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Background

Soft set theory proposed by Molodtsov is considered as a mathematical model for 

dealing with vague and uncertain data (Molodtsov 1999). �is theory is a standard 

as compare to existing theories such as fuzzy set, rough set, vague set and statisti-

cal approach for dealing with vague data because of its adequate of parameterization. 

Research in the soft set theory both theoretical and practical has been attracted many 

attentions, especially in the field of decision making. �e first attempt in soft set deci-

sion making is introduced by Maji et al. (2002). �ey presented soft set first applica-

tion in decision making by representing it in Boolean table and defined its reduct set. 

�eir work of reduct was improved by Chen et  al., further improved by Kong et  al. 

and sequentially by Ma et al. for decision making of sub-optimal choices and simpli-

fied approaches, respectively (Chen et  al. 2005; Kong et  al. 2008; Ma et  al. 2011). In 

parallel to these developments, researchers used soft set for handling daily life’s uncer-

tain data issues and applied it in verity of useful applications (Cagman and Enginoglu 
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2012; Cagman et al. 2011; Çelik and Yamak 2013; Herawan and Deris 2011; Jun et al. 

2009; Jun and Park 2008; Kalaichelvi and Malini 2011; Kalayathankal and Singh 2010; 

Tanay and Kandemir 2011; Xiao et  al. 2009; Yuksel et  al. 2013). But in some appli-

cations, researchers faced problem of incomplete soft set cases with partially miss-

ing values. Soft and its related sets data can be missed due to many factors such as 

improper entry, viral attack, security reasons and errors during data transfer. Incom-

plete soft sets can be no longer applied in any application or may yield extra-large, 

very small, unexpected and misleading results, if still applied. Such results, especially 

a wrong decision making can cause a huge loss to an individual or organizations. For 

coping with this situation, Zou et al. presented their techniques of weighted-average 

for calculating decision values and average probability for prediction of missing values 

in soft set and fuzzy soft set respectively (Zou and Xiao 2008). Qin et  al. proposed 

DFIS where it indicated that data prediction in incomplete soft set is more reliable and 

accurate if recalculated through association between parameters and they used simple 

probability for cases having zero or weak association (Qin et al. 2012). Rose et al. also 

contributed in completion of incomplete soft set using parity bits and aggregate values 

(Mohd Rose et  al. 2011; Rose et  al. 2011). Sub-sequentially, Kong et  al. (Kong et  al. 

2014) improved Zou et  al. (Zou and Xiao 2008) approach of incomplete soft set by 

presenting an equivalent probability technique having less complexity and also deter-

mining actual missing data instead of only decision values determination. However, in 

reviewing Kong et al. approach, it still facing inherited shortcomings and low accuracy 

as compared to DFIS.

In this paper, we compare all exiting approaches in term of accuracy and computa-

tional complexity and find DFIS as most suitable among them for predicting missing val-

ues in incomplete soft set. We propose an alternative data filling approach for prediction 

of missing data in soft sets. In summary the contribution of this work is described as 

follow:

(a) We propose an alternative data filling approach for prediction of missing data in soft 

sets (ADFIS). �e novelty of ADFIS is that, unlike the previous approach that used 

probability, we focus more on reliability of association between parameters.

(b) In contrast to DFIS, we revise association calculating procedure to predict maximum 

possible number of unknowns through association.

(c) To validate our work, we perform extensive experiment tests on 04 UCI benchmark 

and causality workbench lung cancer (LUCAP2) data sets to show the performance 

of ADFIS.

(d) We compare the results with other baseline approaches mentioned in the literatures.

Soft set

Let given U be an initial non-empty universal set and E be a set of parameters related to 

U. According to Molodtsov (1999), a pair (F, E) is called soft set over U if and only if F is 

mapping from E into the set of all subsets of the set U. �e following example gives us 

illustration for a soft set.



Page 3 of 20Sadiq Khan et al. SpringerPlus  (2016) 5:1348 

Example 1 Suppose U = {h1, h2, h3, h4, h5} is a set of houses and E = {e1, e2, e3, e4, e5, e6} 

is the set of parameters in relation to each house. Each member of E represents cheap, 

new, wooden, expensive, old and beautiful house, respectively. Let cheap houses are h1, 

h3, h5, new houses are h1, h2, h3, h4, wooden houses are h2, h3, h4, expensive houses are 

h2, h4, old house is h5 and beautiful houses are h1, h2, h4, h5. Here, the pair (F, E) describ-

ing the attractiveness a soft set given by

Representation of soft set in tabular form

If U is finite non-empty set of objects, AT is the non-empty finite set of attributes, 

V = ∪Vr such that Vr is the value domain of attribute and f is an information function 

given by f : U × AT → Vr. �en the quaternion S = (U, AT, Vr, f) is called an informa-

tion system (Ma et al. 2011). �e soft set (F, E) in Example 1 is represented in Table 1 i.e. 

in a Boolean information system.

In above Table, the objects are represented in rows and parameters in columns. 

Parameters belonging to a particular object are simply represented by 1 otherwise 0. In 

soft set-based decision making, the decision value or choice for Mr. Gul among all these 

houses is given by

where optimal choice is max (di) and hij are the values of elements.

From Table 1, the maximum value is 4 resulted by both houses h2 and h4. Hence, either 

h2 or h4 can be his optimal house choice while other houses are sub-optimal options. In 

the following section, we discuss the incomplete soft set.

Incomplete soft set

An information system S∗
=

(

U ,AT ,Vr , f
)

 is called incomplete if f(xi, aj) is not known, 

where, U = (x1, x2, …, xn), AT = (a1, a2, …, am), xi ∈ U , i = (1, 2, 3, …, n) and aj ∈ AT  for 

j =  (1, 2, 3, …, m). �e following example presents an incomplete information system, 

(F ,E) =

{(

e1,
{

h1, h3, h5
})

,
(

e2,
{

h1, h2, h3, h4
})

,
(

e3,
{

h2, h3, h4
})

(

e4,
{

h2, h4
})

,
(

e5,
{

h5

})

,
(

e6,
{

h1, h2, h4, h5
})}

di =

∑

j

hij ,

Table 1 Tabular representation of a soft set (F, E) in a Boolean-valued information system 

and its decision value

U/E e1 e2 e3 e4 e5 e6 di

h1 1 1 0 0 0 1 3

h2 0 1 1 1 0 1 4

h3 1 1 1 0 0 0 3

h4 0 1 1 1 0 1 4

h5 1 0 0 0 1 1 3
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where unknown entries in the table are represented by symbol “*”. �e following exam-

ple gives us illustration for an incomplete information system representing an incom-

plete soft set.

Example 2 Suppose U  =  (s1, s2, s3, …, s8) is a set of applicants with parameters set 

E = {e1, e2, e3, e4, e5, e6} representing “young age”, “experienced”, “married”, “the highest 

academic degree is Master”, “studied abroad”, and “the highest academic degree is Doc-

tor”, respectively with its soft set illustration in presented as a Boolean-valued informa-

tion system in Table 2.

From incomplete Boolean Table 2, we know that candidate 4 is young, inexperienced, 

having Ph.D. as his highest degree, but it is unknown that whether he is married and 

studied abroad or not. Similarly for candidate 6 and 7, the “highest degree is master” 

and “young age” values are unknown respectively. Hence it is an incomplete soft set with 

unknown values represented by ∗1, ∗2, ∗3 and ∗4.

Related works

In this section, we discuss three of previous soft set-based approaches for handling 

incomplete data. First we review each of these techniques one by one and then compare 

them to indicate the most appropriate one for soft set missing data prediction.

Zou et al. approach

�e approach of Zou et al. (Zou and Xiao 2008) has used weighted average technique 

for decision value calculation of incomplete soft set while incomplete fuzzy soft set’s 

missing data is predicted through average probability. Here, in relation to our work, we 

discuss their soft set case only. According to this approach di =

∑
m

i=1
kici where di is 

the required decision value ci is the choice value, m is maximum number of choices for 

same object having missing value and ki is the weight of choice values. For one missing 

value, the choice values of an object are only two (0 or 1), hence its respected weights 

are k1 =
n0

n0+n1
= qei and k2 =

n1
n1+n0

= pei. For more than one missing values t of same 

object, the choice values increases and its respective weight values are calculated by

k =











�

e∈E∗

0
qe x = 0,

�

C t
x

��

�

ei∈E
∗

1
pei

��

�

ej∈E
∗

0
qej

��

0 < x < t,
�

e∈E∗

1
pe x = t

Table 2 Representation of incomplete soft set

U/E e1 e2 e3 e4 e5 e6

s1 0 1 1 1 0 0

s2 0 1 0 0 0 1

s3 1 0 0 1 0 0

s4 1 0 ∗1 0 ∗2 1

s5 0 1 1 0 0 1

s6 1 0 0 ∗3 0 0

s7 ∗4 1 1 1 0 0

s8 0 0 1 0 0 1
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where, x is the number of 1s in the row, while E∗

1
 and E∗

0
 are its parameter sets for value 

1 and 0 respectively. Using this approach, the decision value in term of candidate’s eligi-

bility for incomplete Table 2 is calculated as explained in related article (Zou and Xiao 

2008) and given in Table 3.

Qin et al. approach

�e approach proposed by Qin et al. (Qin et al. 2012) prefers to predict missing value 

through association between parameters. �is association is considered as the first case 

of their approach. For instance, in Example 1, it is an inconsistent association that an 

old house can’t be new and cheap can’t be expensive. Similarly, in same example beauti-

ful house is most probably expensive is consistent association. In Example 2, a highest 

degree can be either master or doctorial indicating inconsistent associations.

Mathematical description of this technique is explained below.

�e consistent association between two parameters is found by

where CNij is the number of elements in column (parameter) i having same value to the 

number of parameter (column) j.

Consistent association degree is calculated by

where 
∣

∣Uij

∣

∣ is the cardinality (absolute number) of known element’s pairs for parameter i 

and j. i.e. CDij is the ratio of consistency to number of total elements in columns i and j.

Similarly, inconsistent association is found as

And inconsistent association degree is calculated by

(1)CNij =

∣

∣

∣

{

x|Fei(x) = Fej (x), x ∈ Uij

}∣

∣

∣
,

(2)CDij =

CNij
∣

∣Uij

∣

∣

,

(3)INij =

∣

∣

∣

{

x|Fei(x) �= Fej (x), x ∈ Uij

}∣

∣

∣
.

(4)IDij =

INij
∣

∣Uij

∣

∣

.

Table 3 Decision value calculated by Zou et al. technique for incomplete soft set of Exam-

ple 2

U/E e1 e2 e3 e4 e5 e6 di

s1 0 1 1 1 0 0 3

s2 0 1 0 0 0 1 2

s3 1 0 0 1 0 0 2

s4 1 0 ∗1 0 ∗2 1 2.57

s5 0 1 1 0 0 1 3

s6 1 0 0 ∗3 0 0 1.43

s7 ∗4 1 1 1 0 0 3.43

s8 0 0 1 0 0 1 2
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To know that whether the association is consistent or inconsistent, net association 

degree is obtained by

To find the two parameters having maximum association with each other, the maximal 

association degree is obtained among the set of all association degrees by

As a result, the unknown(s) value Fei(x) is predicted as same as the corresponding 

element(s) j (0 for 0 and 1 for 1) if the association is consistent, otherwise it is predicted 

as a complement of the parameter j for inconsistent association.

In second case, when there is weak association between parameters i.e. |Di| < λ, where 

λ is a pre-set threshold value. �en, probability for zero and one is calculated as

where n1 and n0 are the number of 1s and 0s respectively for the parameter having miss-

ing data. As a result, the missing value is put as 1 if p1 > po, 0 if p1 < po and either 1 or 0 if 

p1 = po. �e following example explains DFIS approach step by step.

Example 3 Predicting values through DFIS for incomplete case of Example 2. Here the 

parameters e1, e3, e4 and e5 have missing data.

Step 1 Finding consistency CNij and inconsistency INij.

First we consider parameter 1 with 2: as only s8 has the same value equal to 0 for both e1 

and e2, therefore, CN12 = 1, as the values are not same for all other 6 objects excluding 

the missing s7, therefore, IN12 = 6. Similarly, (CN13 = 1, IN13 = 5), (CN14 = 4, IN14 = 2), 

(CN15 = 4, IN15 = 2) and (CN16 = 2, IN16 = 5).

Step 2 Calculating ratio of consistency CDij and ratio of inconsistency IDij.

First we need to find cardinality (
∣

∣Uij

∣

∣) for calculating CDij and IDij. As parameters 1 and 

2 have seven complete pairs for all objects except object s7, therefore, |U12| = 7. Simi-

larly, |U13| = |U14| = |U15| = 6 and |U16| = 7.

Hence, CD12 = CN12

/

|U12| =  1/7 =  0.14 and ID12 =  0.86. Similarly, (CD13 =  0.16, 

ID13 = 0.83), (CD14 = 0.67, ID14 = 0.33), (CD15 = 0.67, ID15 = 0.33) and (CD16 = 0.28, 

ID16 = 0.83).

Step 3 Deciding whether association is consistent or inconsistent.

As Dij =  max{CDij, IDij}, therefore, D12 =  max{CD12, ID12} =  max{0.86, 0.14} =  0.86. 

As the association is inconsistent therefore, minus (−) sign will be used for its indica-

tion and differentiation from consistent one i.e. D12 = −0.86. Similarly, D13 = −0.83, 

D14 = 0.67, D15 = 0.67 and D16 = −0.83.

(5)Dij = max
{

CDij , IDij

}

.

(6)Di = max
{

Dij

}

.

p1 =
n1

n1 + n0
and p0 =

n0

n0 + n1
,
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Step 4 Calculating maximal degree of association.

Dij is calculated according to step 3 for those parameters having missing values (e1, e3, e4 

and e5) with all other parameters (e1, e2, e3, …, e6) as presented in Table 4.

From Table 4, we see that for e1, D1 = max{D12, D13, D14, D15, D16} = max{0.86, 0.83, 

0.67, 0.67, 0.83} = −0.86. Similarly, D3 = −0.83, D4 = −1 and D3 = 0.67.

Step 5 Putting values according to association

We set the threshold λ = 0.85. Only e1 and e4 are satisfying the condition to be calcu-

lated by association because, D1 = |−0.86| > � and D4 = |−1| > �. From Table 4, e1 has 

inconsistent association with e2 and the corresponding element (u72) of its missing ele-

ment (∗4 = u71) has the value equal to 1 in Table 2. As complement value is assigned in 

case of inconsistent association, therefore, we put ∗4 = 0. Similarly, we calculate ∗3 = 1.

Step 6 Calculating probabilities for weak association.

As D3 and D5 have smaller values than our fixed threshold λ = 0.85. �erefore, we can’t 

calculate ∗1 and ∗2 through association, rather we use probability for predicting these val-

ues. For e3 we have n1 = 4 and n0 = 3 implies that p1 =
4

4+3
= 0.57 and p0 =

3

3+4
= 0.43 , 

as p1 > p0, therefore, we put ∗1 = 1. Similarly, we calculate ∗2 = 0. We obtain a complete 

Table 5 after putting all predicted values using DFIS in incomplete Table 2.

Kong et al. approach

�e approach proposed by Kong et  al. (Kong et  al. 2014) is equivalent to Zou et  al. 

approach (Zou and Xiao 2008) in results but more simplified with respect to complex-

ity. Instead of using weighted-average huge computations, its uses simple probability 

p′
ej

=
n1

n1+n0
 for calculating an unknown value, where n1 and n0 are the number of 1 and 

0 respectively for same parameter. After inserting this value in unknown the decision 

Table 4 Calculation of Dij

E
∗/E e1 e2 e3 e4 e5 e6

e1 – −0.86 −0.83 0.67 0.67 −0.83

e3 −0.83 0.71 – ±0.5 −0.67 0.57

e4 0.67 0.57 ±0.5 – ±0.5 −1

e5 0.67 −0.57 0.57 ±0.5 – 0.57

Table 5 Incomplete soft set completed using DFIS, predicted values are shown in italics

U/E e1 e2 e3 e4 e5 e6

s1 0 1 1 1 0 0

s2 0 1 0 0 0 1

s3 1 0 0 1 0 0

s4 1 0 1 0 0 1

s5 0 1 1 0 0 1

s6 1 0 0 1 0 0

s7 0 1 1 1 0 0

s8 0 0 1 0 0 1
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value is calculated by di =

∑m
j=1

hij. Using this technique, the incomplete Example 2 gets 

completed as given in Table 6 along with decision value di.

Comparison of previous approaches

As Zou et al. and Kong et al. approaches have approximately same results and Zou et al. 

approach is compared with DFIS with details (Kong et al. 2014). To conclude, we adopt 

below associative way for comparing all three previous techniques.

Zou et al. versus Kong et al

As Zou et al. approach calculates only decision value of incomplete soft set and the miss-

ing data remains still missing. While, Kong et al. approach has same results of di as that 

of Zou et al. approach along with assigning a set of values to originally missed informa-

tion. Secondly, the computational complexity of Kong et al. approach is O(n2) while that 

of Zou et al. approach is O(n.2n) showing that Kong et al. approach is less complex com-

pare to Zou et al. approach (Kong et al. 2014). �erefore, Kong et al. technique is more 

appropriate and efficient than Zou et al. approach.

Kong et al. versus DFIS

As Kong et  al. approach works only on probability, ignoring any association between 

parameters might result probably in different values from actual. Secondly, it predicts 

missing values in [0, 1] range, while the actual value must be either 0 or 1 in standard 

soft set (Boolean information system). In contrast, DFIS prefer to predict actual values 

through association and use probability when the association is not strong. Secondly, 

in both cases, it calculates binary values maintaining the integrity of standard soft set. 

�irdly, compare to Zou et al. results; its decision values results are much closer to actual 

values as shown in experimental results (Qin et al. 2012). �e average of mean absolute 

percentage error (MAPE) of DFIS is 0.07, while that of Zou et al. approach is 0.11 for all 

five data sets used in DFIS. If we convert this average of MAPE to percent accuracy of 

both approaches then the average accuracy of DFIS is 93.17 % while that of Zou et al. 

approach is 89.12 % in calculating decision values. It is notable that Zou et al. and Kong 

et al. approaches have same results of decision values (Kong et al. 2014); consequently, 

Table 6 Incomplete soft set of Example 2 after completion and di calculation using Kong 

et al. approach

U/E e1 e2 e3 e4 e5 e6 di

s1 0 1 1 1 0 0 3

s2 0 1 0 0 0 1 2

s3 1 0 0 1 0 0 2

s4 1 0 4

4+3
0 0

0+7
1 2.57

s5 0 1 1 0 0 1 3

s6 1 0 0 3

3+4
0 0 1.43

s7
3

3+4
1 1 1 0 0 3.43

s8 0 0 1 0 0 1 2
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the average accuracy of DFIS in decision values comes to be 4.04 % higher than Kong 

et al. technique. Hence DFIS is more suitable than Kong et al. approach.

In above associative comparison, we showed that Kong et al. technique is better than 

Zou et al. technique and DFIS is better than Kong et al. technique. Moreover, we calcu-

late the computational complexity of DFIS which consists of below steps.

1. Access whole data set of m × n size once for getting the number of missing values

2. Compute the degrees of consistencies and inconsistencies of complexity n

3. Compute probability of n complexity when the association is weak

4. Access once again m × n table for inserting the computed values

Combining all, results in m ×  n +  n +  n +  m ×  n = 2mn + 2n. Supposing m =  n 

and considering big O notation, then 2mn + 2n = 2n
2
+ 2n ≥ 2n

2
≥ n

2 for larger values 

of n. Hence, the complexity of DFIS is O(n2), which is equal to the complexity of Kong 

et al. approach. �erefore, DFIS is most appropriate for missing data prediction in soft 

set among all three previous approaches. �is comparison is summarized in Table 7 as 

follow:

Hence, from above associative comparison visualized in Table  7, we conclude that 

DFIS is more suitable than Zou et al. and Kong et al. approaches for prediction of miss-

ing values in soft set. However, in reviewing DFIS, accuracy is still its main problem. 

�erefore, the following section discusses an alternative data filling approach for predic-

tion of missing data in soft sets, namely ADFIS.

Alternative approach for data �lling of incomplete soft sets

In this section an alternative approach for data filling of incomplete soft sets (ADFIS) 

is presented. �e previous approach DFIS preferred association between parameters to 

predict missing values than probability and we discussed that association results in more 

accurate values than probability. But DFIS itself is unable to precisely consider all pos-

sible associations for getting more accurate results. In contrast to DFIS, we revise the 

association calculating method to consider all possible associations precisely and pre-

dict maximum possible number of unknowns through it. �e novelty of ADFIS is that, it 

focuses more on reliability of association than DFIS.

For ADFIS, we use Eqs.  (1)–(4) to calculate consistent and inconsistent associations 

and its consistency degrees as DFIS. In case of DFIS, for n number of parameters con-

taining missing values, Eq.  (5) gives n number of Dijs and Eq.  (6) is applied separately 

Table 7 Comparison of previous approaches with DFIS

Advantages Zou et al. (Zou and Xiao 
2008)

Kong et al. (Kong et al. 
2014)

DFIS (Qin et al. 2012)

Calculates missing value No Yes Yes

Less complexity No Yes Yes

Use association between 
parameters

No No Yes

Calculates binary values 
(standard soft set)

No No Yes

High accuracy No No Yes
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to each parameter for calculating maximum degree for parameter i with parameter j. 

�erefore, Eqs. (5) and (6) are not applied to ADFIS directly. To select one value as the 

strongest association among all parameters, we use below relation.

where CDij, IDij are the degrees of consistencies and inconsistencies of each parameter i 

containing missing values with all other parameters j and SAij is the strongest association 

among all parameters, between parameter i (containing unknown) and (corresponding) 

parameter j. �e following definition presents the notion of consistency between two 

parameters.

Definition 1 Two parameters ei and ej are said to be consistent ei ⇔ ej with each other 

if there is strongest association between them. i.e. SAij ≥ λ and max{CDij, IDij} = CDij, 

where λ is a pre-set threshold values (for more details, see “Discussions”).

From Definition 1, it can be seen that if two parameters are consistent to each other, 

then its corresponding elements are also consistent with each other. If ei ⇔ ej then 

F(e)ni ⇔ F(e)nj, if F(e)ni = ∗ then

where, * is unknown and n is the object position (row) of parameter value F(e). �e fol-

lowing definition presents the notion of inconsistency between two parameters.

Definition 2 Two parameters ei and ej are said to be inconsistent ei ⇛ ej with each 

other if there is strongest inconsistent association between them. i.e. SAij  ≥  λ and 

max{CDij, IDij} = IDij.

From Definition 2, it can be seen that if two parameters are inconsistent to each other, 

then its corresponding elements are also inconsistent with each other. If ei ⇛ ej then 

F(e)ni ⇛ F(e)nj, if F(e)ni = ∗ then

where, * is unknown and n is the object position (row) of parameter value F(e). �e fol-

lowing definition presents the notion of non-association between two parameters.

Definition 3 Two parameters ei and ej are said to be non-associated ei�ej if there exist 

no strongest association between them i.e. SAij < λ.

(7)SAij =

∣

∣max
{

max
{

CDij , IDij

}}∣

∣,

(8)F(e)ni = F(e)nj

(9)F(e)ni = 1 − F(e)nj
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From Definitions 1–3, we derive our proposed algorithm of ADFIS as described below.

From above algorithm, the ADFIS firstly calculates the unknown(s) of the column hav-

ing greatest association than all other columns among whole table. Before proceeding to 

further prediction, it inserts the recently calculated value(s) having strongest association 

in incomplete table. In next step, it again calculates association among parameters of 

whole table with consideration of the weight of recently inserted (most reliable) value(s) 

and finds strongest association again. �e process of finding strongest association and 

predicting unknowns is repeated until all unknown data is filled or the condition of 

threshold disqualifies. In case of weak association, ADFIS uses simple comparison of n1 

and n0 instead of calculating p1 and p0.

�e main difference between DFIS and ADFIS is that, DFIS calculates association 

among all parameters only once and decides on its base but ADFIS calculates it again 

and again after inserting the unknown value in one column being calculated through 

strongest association.

ADFIS is further explained for understanding and comparison with DFIS in Example 4 

with same incomplete case of Example 2.

Example 4 Prediction of unknowns for incomplete soft set case Example 2 through 

ADFIS. Consider Example 2 and Table  2, for same case and same threshold value 

(λ = 0.85).

Step 1 We construct Table 8 containing the values of max{CDij, IDij}.

From Table 8, according to Eq. (7) SA46 = 1, for parameter 4 with parameter 6.

As SAij  >  λ and max{CDij, IDij}  =  IDij, definition 2 satisfies, therefore, e4 ⇛ e6 and 

F(e)64 ⇛ F(e)66. In Table 2, F(e)64 = ∗3 hence, we can put F(e)64 = 1 − F(e)66 accord-

ing to Eq. (9). As F(e)66 = 0 in Table 2, we calculate F(e)64 = 1 − 0 = 1. Hence we obtain 

∗3 = 1. After putting this value, we get Table 9 as an updated case of incomplete data.
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Step 2 Including the weight of recently calculated ∗3 in Table 9, we calculate Table 10 

containing the new values of max{CDij, IDij}.

In Table 10, the strongest association is that of e1 with e2, SA12 = |−0.86| > λ, similar to 

step 1, we put ∗4 = 0 and obtain updated Table 11.

Table 8 max{CDij, IDij} − 1

E
∗/E e1 e2 e3 e4 e5 e6

e1 – −0.86 −0.83 0.67 0.67 −0.83

e3 −0.83 0.71 – ±0.5 −0.67 0.57

e4 0.67 0.57 ±0.5 – ±0.5 −1

e5 0.67 −0.57 0.57 ±0.5 – 0.57

Table 9 Incomplete case after  inserting �rst calculated unknown (∗3) through  strongest 

association

U/E e1 e2 e3 e4 e5 e6

s1 0 1 1 1 0 0

s2 0 1 0 0 0 1

s3 1 0 0 1 0 0

s4 1 0 ∗1 0 ∗2 1

s5 0 1 1 0 0 1

s6 1 0 0 1 0 0

s7 ∗4 1 1 1 0 0

s8 0 0 1 0 0 1

Table 10 max{CDij, IDij} − 2 for updated Table 9

Dij e1 e2 e3 e4 e5 e6

e1 – −0.86 −0.83 0.71 0.57 −0.71

e3 −0.83 0.71 – −0.57 −0.57 0.57

e5 0.57 −0.57 −0.57 −0.57 – 0.57

Table 11 Incomplete case after putting values of 1st and 2nd unknowns ∗3 and ∗4

U/E e1 e2 e3 e4 e5 e6

s1 0 1 1 1 0 0

s2 0 1 0 0 0 1

s3 1 0 0 1 0 0

s4 1 0 ∗1 0 ∗2 1

s5 0 1 1 0 0 1

s6 1 0 0 1 0 0

s7 0 1 1 1 0 0

s8 0 0 1 0 0 1
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Step 3 Based on updated Table 11, we recalculate max{CDij, IDij} in Table 12 as follow.

It can be observed from Table  12 that SA31  =  |−0.86|  >  λ also entered into defined 

threshold range of association and we put ∗1 = 0 getting updated incomplete case in 

Table 13.

Step 4 �e value of max{CDij, IDij} for Table 13 is recalculated in Table 14 as follow:

As SA51 =  0.71 in Table 14 means e5 � e1 therefore, ∗2 cannot be calculated through 

association for λ = 0.85. �is case is falling under definition 3 and we use probability 

for it. We see from Table 13, that for e5, n1 = 0 and n0 = 7. As n0 > n1 therefore, we put 

∗2 = 0. Hence, using ADFIS, we obtained all missing values in complete Table 15.

Table 12 Calculation of max{CDij, IDij} − 3 for updated Table 11

E
∗/E e1 e2 e3 e4 e5 e6

e3 −0.86 0.71 – −0.57 −0.57 0.57

e5 0.71 −0.57 −0.57 −0.57 – 0.57

Table 13 After putting value of ∗1, ∗3 and ∗4

U/E e1 E2 E3 E4 e5 e6

s1 0 1 1 1 0 0

s2 0 1 0 0 0 1

s3 1 0 0 1 0 0

s4 1 0 0 0 ∗2 1

s5 0 1 1 0 0 1

s6 1 0 0 1 0 0

s7 0 1 1 1 0 0

s8 0 0 1 0 0 1

Table 14 Calculation of max{CDij, IDij} − 4 for updated Incomplete Table 13

E
∗/E e1 e2 e3 e4 e5 e6

e5 0.71 −0.57 −0.57 −0.57 – 0.57

Table 15 Completed soft set using ADFIS

U/E e1 e2 e3 e4 e5 e6

s1 0 1 1 1 0 0

s2 0 1 0 0 0 1

s3 1 0 0 1 0 0

s4 1 0 0 0 0 1

s5 0 1 1 0 0 1

s6 1 0 0 1 0 0

s7 0 1 1 1 0 0

s8 0 0 1 0 0 1
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Results and discussion

In this section we discuss the improvement in accuracy of the ADFIS. Firstly, we dis-

cuss our incomplete case in Example 2 with prediction results by DFIS and ADFIS from 

Table 5 and Table 15, respectively. �en, we present the results obtained from DFIS and 

ADFIS for four UCI benchmark datasets Causality workbench LUCAP2 data set. Some 

important discussions are provided after the results presentations and shortcomings of 

ADFIS are also discussed at the end of this section.

Incomplete soft set of Example 2

Refer to comparison Table  16, all values predicted through DFIS are same as ADFIS 

except ∗1, although the threshold is same for both approaches. ∗1 got neither only comple-

mented value for both techniques but also calculated through different ways i.e. through 

association in ADFIS and probability through DFIS. �e DFIS proves that association is 

more reliable than probability; therefore we claim that the value of ∗1 calculated as 0 using 

association by ADFIS is more accurate than predicted as 1 by DFIS using probability.

Suppose an unknown predicted though association has 90 % accuracy and that pre-

dicted through probability has 60 %. �en the average accuracy of DFIS is 75 % while 

that of ADFIS is 83 % for this case as shown through graph in Fig. 1.

UCI benchmark data sets

Similar to DFIS (Qin et al. 2012), we tested DFIS and ADFIS for four data sets from UCI 

benchmark database (UCI Machine Learning Repository 2013).

We randomly deleted 30–600 entries ten times from Zoo, Flags, Congressional votes 

and SPECT hearts data sets and re-calculated it using both approaches by implementing 

Table 16 Comparison of DFIS and ADFIS predicted values for incomplete case of Example 2

Unknown Predicted results through

DFIS ADFIS

Value Using Value Using

∗1 1 Probability 0 Association

∗2 0 Probability 0 Probability

∗3 1 Association 1 Association

∗4 0 Association 0 Association

Fig. 1 Performance comparison of DFIS and ADFIS for incomplete case of Example 2
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both algorithms in Matlab. We found that average accuracy of DFIS is 74.30 % while that 

of ADFIS is 78.49 % i.e. ADFIS performs 4.19 % better than DFIS. Average performance 

graph is shown Fig. 2. Now we discuss experimental results of each data set one by one.

Zoo data set

Zoo data set contains 101 types of different animals with their 18 different features like 

presence of feather, teeth, backbone and hair. We selected only 15 parameters having 

Boolean values and randomly deleted ten times the number of values 91, 87, 107, 91, 97, 

98, 79, 82, 93 and 88 from it. All deleted values are recalculated using both (DFIS and 

ADFIS) approaches. Percent accuracy graph of these results is given in Fig. 3.

Average performance of DFIS’s accuracy is 81.26 % while that of ADFIS is 84.67 % i.e. 

ADFIS performs 3.41 % accurate than DFIS for Zoo data set.

Flags data set

Flags dataset contains national flags description of 128 countries with 28 parameters. 

Out of all only 13 parameters are Boolean which are selected for our testing purpose. 

Accuracy graph for randomly deleted number of values 110, 43, 151, 92, 84, 151, 200, 

538, 189 and 49 is given in Fig. 4 for flag data set. Performance of ADFIS is 4.08 % better 

than DFIS as DFIS average accuracy is 74.02 % while that of ADFIS is 78.10 %.

Fig. 2 Average accuracy performance comparison of ADFIS and DFIS for UCI benchmark data sets

Fig. 3 Percentage prediction accuracy for zoo data set
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SPECT hearts data set

SPECT hearts is training data set containing images of SPECT abbreviated from Single 

Proton Emission Computed Tomography. �e data base consists of 80 patients with 22 

Boolean valued attributes. Numbers of values randomly deleted are 32, 98, 450, 182, 230, 

62, 161, 47, 290 and 102. Percent performance graph is shown in Fig. 5.

Average accuracy of DFIS is 76.41 % while that of ADFIS is 78.20 %. Hence ADFIS per-

forms 1.80 % better than DFIS for SPECT hearts data set.

Congressional votes data set

�is data set contains voting record of US congress members of 1984. 435 members had 

contested their votes in yes or no regarding 16 issues out of which only 230 members 

votes are completed. We selected these completed votes only for testing purpose and 

deleted randomly 161, 435, 122, 98, 263, 239, 205, 291, 424 and 136 values from this data 

set. After recalculating it though both approaches we found that DFIS average accuracy 

is 65.50 % while ADFIS has 72.98 % accuracy.

Average performance of ADFIS is 7.84  % better than DFIS for this data set. Perfor-

mance graph of ADFIS vs DFIS is plotted in Fig. 6.

Fig. 4 Prediction accuracy percentage of flags data set

Fig. 5 Percentage of accuracy graph of SPECT hearts dataset
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Causality workbench LUCAP2 data set

Lung Cancer set with Probes (LUCAP) (Causality Workbench 2013) is an online data set 

containing Boolean valued artificially generated data by causal Bayesian networks. �ere 

are ten thousand imaginary objects (patients) with 143 features (symptoms) like Cough-

ing, Fatigue, Yellow Fingers, Anxiety, Allergy, Attention Disorder and Smoking. Out of 

10,000 we selected only first 1000 with all 143 parameters for our testing purpose. We 

randomly deleted 322, 2354, 1190, 2083, 1432, 1158, 5413, 2457, 899 and 760 number 

of values and recalculated it through DFIS and ADFIS. We found that for 1807 average 

unknowns, DFIS calculated 1294, while ADFIS calculated 1328 accurate values. Hence 

the average performance of ADFIS is 1.89 % better than DFIS for this data set. Percent 

accuracy graph of DFIS versus ADFIS for LUCP2 data set is given in Fig. 7.

In summary, the overall comparison results are given in the following Table 17.

From Table 17, we can conclude that the ADFIS performs up to 4.4 % better as com-

pared to DFIS.

Fig. 6 Percent accuracy graph of congressional votes dataset

Fig. 7 Percent accuracy graph of LUCAP2 dataset
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Discussions

In this sub-section we discuss some important queries that are raised regarding the 

threshold (λ), its function, range and suitable values. We also discuss the precise theo-

retical difference between DFIS and ADFIS, validation of proposed method and perfor-

mance evaluation.

�e threshold lambda (λ) is a filter that can be set according to the requirements of 

individuals in getting weak or strong associations. Closer the value of λ to 1 result in 

more reliable association and closer the value to zero might result in selecting weaker 

associations. To select more than 50 % associational results, the lambda must be fixed to 

0.5 or above. In our incomplete case of example 2 we have kept the threshold λ = 0.85 to 

select only the parameters associations having minimum 85 % similarity between them 

and the unknowns of parameters having less than 85 % similarity are calculated through 

probability in DFIS while one of them (∗1) enters to the threshold range in ADFIS case. 

�is reveals the core difference between DFIS and ADFIS. DFIS calculates all associa-

tions once for whole data set and assigns missing values according to it. We notice that 

those parameters satisfying the threshold can be further categorized in less and more 

stronger association in the range between threshold and 1. Two parameters might have 

marginal similarity of 85 % while another set of two may have stronger similarity as 90 % 

or even 100 %. DFIS treat them all as same for finding missing values, while we calcu-

late the unknown first through the strongest among them and utilize it for its role in 

upcoming calculations. �is way, some of the unknowns that are calculated through 

probability enters association range and get more probable accurate results, as calculat-

ing unknowns through association is more reliable than probability (Qin et al. 2012). �e 

results of DFIS are validated by calculating its decision values and comparing its MAPE 

with that of Zou et al. approach. As Zou et al. approach does not calculate missing val-

ues; therefore DFIS used indirect method of validation. But in our case, both DFIS and 

ADFIS calculate actual missing values and we do not need to validate it through indirect 

decision values. So, we use direct method of comparing both techniques’ actual results 

with original and the more accuracy of ADFIS validates its better performance.

Weaknesses of the ADFIS

Apart from improved accuracy, there are two main limitations of ADFIS compare to 

DFIS.

Table 17 Overall accuracy comparison

Data sets DFIS (%) ADFIS (%) Improvement (%)

Example 2 75.00 83.00 8.00

Zoo data set 81.26 84.67 3.41

Flags data set 74.02 78.10 4.08

SPECT hearts data set 76.41 78.20 1.79

Congressional votes data set 65.50 72.98 7.48

LUCAP2 data set 71.61 73.49 1.89

Average 4.44
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Incorrect results rare cases

Sometimes the strongest association becomes false because of too much missing values 

or no real association existence. In this case, if missing values calculated in first step of 

ADFIS are incorrect then it affects the result of calculated values in next steps as well. 

�is case can be viewed in the 2nd and 9th test result of SPECT Hearts data set graph 

where DFIS has high accuracy than ADFIS.

High computational complexity

High computational complexity of ADFIS compare to DFIS is obvious. DFIS access a 

data set of m × n size once for finding association while ADFIS (m × n)2 times during its 

execution. Complexity of ADFIS is DFIS times more than that of DFIS.

Conclusion

In this paper, we have discussed three previous approaches for prediction of incomplete 

soft set and pointed out DFIS as most suitable among them. We have presented an alter-

native approach of data filling for incomplete soft set (ADFIS) for the purpose of accu-

racy improvement. We have re-arranged the process of DFIS, therefore the maximum 

possible number of unknowns in incomplete soft set can be predicted through asso-

ciation between parameters. We have presented a modified algorithm and explain our 

ADFIS with the help of an example as a proof of concept. We have also compared the 

results of ADFIS with the existing DFIS approach after implementing both in Matlab for 

four UCI benchmark data sets and Causality workbench lung cancer data set (LUCAP2) 

and shared the average results of both approaches in the form of graphs. ADFIS has 

improved the percentage of accuracy of predicted unknowns by 4.44 % average as com-

pared to DFIS for all 5 data sets. We mentioned two main snags of ADFIS i.e. rare cases 

wrong values prediction and high computational complexity which can be resolved in its 

future work.
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