

characteristics possessed by our 17,714 devices is shaped like a quasi-Pareto function 

[29].

Table 4 Prediction accuracy: w/o categorical variables, w/ categorical variables, PCA 

and Binning

Experiment Dimension
of the categorical 
space

AUC-ROC
Ten-fold 
cross validation

Standard 
deviation

AUC-ROC
testing

# of Meter Devices

defective Non-defective

#1 No categorical variable 85% 1.7% 86% 2062 15,652

#2 205 78% 8.5% 83% 2062 15,652

#3 128 73% 12,5% 81% 2062 15,652

#4 48 76% 13.4% 85% 2062 15,652
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Fig. 2 Number of devices possessing a given categorical characteristic (From top to bottom: variables A, B, C, 

and D)
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As to this choice of identifying with a Pareto distribution the curves according to 

which the categorical values possessed by our devices is shaped, we could notice that 

there is a wide hierarchy of several other power-law or Pareto distributions (known, for 

example, as Pareto type I, II, III, IV and Feller–Pareto distributions). However, our intent, 

here, is simply to emphasize that our empirical observation of the curves of Fig. 2 shows 

that the typical 80–20 Pareto rule, stating that 80% of outcomes are due to 20% of causes, 

precisely reflect the situation under investigation. Only the adoption of a quasi-Pareto 

function fits well the trend of our four categorical variables where just a few of the most 

frequent values would provide a contribution in terms of knowledge representation of 

this phenomenon. In other words, what happens is that, given a categorical variable, just 

a small subset of its characteristics (or values) is possessed by the most part of the water 

meter devices. On the contrary, a lot of values (or characteristics) that a categorical vari-

able can take on are not representative of any device.

Table  5 better summarizes this aspect numerically. For each categorical variable, it 

reports: (i) the number n of all the characteristics (or values) a given variable can take 

on, (ii) the number of the most frequently used characteristics, and finally (iii) the num-

ber of devices (both defective and non-defective) that possess those most frequent char-

acteristics. In essence, what emerges from Table 5 is that, on average, around the 90% of 

meter devices possess about the 20% of characteristics (or values) of a given categorical 

variable.

By virtue of this analysis, we took the decision to reconsider how to make appropri-

ate use of the categorical descriptors. Definitely: not as input data on which to train the 

model, but as relevant information to take into account to reshape the training data-

set. In essence, the idea at the basis of our approach is that of employing the most fre-

quent characteristics (of a given categorical variable) to select the water meter devices 

on which a deep learning model should be trained. Simply put, the approach can be 

described as follows:

1. Given a categorical variable, we train a deep learning model with just those water 

meter devices (and corresponding numerical readings) that possess the most fre-

quent characteristics (of that variable). At the end of this first step, this strategy 

returns four deep learning models, one for each categorical variable in use. We can 

call them, respectively: DLM_A, DLM_B, DLM_C, and DLM_D. Obviously, each 

model can return a different prediction, each one with its associated accuracy.

2. At the end of point 1 above, we have four different predictions, returned by the four 

trained models. �ese predictions can be then further managed to produce a unique 

Table 5 A quasi-Pareto distribution of the categorical characteristics

Categorical
variable

# of all 
the characteristics

# of the most 
frequent 
characteristics

# of Meter Devices Total number 
of devices remaining 
after the Pareto rulesDefective Non-defective

A 98 23 (23%) 1855 (90%) 13,474 (86%) 15,329

B 45 7 (16%) 1854 (90%) 13,707 (88%) 15,561

C 48 11 (23%) 1889 (92%) 13,369 (85%) 15,258

D 14 3 (21%) 1945 (94%) 13,963 (89%) 15,908
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and final comprehensive value. Different methods can be used to this specific aim; 

among many alternatives, we have chosen to adopt a specific strategy, termed bag-

ging, that will be better explained in a next Section (i.e., Discussion).

To give a visual impression of our methodology, we consider of great utility the follow-

ing graphical scheme, portrayed in Fig. 3, that succinctly summarizes the main steps of 

the Pareto-inspired path we have described above.

Of relevant importance is also a description of the technical structure of the (four) 

deep learning models we have employed. We provide this description with the graphical 

scheme of Fig. 4, where our typical deep learning model is presented.

In particular, our typical deep learning model is comprised of the following layers: 

(i) an input layer taking as input two time-series: the former representing the water 

consumption measurements, and the latter representing the passage of time between 

consecutive readings, (ii) a Long Short-Term Memory (LSTM) recurrent layer with 32 

neurons, (iii) a first Dense layer with 32 neurons, and a Rectified Linear Unit (ReLU) 

as its activation function, (iv) a second Dense layer with 128 neurons, and a Rectified 

Linear Unit (ReLU) as its activation function, (v) finally the Output layer. �e Keras and 

the Tensorflow frameworks were used as usual to manage the above model. As per the 

LSTM layer, it could be interesting to note that we used the standard implementation of 

the LSTM layer as proposed in [30].

In addition, the following Tables 6, 7 and 8 report the hyperparameters used in our 

experimental setup, respectively for the Dense layers, the LSTM layer and the Adam 

optimizer. Not only, but it is also worth mentioning that cross-entropy was used as the 

loss function and each model was trained with batch size 512, for 80 epochs.

Fig. 3 Graphical summary of the proposed methodology
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Fig. 4 Structure of the deep learning model

Table 6 Hyperparameters for the Dense layers

Hyperparameter Value

Activation function “ReLU”

Use bias True

Kernel initializer “Glorot uniform”

Bias initializer “zeros”

Table 7 Hyperparameters for the LSTM layer

Hyperparameter Value

Activation function “tanh”

Recurrent activation “Sigmoid”

Use bias True

Kernel initializer “Glorot uniform”

Recurrent initializer “orthogonal”

Bias initializer “zeros”
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To conclude this Section, there is another serious technical problem which is as 

follows.

Typically, when one decides to clean a given dataset, prior to subjecting it to a learn-

ing process, adequate validation procedures are to be conducted to check if the resulting 

dataset is coherent with the initial one.

�is is exactly our case, since we need to reflect on the statistical meaning and validity 

of the Pareto operations we have carried out with the aim to reshape our initial dataset, 

yielding four different subsets of devices (i.e., A, B, C and D), and the correspondent 

learning models (DLM_A, DLM_B, DLM_C, and DLM_D).

In essence, we need to conduct an analysis to understand whether the re-adjustment 

of our data has transformed/altered our dataset, from a statistical viewpoint, or it has 

been left unaltered.

�is analysis has been focused on the following facts.

Since the most important contents of our dataset consist in the water meter readings 

that report how much water has been consumed, per each meter device, we could con-

clude that no relevant statistical alteration has been made while reshaping the dataset, if 

the average value of the consumed water measured by all the meter devices comprised 

in the initial dataset is not different from the average value of the consumed water meas-

ured by the devices of all the four final subsets (A, B, C and D), obtained after the selec-

tion based on the Pareto rule.

In simple words, we are looking for a confirmation to the statistical hypothesis that 

the average quantity of consumed water, as reported in the readings comprised in the 

initial dataset of meter devices, is not different from that corresponding average values 

reported in those readings belonging to the four sets of devices, chosen after the Pareto 

selection.

Based on this idea, we conducted two different statistical tests. With the first, we 

assumed normal distributions (with known values for the average and standard devi-

ation values of the consumed water) and proceeded with a Z test. We tested the null 

hypotheses (i.e., the two average values are equal) with a significance α factor equal to 

0.01.

As seen from the results we have reported in Table  9, the null hypothesis is never 

rejected, i.e., we have no evidence that the average quantity of consumed water meas-

ured by the devices of the initial dataset, say µ, is different from the average quantities of 

consumed water measured by the devices belonging to all the four sets selected with the 

Pareto rule, call these averages: µA, µB, µC and µD.

Not only, but we repeated the same kind of test, yet with a different statistic. Simply, 

we tried to use a Student’s T test (with an unknown standard deviation). �is should be 

Table 8 Hyperparameters for the Adam optimizer

Hyperparameter Value

Learning rate 0.001

Beta1 0.9

Beta2 0.999

Epsilon 1 ×  10−7
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intended just as an additional attempt to confirm the previous statistical results and, in 

fact, not surprisingly, we got very similar outcomes, as shown in Table 10.

To conclude this point, while it is true that, in general, data cleaning operations can 

bring to a kind of a statistical paradox, when the initial dataset is significantly different 

from the final one, in our case we have no statistical evidence that the most important 

information comprised in our dataset (the amount of consumed water) has been altered 

by the Pareto operations that have produced the four different sets of meter devices, on 

which our corresponding learning models have been trained.

Results

Before showing the results got with the four deep learning models discussed before, we 

devote some time to provide the important following information.

�e first fact to mention is that, for each model training activity, we split each subset of 

the meter devices (both defective and non-defective) into two separate portions. �e first 

one consisted of the 80% of the total quantity of meter devices (devices) that were used 

only for the ten-fold cross validation procedure and for the training activity. Instead, the 

remaining 20% of devices (with their readings) were used for the testing phase. As to the 

metrics used for measuring the prediction results returned by our models, we made use 

of a set of the most popular formulas. While the most significant one remains the AUC-

ROC metrics, whose complex definition can be read here [31], we provide a succinct 

definition of the other ones.

To understand them, it is fundamental the meaning of the following concepts: TP (or 

true positives) is the number of defective devices, predicted as defective by a prediction 

model; TN (or true negatives) is the number of non-defective devices, predicted as non-

defective by the model; FP (or false positives) is the number of non-defective devices, 

erroneously predicted as defective by the model, and finally FN (or false negatives) is the 

number of defective devices, erroneously predicted as non-defective by the model.

Given these preliminary definitions, the following formulas (1, 2, 3, 4, 5, 6, 7) cor-

respond, respectively, to the following concepts of Positive Predictive Value (PPV), 

Table 9 Z test: Statistical coherence of the initial dataset with A, B, C and D 

Test p-value α = 0.01

µ = µA 0.147059 Fail to reject the null hypothesis

µ = µB 0.037709 Fail to reject the null hypothesis

µ = µC 0.923521 Fail to reject the null hypothesis

µ = µD 0.925745 Fail to reject the null hypothesis

Table 10 T test: Statistical coherence of the initial dataset with A, B, C and D 

Test p-value α = 0.01

µ = µA 0.153596 Fail to reject the null hypothesis

µ = µB 0.038466 Fail to reject the null hypothesis

µ = µC 0.926699 Fail to reject the null hypothesis

µ = µD 0.928924 Fail to reject the null hypothesis
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Negative Predictive Value (NPV, True Positive Rate (TPR), True Negative Rate (TNR), 

F1-score on Positives, F1-score on Negatives and Accuracy.

Another relevant fact to remind is that in our study our dataset was split over two dif-

ferent sets (defective and non-defective devices), whose dimensions were very different. 

�e issue of imbalanced sets is of great relevance when they are used for training a learn-

ing model, thus needing an adequate management [32, 33]. To this aim, in all the train-

ing experiments we have carried out, we have used the traditional SMOTE technique 

included in the imbalanced-learn Python Library. �is has allowed us to balance the two 

sets of devices, by augmenting that set of the defective ones.

�e results of the oversampling operations we have carried out on the minority class 

(defective meters) are reported in the fourth column (SMOTE-ADDED) of the follow-

ing Tables 11 and 12, for all the four learning models obtained after the application of 

the Pareto rule. Obviously, the SMOTE added devices reported in the fourth column 

of Table  11 are those used for the training activity, while the SMOTE added devices 

reported in the fourth column of Table 12 are those used for ten-fold cross validation 

procedure.

(1)Positive Predictive Value (PPV ) =
TP

TP + FP
,

(2)Negative Predictive Value (NPV ) =
TN

TN + FN
,

(3)True Positive Rate (TPR) =
TP

TP + FN
,

(4)True Negative Rate (TNR) =
TN

TN + FP
,

(5)F1 − score on Positives = 2 ∗
PPV ∗ TPR

PPV + TPR
,

(6)F1 − score onNegatives = 2 ∗
NPV ∗ TNR

NPV + NPR
,

(7)Accuracy =
TP + TN

TP + TN + FP + FN
.

Table 11 Quantities of devices (defective and non-defective) used for training and testing 

plus the number of SMOTE-added devices for the minority class (defective)

Model Train data (80%) Smote-added Test data (20%)

Non-defective Defective Non-defective Defective

DLM_A 10,779 1484 9295 2695 371

DLM_B 10,966 1483 9483 2741 371

DLM_C 10,695 1511 9184 2674 378

DLM_D 11,171 1556 9615 2792 389
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Precisely, In Table 11, for each learning model, in the second and in the third columns 

we show the quantity of devices (non-defective and defective), used during the ten-fold 

cross validation procedure and the training phase, while in the fifth and in the sixth col-

umns the number of devices is shown that were used during the testing phase. It goes 

without saying that each device comes with its associated readings.

Similarly, in Table 12, for each learning model, we report, in the second and in the 

third columns, the portion of devices (non-defective and defective), used during the 

training of the ten-fold cross validation procedure (i.e., 9 FOLDS), while in the fifth 

and in the sixth columns we report the portion of devices used during the testing of 

that ten-fold cross validation procedure (1 FOLD). Again, one should consider that 

the relative readings associated to each device.

Now, we are ready to show the results, as returned by each of the four deep learning 

models obtained after the application of the Pareto rule (namely, DLM_A, DLM_B, 

DLM_C, and DLM_D).

�ese results are shown following the path of the various procedures with which 

our learning model was trained. �e first used one was a ten-fold cross validation 

procedure [34]. It is well known that cross-validation is primarily used in these cases 

to estimate the skill of a learning model on unseen data. �at is, in order to estimate 

how the model is expected to perform when it will be used to make predictions on 

data not used during the training of the model. �is is a very popular method because 

it is simple and because it typically results in a less optimistic estimate of the predic-

tion accuracy than that will be returned with the train/test method. In our case, with 

our ten-fold cross-validation, we randomly partitioned our train data (i.e., second and 

third columns of Table 11) into 10 equal size subsamples. Of these 10 subsamples, 9 

subsamples were used as training data (second, third and fourth columns of Table 12), 

while a single subsample was retained as the validation data for validating the model 

(columns fifth and sixth of Table 12). �en we repeated our cross-validation process 

10 times (the folds), with each of the 10 subsamples used exactly once as the valida-

tion data. �e 10 results from the folds were finally averaged (with also the computa-

tion of the standard deviation values). �ese results are reported in Table 13 using the 

AUC-ROC metric.

Encouraged by the results of our ten-fold cross validation procedure, we passed 

to the traditional training and testing activity, performed on the devices of Table 11. 

Obviously, the training phase was conducted on the 80% portion of the data (second, 

Table 12 Quantities of  devices (defective and  non-defective) used for  the  ten-fold 

cross  validation procedure plus  the  number of  SMOTE-added devices for  the  minority 

class (defective)

Model Ten-fold cross validation
(9 FOLDS)

Smote-added Ten-fold cross validation
(1 FOLD)

Non-defective Defective Non-defective Defective

DLM_A 9701 1335 8366 1078 149

DLM_B 9869 1334 8535 1097 149

DLM_C 9625 1359 8266 1070 152

DLM_D 10,053 1400 8653 1118 156
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third and fourth columns of Table 11), while the final test was conducted on the 20% 

of the (unseen) data (fifth and sixth columns of Table  11). �e results are provided 

in the terms of the metrics we have introduced above, precisely: Positive Predictive 

Value (PPV), Negative Predictive Value (NPV), True Positive Rate (TPR), True Neg-

ative Rate (TNR), F1-score on Positives (F1 on P), F1-score on Negatives (F1 on N), 

Accuracy and AUC-ROC.

�e following considerations are in order, now. First, it worth reminding that a 

deep learning model, typically, returns a probability value, ranging from 0 to 100%. 

In our specific case, the closer we are to 0%, the more is plausible the decision that 

that device is non-defective; instead, the closer we are to 100%, the more is plausible 

the decision that that device is defective. Second, we used the probability value of 0.7 

as a threshold, over which a given device is definitely predicted as defective. �e deci-

sion for the 0.7 threshold comes from the fact that this the cut-off point that allows to 

both maximize the true positive rate and minimize the false positive rate in the corre-

sponding ROC curve in our specific case. Since we have employed the ten-fold cross 

validation procedure as the first step of our experimentation, 0.7 was computed as the 

average between the optimal thresholds achieved over the ten validation runs.

We would like to conclude by highlighting the fact that the prediction accuracy 

returned by our models, whose examples were selected with the Pareto rule, range 

from 87 to 88%. If we compare this result with the AUC-ROC value of 83% (obtained 

with a model trained with both the numerical and categorical variables, experiment #2, 

Table 4), we can observe a not negligible improvement. Nonetheless, this improvement 

could appear more limited if we look at other alternatives that either do not make use of 

categorical variables (86%, experiment #1, Table 4) or do exploit some dimension reduc-

tion procedure, like Binning, for example (85%, experiment #4, Table  4). Nonetheless, 

even in this case, we deem as important to have proposed a new and original method 

able to increase the prediction accuracy in the presence of categorical variables. None-

theless, a more detailed discussion about the advantages and the limitations is provided 

developed in the Section below.

Discussion

�e present discussion aims at emphasizing both the advantages and the possible limita-

tions of the approach we have proposed to treat categorical, high dimensional data.

First, it is important to mention that this paper starts from the consideration that many 

of the existing feature subset selection methods, that are commonly used for machine 

Table 13 Results: ten-fold cross validation

Model AUC-ROC Standard 
deviation

DLM_A 87% 1.4%

DLM_B 87% 1.4%

DLM_C 86% 1.1%

DLM_D 87% 1.5%
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learning, cannot be easily extended to the case of categorical datasets, with an extremely 

large volume of examples.

Our proposed approach has proven to be useful in all those cases with categori-

cal descriptors when it can be shown that the training data are distributed following 

a (quasi) Pareto statistical distribution. �is should not be considered as a limitation, 

because the field of application may extend very far from the field we have chosen for 

our study (i.e., the predictive maintenance of water meter devices) up to very hot current 

research topics, like for example computational epidemiology [35, 36] and COVID-19 

data modeling [37, 38] as well, where this kind of unbalanced statistical data distribu-

tions often occur.

Second, another intriguing issue is that it could seem that, in our training process, we 

have mixed notions from two different genres (feature selection using the Pareto rule and 

deep leaning). To this aim, we would like to emphasize the fact that while it is true that 

one of the strong advantages of a deep learning model is its inherent hierarchical feature 

selection along the successive level of increasing abstraction in detecting patterns, many 

practical situations exist where the data have huge dimensions and are also very sparse. 

In those cases, it becomes difficult to use a pure deep learning approach, due to the lim-

ited number of neurons typically present in the input layer. In those specific situations, 

a good practice can be that of using adequate projection algorithms that decrease the 

number of features to a reasonable number, which can be then tackled by deep learning. 

When this happens, we should interpret such a procedure more as a feature extraction 

procedure, rather than a feature selection, which is more typical with classical machine 

learning algorithms. In simple words, the new features that are extracted are somewhat 

meaningless from the point of view of the deep learning method, yet their extraction can 

be useful to drive the learning process, in some specific cases. �is has been exactly also 

our case. Not only, but a new type of literature is emerging that describes similar situa-

tions, like for example in [39–41].

�is latest issue has another interesting implication which can be summarized with 

the question if more traditional machine learning classification algorithms, like Support 

Vector Machines, for example, could perform better with respect to the deep learning 

models we have utilized selected based on the Pareto rule. To investigate on this subject, 

we have carried out an additional experiment, where more traditional machine learn-

ing algorithms were used. We employed two classical machine learning algorithms like 

SVM (Support Vector Machine classifier) and CART (Classification and Regression 

Trees), referenced respectively as [42] and [43] and developed within the context of a 

Python sklearn implementation. Results from these experiments are shown in Table 14. 

Table 14 Results: Prediction accuracy with SVM and CART  

Model AUC-ROC
Ten-fold cross validation

Standard Deviation AUC-ROC
testing

SVM w/ categorical 69% 10.4% 80%

SVM w/o Categorical 76% 2.6% 77%

CART w/ Categorical 65% 6.3% 73%

CART w/o Categorical 74% 2.7% 74%
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In particular, in the second and in the third columns of Table 14 the AUC-ROC values 

are reported, along with the correspondent standard deviation values, obtained with a 

ten-fold cross validation procedure. In the fourth column of Table 14, we show the AUC-

ROC values achieved during the final testing phase.

As it is evident from a comparison of these results with those from Table 15, tradi-

tional machine learning algorithms have provided, in our case, prediction accuracy per-

formances that are worse than that obtained with the method proposed in this paper, 

thus confirming the validity of our choices.

�ird, it is important to provide an answer to a more practical question that could 

emerge at this point of the discussion: How can our method be serviceably if applied to 

any of the meter devices that are utilized to measure water consumption in our case? In 

other words, if we have to make a prediction on a new meter device, how can we pro-

ceed? �e answer to this question relies on the simple application of the following pro-

cedure. We should, first, consider that device, and check if it possesses the categorical 

characteristics of either the variable A or B or C or D. If that device possesses any of 

the categorical characteristics of interest, we can use the corresponding model (either 

DLM_A, or DLM_B, or DLM_C, or DLM_D) to make our predictions. Instead, in the 

negative case, we should not use our models to make a reliable prediction for that device, 

and we should resort to a more traditional approach.

However, it should be noticed that the likelihood that a device does not possess any of 

those characteristics, at least in the context of the dataset we have studied, is quite low; 

i.e., below 10% on average, as our Pareto analysis has demonstrated.

Fourth and final. �e approach we have proposed can be seen as a method that can be 

used in combination with additional techniques, useful to improve its predictive perfor-

mances. �ink of the Bagging technique, for example [44]. We could use it, in fact, when-

ever we have a device that possesses the characteristics of all the four models together, 

in the following way. We could use each different model, in isolation, to return its pre-

diction results for that given device, and then we could average over all those returned 

results, to produce a unique and comprehensive prediction. Obviously, we can expect 

that this Bagging strategy, at least with our dataset, can work only for a limited quantity 

of meter devices; yet it could provide finer predictions, whenever applicable.

Following this reasoning and to conclude this Section, we have tried to test the afore-

mentioned Bagging strategy on that subset of our meter devices (both defective and non-

defective) that possessed the categorical characteristics of all the four models (DLM_A, 

DLM_B, DLM_C, and DLM_D). �is intersection counted 2304 non-defective devices 

and 313 defective ones. �e results of this final testing experiment are shown in Table 16. 

Table 15 Results: testing

Model PPV NPV TPR TNR F1 on P F1 on N Accuracy AUC-ROC

DLM_A 36% 96% 74% 83% 49% 89% 82% 88%

DLM_B 43% 96% 70% 88% 54% 92% 86% 87%

DLM_C 39% 96% 73% 84% 51% 90% 83% 88%

DLM_D 45% 96% 70% 88% 55% 92% 86% 87%
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As shown in Table 16, we have an improvement of the most important metrics, espe-

cially Accuracy and AUC-ROC that has increased up to the value of 90%.

Conclusions

We have developed a deep learning model able to predict if a device that measures water 

consumption in a water distribution network is either defective or not. �e model was 

based on both the measurements of consumed water and on the categorical (technical) 

characteristics that a device possesses.

�e novelty of our approach rests upon the idea of exploiting those categorical charac-

teristics to better select the sets of devices on which the model goes trained.

Avoiding the use of those categorical characteristics as a direct input to the model 

has removed the danger of an explosion of the dimensions of the learning space, and 

with this approach we have reached predictive accuracies ranging from 87 to 90%, for an 

amount of 90% of the available devices.

�e approach we have proposed was devised to select the training data based on a 

Pareto analysis conducted on the categorical descriptors, thus avoiding the explosion of 

the data space dimensions while keeping intact the statistical coherence of the portion of 

the dataset selected for training.

We have provided empirical evidence that this approach maintains its validity even if 

compared with more traditional space dimension reduction methodologies and classical 

machine learning algorithms.
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