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The usual approach to the ergodic problem makes use of the idea of "coarse-graining". 

That is, a macroscopic observer is supposed to be limited to "coarse-grained" experiments, 

and the resultant lack of complete information about the system gives rise to the irreversible 

increase of the (coarse-grained) entropy. It is shown that this approach is untenable, since 

macroscopic observers are not restricted in principle to coarse-grained experiments, and in 

fact one "fine-grained" experiment has already been carried out in practice. An alternative 

approach is presented which avoids these difficulties. The irreversible increase of entropy 

is due to molecules outside the system proper, which collide with the outside of the box 

enclosing the system; this leads to a truly random, in principle unpredictable perturbation, 

which can be treated only stochastically. The number of particles within the system is 

irrelevant for this purpose, and in particular need not be large. 

§ 1. Introduction 

In statistical mechanics, we consider ensembles of systems described by a den

sity matrix U. If each system is enclosed in a perfectly reflecting wall, and has 

an internal Hamiltonian H, the time development of the ensemble is given by the 

Liouville equation 

dU =~[H UJ. 
dt itt ' 

(1·1) 

The entropy of the typical system of the ensemble is defined by 

S= -k Tr(Uln U), (1·2) 

where k is Boltzmann's constant. The thermal equilibrium state is that unique 

density marix Us which leads to the largest entropy S, subject to whatever macro

scopic constraints are imposed on the system (e.g., given average energy, given 

volume, given number of particles) .1) 

If we start, at time t=O, from a density matrix Uo, then the Liouville equ

ation (1·1) leads to the time development 
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746 J. M. Blatt 

U(t) =exp( -iHt/h) Uo exp( +iHt/ft). (1·3) 

This is a unitary transformation, which preserves traces of functions of U. Hence 

we obtain immediately: 

S(t)=S(O). (1·4) 

That is, the entropy S fails to increase with time, and the thermal equilibrium 

distribution U. is not approached by the system. 

Since actual systems do tend to equilibrium as time goes on, this result is 

unacceptable. The usual way out of this difficulty is by means of the introduction 

of "coarse-grained averages".2,S) One argues that a macroscopic observer is not 

in a position to make sufficiently detailed" fine-grained" measurements to determine 

the complete density matrix U, and hence the entropy S of the system. The 

qantity S of equation (1· 2) is called the "fine-grained entropy" and is in practice 

not measurable. Rather, macroscopic observers are restricted to "coarse-grained" 

measurements, i.e., measurements in which quantum states are lumped together 

into groups, and one determines· which of these groups a given system of the 

ensemble falls into; no finer distinctions are made, and in particular the actual 

quantum state is not determined for any system on which measurements are carried 

out. One can allow for this coarse-graining process mathematically by introducing 

a mapping u~ff of the actual, fine-grained density matrix U onto a coarse-grain

ed density matrix ff. The coarse-grained entropy is then defined by 

(1·5) 

It is shown in reference 2 that, under very general assumptions concerning the 

nature of the coarse-graining process u~ff, the coarse-grained entropy S increases 

with time, thereby approaching the thermal equilibrium value which is the largest 

value it can reach. 

This way out of the difficulty of equation (1·4) retains the Liouville equation 

(1·1) but modifies the definition of entropy, from (1· 2) to (1· 5), and at the 

same time gives up the idea of a unique equilibrium distribution U.. We now 

say that equilibrium has been reached whenever the coarse-grained entropy § 
has attained its equilibrium value; this condition is much too weak to pick out 

a unique statistical matrix U., and; in fact, the Liouville equation is inconsistent 

with approach to anyone unique limiting distribution U •. 

It should be noted that the coarse-graining approach depends crucially upon 

the assertion that "fine-grained" measurements are impracticable, and thus the fine

grained entropy is a meaningless concept. We shall show in section 2 of this paper 

that such measurements are not only possible in principle, but at least one such 

measurement has already been carried out by an actual macroscopic observer: The 

spin-echo experiment of Hahn.4) It is therefore not permissible to base funda

mental arguments in statistical mechanics on coarse-gratntng. The failure of the 

fine-grained entropy, (1· 2), to increase with time is not merely an unimportant 
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An Alternative Approach to the Ergodic Problem 747 

curiosity. Rather, it represents an important and measurable aspect of the physi

cal situation. No theoretical approach which leads to constancy of S can constitute 

a satisfactory logical basis for statistical mechanics. 

A different approach has already been considered in the literature.6l.6l.7l.8l It 

consists in retaining the definition of entropy, but modifying the Liouville equation 

(1·1) through introducing the random influence of the thermal motion of the wall 

of the system. It has been shown that this approach leads to thermal equilibrium 

under very general conditions. 

Nevertheless, this approach has not found general acceptance. There is a com

mon feeling that it should not be necessary to introduce the wall of the system in 

so explicit a fashion. For example, a system contained inside a calorimeter app

roaches internal thermal equilibrium, at some temperature T, long before it reaches 

thermal equilibrium with the world out side the calorimeter, at room temperature. 

Furthermore, it is considered unacceptable philosophically, and somewhat "unsport

ing", to introduce an explicit source of randomness and stochastic behaviour directly 

into the basic equations. Statistical mechanics is felt to be a part of mechanics, 

and as such one should be able to start from purely causal behaviour. 

Section 3 of the present paper is devoted to a discussion of these arguments. 

We arrive at the conclusion that the objections listed above are invalid, and that 

there exists a sound logical and philosophic basis for introducing stochastic con

cepts directly into the basic equations of statistical mechanics. The difficulty about 

the calorimeter is only apparent, and disappears when one distinguishes carefully 

between the relevant relaxation times. 

§ 2. Arguments against coarse.graining 

On general, philosophical grounds, the coarse-graining procedure is somewhat 

disconcerting, in that it makes an actual physical process (the approach of the 

system to equilibrium) dependent on the accidental shortcomings of the observer 

who makes measurements on the system. * Close interaction ·between observer and 

observed system is of course a commonplace in quantum mechanics. But the ergo

dic problem already occurs in classical statistical mechanics, and (with the possible 

exception of von Neumann9l) there is general agreement that the transition from 

classical mechanics to quantum mechanics makes no essential difference to this 

problem. If we take a purely classical view, then there is no objection in princi

ple to a fine-grained observation of each system of our ensemble of systems. 

Coarse-graining is not intrinsic to the problem under study, and it is dragged in 

artificially, so to speak, in order to save the principle of increasing entropy. The 

same is true in quantum mechanics, the only difference being that we mean 

* A different interpretation of the meaning of the coarse-graining procedure is possible, and 

will be discussed at the end of section 3. 
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748 J. M. Blatt 

something different by a "measurement", namely the determination of the quantum 

state if' rather than the determination of 3N coordinates and 3N momenta. 

We shall now go on to demonstrate by means of a Gedanken-experiment that 

coarse-graining can be misleading, and we then show that an actual experiment 

closely analogous to this Gedanken-experiment has already be carried out. 

Consider an ideal gas of particles constrained to move in the x-direction only, 

confined by walls at x=a and x= -a. Initially, at time t=O, all N particles 

are located at the centre, at x=O, and they have a Maxwellian distribution of 

velocities. Thus the combined probability distribution in x and v at time t= 0 

IS 

(2-1) 

where Po is a normalization constant. 

As time goes on, the particles are reflected back and forth between the two 

walls. Under the usual assumption that the walls are perfectly reflecting mirrors, 

the speed of anyone particle does not change. However, their initial non-uniform 

distribution in space is smeared out rather quickly. The characteristic time for 

this process is the time which the "average" particle takes to traverse the distance 

2a, i.e., 

(2·2) 

where Vo is some average speed, for instance the root-mean-square velocity. After, 

say, 10To, the distribution of the particles in space will be sensibly uniform. 

Their distribution in momentum space is Maxwellian to start out with, and stays 

that way. Hence, any "coase-grained" experiment to determine the combined 

distribution function U(x, v) is bound to lead to the equilibrium result, 

U(x, v) = Po exp(-t,mv2jkT). Equilibrium (2-3) 
2a 

This is the way in which coarse-graining leads to the thermal equilibrium distri

bution. 

Actually, however, the true distribution function is not at all equal to (2·3). 

Rather, there are complicated correlations between the positions and momenta of 

all the particles. To see that this is true, consider the following Gedanken-ex

periment: At time t= T, reverse the velocities of all particles of the gas. It 

follows immediately that at time t=2T, the initial state (all particles at x=O) 

reoccurs. We shall call this the reversal experiment. 

This kind of recurrence of the initial configuration has nothing to do with 

the Poincare recurrence cycle. The time for the latter is unimaginably long. Thus, 

if we carry out the reversal experiment on a system whose distribution function 

is truly (2·3), we shall indeed reach any unusual distribution (including the one 

with all particles at x=O) eventually, but the time involved is so long that it is 

of no practical importance. Conversely, if the reversal experiment, carried out on 
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An Alternative Approach to the Ergodic Problem 749 

an unknown system, leads to all particles congregating at x=O some finite, small 

time T later, then we are perfectly safe in concluding that the unknown system 

was not really in equilibrium, i.e., did not really have the distribution function (2·3) 

in the fine-grained sense. 

To distinguish between the true equilibrium distribution (2·3) and the distri

bution obtained in our Gedanken-experiment at time T, we shall use the term 

" quasi-equilibrium" for the latter. To an observer constrained to make corse

grained measurements only, there is no difference between quasi-equilibrium and 

true equilibrium. If we accept the restriction that macroscopic observers can 

make only coarse-grained measurements, our reversal experiment is not a possible 

experiment for a macroscopic observer, and there is no difficulty. No macroscopic 

observer can distinguish between quasi-equilibrium and true equilibrium, and thus 

this distinction is simply sophistry of no consequence to physics. 

However, macroscopic observers can carry out reversal experiments in princi

pIe. It is not necessary to measure a velocity in order to reverse it. Thus, the 

process of reversing all velocities does not imply measurement of all velocities 

(which latter would indeed be impossible for a macroscopic observer). Hence there 

is no difficulty in principle with our reversal experiment. 

Even more striking is the fact that just such a reversal experiment has actual

ly been carried out already. This is the "spin-echo" experiment of Hahn:) In 

this experiment, spins are aligned by a strong pulse at time t=O. As a result of 

small inhomogeneities in the" constant" magnetic field Ro applied to the speci

men, different nuclear spins undergo Larmor precession at slightly different rates. 

Hence the spins get out of alignment rather quickly, in a time T2 determined principal

ly by the inhomogeneities in Ro. At some later time, t= T';$> T 2, quasi-equilibrium 

has been reached for the spin distribution. At this time, Hahn puts on another 

strong pulse, whose main effect is to reverse the direction of precession of every 

spin. * At time t=2T all the spins are aligned once more, and this fact shows 

itself through the observation of a coherent magnetization at that time, known as 

the "spin-echo". 

Since an experiment essentially equivalent to our hypothetical reversal experi

ment has actually been carried out by a macroscopic observer, we conclude that 

macroscopic observers are not restricted to coarse-grained experiments. It is 

therefore not permissible to base fundamental arguments in statistical mechanics 

on coarse-graining. 

* Our description of this experiment is deliberately simplified. Actually, the pulse at t=T 

does not reverse the directions of precession, but rather reverses the direction in which each spin 

points at this moment. In terms of our previous ideal-gas analogy, this amounts to leaving all 

velocities unaltered, but moving each particle i of the gas instantaneously from position Xi to 

position -Xi. In view of the symmetry around x=O, the ultimate result at time t=2T is the 

same as in the velocity reversal experiment. 
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750 J. M. Blatt 

Some additional comments are desirable here: 

(1) One may exclude the spin-echo experiment from consideration by saying that is it not a 

.. thermodynamic measurement", and statistical mechanics is meant to apply only to results of 

thermodynamic measurements. We consider this attitude unacceptable, both philosophically and 

practically: From the practical point of view, one would need a clear-cut and easily applicable 

definition of just what constitutes a thermodynamic measurement, as opposed to non-thermodynamic 

measurements. We are not aware of such a definition, nor do we believe it would be easy to 

construct one. From the philosophical point of view, we feel that statistical mechanics should aim 

to describe as big a part of nature as possible; limiting the range of applicability of statistical 

mechanics to certain types of measurements requires its own philosophical justification; we see no 

valid philosophical justification for limiting statistical mechanics to the results of "thermodynamic 

measurements", whatever may be meant by this term. In the next section we shall discuss another 

limitation on the applicability of statistical mechanics, a limitation for which we feel there is 

adequate philosophical justification. 

(2) In the discussion of the spin-echo experiment, we have ignored the influence of spin

spin interactions. The spin-spin interactions do decrease the size of the echo pulse, but this is from 

our present point of view accidental. The reversal pulse of Hahn produces, not a complete 

reflection of all spin directions, but rather a rotation of 180 degrees around the x-axis. As long 

as all spins remain in the x-y plane, this is equivalent to a reversal of all spin orientations; i. e., 

the spin making an angle (J with the x-axis initially, finally makes an angle - (J with the x-axis. 

Thus, if one could constrain all spins to remain in the x-y plane, then the spin-spin interactions 

would not alter the size of the echo pulse at all. In fact, however, the spin-spin interactions force 

individual spins out of the x-y plane, and for those spins the reversal pulse of Hahn does not 

produce a complete reversal in our sense. This is the origin of the decrease in size of the echo 

pulse due to spin-spin interactions, and it is of no fundamental interest in our present discussion. 

§ 3. The origin of randomness in statistical mechanics 

Having realized that the fine-grained entropy S contains meaningful and 

measurable information about the ensemble of systems under study, we now in

vestigate what must be done to allow S to increase with time. The constancy of 

S in the usual theory, equation (1· 4), follows directly from the fact that the time 

development of the density matrix U is given by a similarity transformation, and 

this latter fact follows directly from the Liouville equation (1·1). As long as the 

ensemble can be described validly by a Hamiltonian formalism, the fine-grained 

entropy fails to increase with time. Since the spin-echo experiment forces us 

to retain the fine-grained definition of entropy, we must necessarily give up the 

completely causal, Hamiltonian description of the time-development of the ensemble, 

in order to obtain an increasing entropy. 

Let us return to the spin-echo experiment. The size of the spin-echo pulse is 

in fact less than the size of initial pulse, the more so the longer the time T in 

the experiment. The spins fail to return to a fully aligned configuration. Under 

the conditions which we have outlined in section 2, * the relaxation time characteris

tic for this failure to re-align. is the relaxation time for interchange of energy be

tween the system of spins and the lattice vibrations. If the time T of the 

* In the actual spin-echo experiment, spin-spin interactions also produce failure to align. 

However, for reasons given at the end of section 2, we consider this effect accidental, whereas the 

effect of the spin-lattice interaction is basic. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

2
/6

/7
4
5
/1

8
5
8
9
1
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



An Alternative Approach to the Ergodic Problem 751 

experiment is much longer than this "spin-lattice" relaxation time, the spin system 

has reached full thermal equilibrium, and no spin-echo pulse can be observed; the 

spin system has" forgotten" its initial state. Thus, the approach to true equili

brium is governed by interactions between the system and the outside world, 

not by interactions within the system it~elf. The latter interactions lead only to 

pseudo-equilibrium, not to true equilibrium. 

A particularly striking case is obtained by imagining a system initially in 

a pure quantum state, ¢o. That is, the density matrix Uo at time t=O is a pro

jection operator onto ¢o, and the entropy s=o. If there are no interactions with 

outside world, the wave function ¢o develops in time into a wave function ¢ (t) , 

and the density matrix at time t is the projection operator onto ¢ (t). Since this 

is still one pure state, the entropy is still zero. There is simply no mechanism in 

this picture by which the system can go from an initial pure state to a final 

statistical distribution of states. 

The failure of S to increase with time is due to the fact that we have 

overidealized an "isolated" system. Every system in statistical mechanics must 

be thought of as enclosed within walls of some kind. Every wall has an outside 

as well as an inside, and the outside surface of the wall is subject to collisions 

with molecules outside the system proper. We now proceed to point out that there 

is an important philosophical distinction between molecules inside the system and 

molecules outside the walls. Molecules inside the system are in principle accounted 

for by equations of motion plus initial conditions, i.e., they can be described causal

ly. Molecules outside the system are in principle not amenable to a causal des

cription, and must of necessity be described in stochastic terms. The momentum 

and energy transferred between outside molecules and the system proper then acts 

as a source of true randomness influencing the dynamical behaviour of the system 

inside the walls. We maintain that this is the origin of randomness and increas

ing entropy in statistical mechanics. 

To see that the outside molecules must be treated statistically, let us imagine the 

opposite for a moment. In order to make a causal description of the motion of 

the outside molecules, we would have to include them in the Hamiltonian and 

specify their initial coordinates and momenta. That is, we would have to count 

these molecules formally as part of a larger system under study. This larger 

system, however, also has a wall, and there are outside molecules beyond that wall. 

Hence, we have arrived at the following dilemma: 

Either we make a causal, Hamiltonian description of the whole Universe, 

or else we must allow for an essential element of randomness in the description 

of the motion of the limited system under study. 

The random element here is not due to accidental shortcomings of the observer, 

but rather to the fact that the observer restricts his observations to a finite 

part of the Universe. Whereas human observers are not in fact restricted to coarse

grained experiments they are surely incapable of observing the whole Universe at 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

2
/6

/7
4
5
/1

8
5
8
9
1
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



752 J. M. Blatt 

once. The whole measurement process depends on a dichotomy between observer 

and system observed. A man trying to observe the whole Universe simultaneously 

would be completely confounded by logical as well as by practical difficulties. He 

could not use any measuring apparatus (since that is part of the Universe), and 

he would have to observe, among other things, the workings of his o.wn brain. 

Thus, there is a sound philosophical basis for the assertion that we are in principle 

limited to observing finite parts of the Universe, and are therefore forced to in

troduce a random element (due to the remainder of the Universe interacting with 

our limited system) into the basic equations of motion of the system. Conversely, 

a Laplace demon who observes the whole Universe at once would describe the 

world in terms quite different from statistical mechanics; he would not need to 

introduce any random element into. his description. 

Once this point of view is accepted, the conventional discussions of the ergodic 

problem become irrelevant, since they start from the assumption of perfectly re

flecting, stationary walls, and Hamiltonian equations of motion. These assumptions 

lead inevitably to constant fine-grained entropy S, and hence to quasi-equilibrium 

rather than true equilibrium. The ergodic problem has been discussed from the 

present point of view by Lebowitz andco-workers.O),6).7).8) The present work provides 

a philosophical foundation for the model adopted in these papers. 

It is a corollary of this point of view that the number of particles of which 

the system is composed need not be large. In principle, one single molecule inside 

the box is enough. As a resuit of the random impacts of outside molecules on the 

walls of the box, the motion of the one inside molecule is not determined causally 

by a Hamiltonian equation of motion, but contains a random, statistical element 

which changes an initial pure state into a statistical distribution of states, and 

eventually into the equilibrium, Maxwell-Boltzmann distribution. The large number 

of molecules in actual systems is a great help in carrying out calculations in statis

tical mechanics, but it is not an essential aspect of statistical mechanics. Statistical 

mechanics is not the mechanics of large, complicated systems; rather it is the 

mechanics of limited, not completely isolated systems. 

We believe that the above arguments dispose of the usual objections against 

introducing an explicit source of randomness directly into the basic equations of 

statistical mechanics. A mechanics of limited systems cannot be entirely causal, 

even if the mechanics of the wole Universe in causal (which latter of course we 

do not know). It remains to deal with the objection that the system inside a 

calorimeter reaches internal thermal equilibrium, at its own temperature, long be

fore it reaches thermal equilibrium with the world outside the calorimeter. To 

discuss this objection, let us return to the Gedanken-experiment of section 2. 

Let us make a crude estimate of the time required for the system of our 

Gedanken-experiment to approach true equilibrium. We introduce the variable x' 

as follows: With perfect mirror walls, for a particle with initial velocity v, we 

define 
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An Alternative Approach to the Ergodic Problem 753 

x'=vt. (3·1) 

The relation between x' and the actual position x is then as follows: 

for -a<x'<a, x=x'. 

For a<x'<3a, x=2a-x'. 

For 3a<x'<5a, x=x'-4a. 

For 5a<x'<7a, x=6a-X'. 

........................ (3·2) 

It should be noted that the mapping x'~x is a many-to-one mapping. 

Now let us allow for the thermal motion of the two walls by assuming that 

each wall has a mass M and a randomly varying velocity V; an elastic impact be~ 

tween a gas particle of mass m and initial velocity v results in reflection of the 

particle with an altered speed. The change in speed (ignoring the change in 

direction) is given by 

2MV+2mv 

M+m 

If M,?m, and iMV2-~mv2-~kT, (3·3) can be approximated by 

av-2V. 

(3·3) 

(3·4) 

Since V is a random variable, so is the speed change av. Let us denote the speed 

change at the first impact (at x'=a) by aVb at the second impact (x'=3a) by 

aV2' etc. Then the variable x', from which x can be deduced according to (3·2), 

is given by an equation more complicated than (3·1), namely: 

x'=Vt+aVl (t-~)· +aV2 (t-~- 2a ) 
v v V+aVl 

2a ) 

+ ...... . (3·5) 

The series in (3·5) breaks off after k terms, where k is the number of wall 

impacts the particle has suffered before time t. 

Since we need only a crude estimate of the relaxation time, we replace this 

complicated expression by a much simpler one: 

x'-vt+av1(t- : )+av2(t- 3: )+avs(t- ~ )+ ..... . (3·6) 

This is a reasonable first approximation based on the idea that the quantities aVh 
aV2, etc. in the denominators of (3·5) all have zero average values, and thus, on 

the average, 'V+aVl +aV2, for example, can be replaced by v. 
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754 J. M. Blatt 

The mean value of x' from equation (3,6) is given by (3·1). We are in

terested in the fluctuation of x' around this mean value. From (3·6) we get 

(X'-vt)2~ (av1)2(t- : Y+(aV2)2(t- 3: Y+(avs)2(t- 5: Y+···.··. (3.7) 

The cross terms vanish on averaging since the speed changes at different wall 

impacts are statistically independent. We now use (av,,)2=4 V 2 and approximate 

the series by an integral to get 

(X'-vt)2~ ~:; P. (3·8) 

This quantity must be compared with (2a)2, for once the uncertainty in x' exceeds 

2a appreciably, the memory of the initial distribution-in-x has been effectively lost, 

without hope of recovery even by a reversal experiment. Introducing the mean 

number of wall impacts by: 

r=vt/2a (3·9) 

the condition for the attainment of equilibrium becomes: 

(x'-vt) 2 vtS -.- 4rs V 2 
-'--_-c--''-. '-: __ va = -- -- ~ 1. 

4a2 6a3 3 v 2 

(3,10) 

Solving for the mean number of impacts required, we get, upon replacing v2 by its 

thermal average value, 

r~C/M/m' Number of wall impacts for loss of memory. (3·11) 

The corresponding relaxation time is rTo, where To is given by (2·2). That is, r is 

the ratio of the relaxation time for true loss of memory of the initial distribution, 

to the relaxation time for the apparent loss of memory associated with pseudo-equili

brium. It should be noted that the mass of the wall, M, enters into (3· 11) . Thus 

the estimate depends on properties of the wall, and cannot be made without con

sidering the wall itself as an essential element. 

Let us now consider another relaxation time: If the average kinetic energy 

of the wall, 

!MV2=ikTw (3·12) 

differs somewhat from the average kinetic energy of the gas particles, 

!mv2=!kTg (3,13) 

then the wall impacts lead not only to loss of memory of the initial distribution, 

i.e., attainment of the distribution function (2·3) with T= T g, but eventually the 

temperature of the gas must approach the temperature of the wall (the latter is 

maintained constant by collisions with outside molecules). The change in energy 

of a gas particle in a wall collision is given by 
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-!m(v')2-~mv2=4mM/(M+m)2.[~MV2-imv2--!(M-m)vVJ. 

Averaging over the random velocities V of the wall, the last term on the right 

drops out. With the usual approximation M>pm, we get 

(3 ·14) 

It follows from this that the fractional change in the effective temperature of the 

gas, produced by each wall collision, is of order m/M. Thus the number of wall 

collisions required to bring the gas temperature close to the temperature of the 

wall is of order: 

r'>pM/m . Number of wall impacts for effective energy transfer between 

gas and wall. (3 ·15) 

The difference between (3 ·11) and (3 ·15) becomes significant if the mass 

ratio M/ m is large. For example, consider a box of dimensions a-I cm, with gas 

particles of mean speed of order 106 cm/sec, so that the" coarse-grained relaxation 

time" To is of the order of 10-6 sec. Assuming for the sake of illustration that 

M/m-l09, then the relaxation time for loss of memory of the initial distribution 

is of order rTo-1O-2 sec, whereas the relaxation time for full temperature equilibrium 

between wall and gas is of order r'To-104 sec, i.e., several hours. In other words, 

the wall collisions produce loss of memory of the initial distribution much more 

quickly than they produce full thermal equilibrium with the wall. 

A "coarse-grained" measurement of the distribution function U(x, v) at a 

time t_1O-4 sec, say, would give no hint of the retention of memory; thus, from 

the coarse-grained point of view, internal equilibrium has been attained at such 

time. In fact, however, only quasi-equilibrium has been attained, as can be demon

strated directly by carrying out a reversal experiment. 

On the other hand, at time t-l sec, say, the memory of the initial distribution 

has been completely lost, and no experiment, no matter how fine-grained, can dis

tinguish this system from one which started out from full equilibrium (distribution 

function (2·3)) right at t=O. This loss of memory is not connected with obser

vation of the system during the intervening time interval. The 10.ss of memory is 

an objective, physical phenomenon which takes place irrespective of the presence 

of observers. 

In spite of this complete loss of memory of the initial distribution, the energy 

transfer between gas and wall can be ignored, and the gas is effectively in an 

adiabatic enclosure. This, then, answers the objections concerning the calorimeter: 

the relaxation time for loss of memory is very much less than the relaxation time 

for effective interchange of energy, and thus the effect of the outside molecules in 

producing loss of memory must be allowed for in discussions of the ergodic pro

blem, even though the effect of the wall in producing thermal equilibrium with the 

outside world can be ignored completely. The general feeling that the outside 

molecules cannot be of fundamental importance is due simply to a confusion of 
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these two quite different relaxation times. 

It should be noted, in closing, that in very many practical cases the relaxation 

time for complete loss of the initial distribution is longer than the observed relaxa

tion time for the approach to "equilibrium": after all, usually one does not do a 

spin-echo experiment, and hence usually no distinction is made between equilibrium 

and quasi-equilibrium. Since the relaxation time for attainment of quasi-equilibrium 

is shorter than the relaxation time for attainment of true equilibrium, the former 

is measured by most experiments. This, however, is of no concern to us here in 

this discussion of the basic principles, important as it may be from a more practical 

point of view. 

Although it may perhaps be possible to replace, formally, the actual effect of 

the wall by a specially adjusted, ad hoc coarse-graining procedure/OJ this procedure 

must necessarily depend on the detailed properties of the wall, and must differ 

essentially from the "ordinary" coarse-graining-for example, in leading to a much 

longer relaxation time. We feel that such a re-interpretation of the meaning of 

coarse-graining would ce artificial and umatisfactory. Once it is admitted that 

the thermal motion of the wall is essential for the attainment of true equilibrium, 

then this motion should be taken into account as such, not disguised as a coarse

grained measuring process. 

It is pleasure to acknowledge helpful and informative discussions on these 

matters with Professors S. T. Butler, H. S. Green, R. Kubo, T. Matsubara, H. 

Matsuda, J. E. Mayer, L. Onsager, M. R. Schafroth, G. Slichter and M. Toda. 

The author is very grateful to Profeswr H. Yukawa and the Yukawa Fundation 

for making possible his visit to Japan, during which these ideas were conceived. 
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