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Abstract. We present an alternative proof of the Gibbard’s random dictatorship
theorem with ex post Pareto optimality. Gibbard(1977) showed that when the num-
ber of alternatives is finite and larger than two, and individual preferences are linear
(strict), a strategy-proof decision scheme (a probabilistic analogue of a social choice
function or a voting rule) is a convex combination of decision schemes which are,
in his terms, either unilateral or duple. As a corollary of this theorem (credited to
H. Sonnenschein) he showed that a decision scheme which is strategy-proof and
satisfies ex post Pareto optimality is randomly dictatorial. We call this corollary the
Gibbard’s random dictatorship theorem. We present a proof of this theorem which
is direct and follows closely the original Gibbard’s approach. Focusing attention to
the case with ex post Pareto optimality our proof is more simple and intuitive than
the original Gibbard’s proof.
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1 Introduction

We present an alternative proof of the Gibbard’s random dictatorship theorem with
ex post Pareto optimality. Gibbard (1977) showed that when the number of alter-
natives is finite and larger than two, and individual preferences are linear (strict),
a strategy-proof decision scheme (a probabilistic analogue of a social choice func-
tion or a voting rule) is a convex combination of decision schemes which are, in
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his terms, either unilateral or duple. As a corollary of this theorem (credited to
H. Sonnenschein) he showed that a decision scheme which is strategy-proof and
satisfies ex post Pareto optimality1 is randomly dictatorial. We call this corollary
the Gibbard’s random dictatorship theorem. Nandeibam (1998) presented an alter-
native proof of this theorem. His proof is indirect. He proved the theorem using a
probabilistic analogue of the Arrow impossibility theorem by Pattanaik and Peleg
(1986 ). Duggan (1996) presented a direct and geometric proof of the theorem2.

We present a proof of this theorem which is direct and follows more closely
the original Gibbard’s approach. Focusing attention to the case with ex post Pareto
optimality our proof is more simple and intuitive than the original Gibbard’s proof
and other proofs. Terminologies in this paper also follow those of Gibbard (1977).

2 Decision scheme and its strategy-proofness

There is a society with n individuals and m alternatives. n and m are finite positive
integers such that n ≥ 2 and m ≥ 3. The set of individuals is denoted by N , and
the set of alternatives is denoted by A. The individuals are represented by i, j and
so on, and the alternatives are represented by x, y, z and so on. The preference
of individual i about the alternatives is represented by a linear order Pi, which
is complete, antisymmetric and transitive. An n-tuple of individual preferences is
called a profile. Profiles are denoted by a, b and so on. The preference of individual
i at a profile a is denoted by P a

i and so on.
We introduce some key terms.

Decision scheme. It is a social choice rule which assigns a probability distribution
to alternatives depending on a profile. Denote the probability assigned to x at a
profile a by p(x, a), and the vector of probabilities (or the probability distribution)
at a is denoted by d(a). p(x, a) is called the probability of x at a, and d(a) is called
a value of the decision scheme.

Utility function. To treat individual evaluation about random realization of al-
ternatives we must consider utility functions for individuals. Denote individ-
ual i’s utility function over alternatives at a profile a by ua

i (x). It satisfies von
Neumann-Morgenstern expected utility axioms. If, when xP a

i y (or yP a
i x) we have

ua
i (x) > ua

i (y) (or ua
i (x) < ua

i (y)), then ua
i (x) fits to individual i’s preference at

a. His expected utility when the value of the decision scheme is d(a) is written as
follows,

Ua
i (d(a)) =

m∑

j=1

ua
i (xj)p(xj , a)

Strategy-proofness. Let a and b two profiles between which only the preference
of individual i differs. Denote values of a decision scheme at a and b by d(a) and

1 The condition of ex post Pareto optimality is called Pareto optimificity ex post in Gibbard (1977).
2 Recently Dutta et al. (2002) have extended the result of Gibbard (1977) to the case where individuals

have strictly convex continuous single-peaked preferences on a convex subset of Euclidean space.
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d(b). If for a utility function which fits to individual i’s preference we have

Ua
i (d(b)) > Ua

i (d(a))

then the decision scheme is manipulable for him at a. If a decision scheme is not
manipulable for any individual at any profile for any utility function which fits to
each individual preference, it is strategy-proof.

Further we use some terms and notations which are due to Gibbard (1977).

Adjacent alternatives. (xPi!y) If for a pair of alternatives {x, y} we have xPiy for
individual i and there is no alternative which satisfies xPizPiy, we denote xPi!y.
And it is said that x and y are adjacent in individual i’s preference.

Pairwise responsive. Suppose that at a profile a x and y satisfy xPi!y. Let b be a
profile at which yPi!x and all other preferences are the same as those at a, and z
be an arbitrary alternative other than x and y. Denote the probabilities assigned by
a decision scheme to z at a and b by p(z, a) and p(z, b). If p(z, b) = p(z, a), the
decision scheme is pairwise responsive. Then, the sum of the probabilities assigned
to x an y does not change when xPi!y changes to yPi!x keeping other preferences
constant.

Localized. Let X be a set of some alternatives and Y be a set of all other alternatives
(Y = A − X). Suppose that, at a profile a, for any pair of alternatives {x, y} such
that x ∈ X and y ∈ Y we have xPiy for some individual i. Denote the sum
of the probabilities of all alternatives in X by p(X, a). If p(X, a) is not affected
by a change in individual i’s preference about alternatives in X and a change in
his preference about alternatives in Y (his preference between x and y does not
change), then the decision scheme is called localized.

Next we assume the following form of Pareto principle.

Ex post Pareto optimality. For any pair of alternatives {x, y}, if all individuals
prefer x to y, the probability of y is zero.

If the probability assigned to the top-ranked alternative of individual i is always
one, he is the dictator. If there is the dictator for a decision scheme, it is dictatorial.
Further we define a randomly dictatorial decision scheme.

Randomly dictatorial decision scheme. If the probability distribution assigned
to the alternatives by a decision scheme is a convex combination of probability
distributions assigned by some dictatorial decision schemes, then it is randomly
dictatorial.

A randomly dictatorial decision scheme has the following properties.

(1) It assigns positive probabilities to only top-ranked alternatives for individuals.
The value of the probability of an alternative does not depend on what alternative
it is, but depends on for whom it is the top-ranked alternative. And they do not
depend on the preference of each individual about alternatives other than his
top-ranked alternative.

(2) The probability of an alternative is regarded as the sum of the weights of
individuals for whom it is the top-ranked alternative.



322 Y. Tanaka

(3) The weight of each individual is independent of the preferences of individuals,
and is not larger than one.

3 The random dictatorship theorem and an outline of its proof

We will show the following theorem.

Theorem 1. A strategy-proof decision scheme which satisfies ex post Pareto opti-
mality is randomly dictatorial.

We will prove this theorem by several lemmata. The proof will proceed along
the following processes.

(1) (Lemma 1 and 2) If a decision scheme is strategy-proof, it is localized and
pairwise responsive.

(2) (Lemma 3) Let {x, y} be an arbitrary pair of two alternatives which are adjacent
and are not top-ranked alternative for an individual (denoted by individual 1).
If a decision scheme is strategy-proof and satisfies ex post Pareto optimality,
then, when the preference of individual 1 changes from xP1!y to yP1!x and all
other preferences do not change, the probabilities of x and y do not change.

This result will be used in the proofs of Lemma 4 and 5.

(3) (Lemma 4) Let a be a profile such that x is the top-ranked alternative for
individuals in a group of individuals V , and it is bottom-ranked for other indi-
viduals. Denote the probability of x in this case by pV (x, a). Then, if a decision
scheme is strategy-proof and satisfies ex post Pareto optimality, we obtain the
following results.
(i) pN (x, a) = 1.
(ii) pV (x, a) does not depend on the preferences of individuals about alterna-

tives other than x.
(iii) Let b be a profile such that the top-ranked alternative for individuals in V

is z, and it is the bottom-ranked alternative for other individuals. Denote
the probability of z at b by pV (z, b). Then, we have pV (z, b) = pV (x, a).

The value of pV (x, a) defined here does not depend on individual preferences
except for the fact that the top-ranked alternative is common for individuals
in V , and this alternative is bottom-ranked for other individuals. The value of
pV (x, a) is determined by what members constitute the group V , and so it is
regarded as the weight of V . It is denoted by µ(V ) = pV (x, a). Denote the set
of individuals whose top-ranked alternative is x at a profile a by V (x, a), and
the weight of this group by µ(V (x, a)).

(4) (Lemma 5) If a decision scheme is strategy-proof and satisfies ex post Pareto
optimality, then the probability assigned to x by the decision scheme at a profile
a is represented as follows.

p(x, a) = µ(V (x, a))
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(5) (Lemma 6) Let V1 and V2 be groups of individuals which are disjoint (V1∩V2 =
∅). If a decision scheme is strategy-proof and satisfies ex post Pareto optimality,
we have µ(V ) = µ(V1) + µ(V2) for V = V1 ∪ V2.

(6) (Lemma 7) If a decision scheme is strategy-proof and satisfies ex post Pareto
optimality, the probability assigned to x by the decision scheme are equal to
the sum of the weights of individuals for whom x is the top-ranked alternative.

Then, we obtain a random dictatorship.
In the next section we prove these lemmata. And in the last section we will

prove the converse of Theorem 1.

4 Lemmata and their proofs

First we show the following lemma.

Lemma 1. If a decision scheme is localized, it is pairwise responsive.

Proof. Suppose that x and y are adjacent in the preference of individual i (xPi!y).
Let z be an alternative other than x and y. Denote the set of alternatives which
individual i prefers to z by W , and denote the set which is the union of W and {z}
by W ′. Since x and y are adjacent, they belong to W ′ if and only if they belong to
W . Even when individual i’s preference changes from xPi!y to yPi!x, the sum of
the probabilities assigned by a localized decision scheme to alternatives in W and
that for W ′ do not change. Therefore, the probability of z does not change, and the
decision scheme is pairwise responsive. ��

From strategy-proofness we obtain the following result.

Lemma 2. If a decision scheme is strategy-proof, it is localized and pairwise re-
sponsive.

Proof.

(1) Assume that it is not localized. Let X be the set of alternatives which individual
i prefers to other alternatives. Denote the sum of the probabilities of alternatives
in X at profiles a and b by p(X, a) and p(X, b). If the decision scheme is not
localized, there is a case where when individual i’s preference changes from P a

i

to P b
i , p(X, b) and p(X, a) are different. Let p(X, b) − p(X, a) = ε > 0(0 <

ε < 1), and let ua
i be a utility function which fits to individual i’s preference

at a and satisfies 1 ≤ ua
i (x) < 1 + ε for x ∈ X and 0 ≤ ua

i (y) < ε for
y ∈ Y . Then, expected utilities of individual i at a and b satisfy the following
inequalities.

Ua
i (d(a)) < (1 + ε)p(X, a) + ε[1 − p(X, a)] = p(X, a) + ε

Ua
i (d(b)) ≥ 1 · p(X, b) + 0 · [1 − p(X, b)] = p(X, b) = p(X, a) + ε

From these inequalities we obtain Ua
i (d(b)) > Ua

i (d(a)). Note that Ua
i (d(b))

and Ua
i (d(a)) are expected utilities for the utility function which fits to the
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individual i’s preference at a. Ua
i (d(b)) > Ua

i (d(a)) means that at the profile a
individual i can gain higher expected utility by revealing his preference at b, and
so the decision scheme is manipulable. In the case where p(X, b)−p(X, a) < 0,
we can show the similar result by considering a utility function which fits to
the individual i’s preference at b.3 Therefore, we have p(X, b) − p(X, a) = 0,
and the decision scheme is localized.

(2) From Lemma 1 if a decision scheme is localized, it is pairwise responsive. ��
Next we show

Lemma 3. Let {x, y} be an arbitrary pair of two alternatives which are adjacent
and are not top-ranked alternative for an individual (denoted by individual 1). If
a decision scheme is strategy-proof and satisfies ex post Pareto optimality, then,
when the preference of individual 1 changes from xP1!y to yP1!x and all other
preferences do not change, the probabilities of x and y do not change.

Proof. Denote the profile assumed in this Lemma by a. Let b be a profile such that
individual 1’s preference changes from xP a

1 !y to yP b
1 !x and all other preferences

do not change. Denote the probabilities of x and y at a and b by p(x, a), p(y, b) and
so on. Then, by pairwise responsiveness we obtain

p(y, b) − p(y, a) = p(x, a) − p(x, b) = ε (1)

In the rest of the proof we show ε = 0.
Let z be the top-ranked alternative for individual 1 at a. From the assumption

of this lemma z is different from x and y. If z is the top-ranked alternative for all
individuals, by ex post Pareto optimality the probabilities of all alternatives other
than z are zero, and that of z is one. Therefore, a change in the order of x and y in
each individual’s preference does not affect the probability of any alternative, and
we have ε = 0.

Suppose that there are some individuals whose top-ranked alternative is not z,
and let individual 2 be one of them. Let a2 be a profile such that the order of z
and w1, which satisfies w1P2!z in individual 2’s preference, has changed at a, and
b2 be a profile such that the order of z and w1 in individual 2’s preference has
changed at b. Then, if w1 is different from x and y, pairwise responsiveness implies
p(x, a) = p(x, a2), p(y, a) = p(y, a2), p(x, b) = p(x, b2) and p(y, b) = p(y, b2).
From (1) we obtain

p(y, b2) − p(y, a2) =p(y, b) − p(y, a) = p(x, a) − p(x, b)
=p(x, a2) − p(x, b2) = ε (2)

3 Assume p(X, a) − p(X, b) = ε > 0, 1 ≤ ub
i (x) < 1 + ε, 0 ≤ ub

i (y) < ε. Then, we obtain

Ub
i (d(a)) ≥ 1 · p(X, a) + 0 · [1 − p(X, a)] = p(X, a) = p(X, b) + ε

Ub
i (d(b)) < (1 + ε)p(X, b) + ε[1 − p(X, b)] = p(X, b) + ε

and

Ub
i (d(a)) > Ub

i (d(b)).
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Next, consider the case wherew1 andy are the same. By pairwise responsiveness
we have p(z, a) = p(z, b) and p(z, a2) = p(z, b2). Comparing a with a2, and b
with b2, using these relations, we obtain

p(z, a2) − p(z, a) = p(y, a) − p(y, a2)

and

p(z, a2) − p(z, a) = p(y, b) − p(y, b2)

From them

p(y, a) − p(y, a2) = p(y, b) − p(y, b2)

It means

p(y, b) − p(y, a) = p(y, b2) − p(y, a2) (3)

Comparing a2 with b2, pairwise responsiveness implies

p(y, b2) − p(y, a2) = p(x, a2) − p(x, b2)

From (3) it is equal to ε.
Similarly in the case where w1 and x are the same, we can show4

p(y, b2) − p(y, a2) = p(x, a2) − p(x, b2) = ε

These results mean that the magnitudes of changes in the probabilities of x and
y due to a change in the order of x and y in individual 1’s preference, which is the
value of ε, is not affected by a change in the order of z and w1 in individual 2’s
preference.

By similar arguments we can show that a change in the order of z and w2, which
is the next upper alternative in individual 2’s preference, does not affect the value
of ε, and until z shifts up to the top of individual 2’s preference, the value of ε does
not change. These arguments are applied to all individuals other then individual 2
whose top-ranked alternative is not z. After all until z shifts up to the top of all
individuals’ preferences the value of ε does not change. When z is the top-ranked
alternative for all individuals, ex post Pareto optimality means that the probability
of z is one. Therefore, always we have ε = 0, and the lemma has been proved. ��

Next we show

Lemma 4. Let a be a profile such that x is the top-ranked alternative for individuals
in a group of individuals V , and it is bottom-ranked for other individuals. Denote
the probability of x in this case by pV (x, a). Then, if a decision scheme is strategy-
proof and satisfies ex post Pareto optimality, we obtain the following results.

4 Instead of (3) we obtain

p(x, b) − p(x, a) = p(x, b2) − p(x, a2)
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(1) pN (x, a) = 1.
(2) pV (x, a) does not depend on the preferences of individuals about alternatives

other than x.
(3) Let b be a profile such that the top-ranked alternative for individuals in V is

z, and it is the bottom-ranked alternative for other individuals. Denote the
probability of z at b by pV (z, b). Then, we have pV (z, b) = pV (x, a).

Proof.

(1) By ex post Pareto optimality the probabilities of alternatives other than x are
all zero. Thus, the probability of x is one.

(2) By Lemma 2 the decision scheme is localized, and so the probability of x is not
affected by changes in the preferences of individuals in V about alternatives
other than x. Since x is bottom-ranked for individuals other than those in V ,
localizedness also implies that the probability of x is not affected by changes
in the preferences of individuals other than those in V about alternatives other
than x.

(3) Consider the following profiles:
(i) a: The top-ranked alternative for individuals in V is x, and they have a

preference xPi!zPi!y; and the bottom-ranked alternative for other indi-
viduals is x, and they have a preference yPi!zPi!x.

(ii) a′: The preferences of individuals in V change from xPi!zPi!y to
xPi!yPi!z.

(iii) b: The top-ranked alternative for individuals in V is z, and they have a pref-
erence zPi!xPi!y; and the bottom-ranked alternative for other individuals
is z, and they have a preference yPi!xPi!z.

(iv) b′: The preferences of individuals in V change from zPi!xPi!y to
zPi!yPi!x.

Individual preferences about alternatives other than x, y and z do not change.
The probability of x at a is equal to pV (x, a). By pairwise responsiveness the
probability of x at a′ is also equal to pV (x, a). By Lemma 3 the probability of
z at a and that at a′ are equal. By ex post Pareto optimality the probability of
z at a′ is zero. Therefore, the probability of z at a is also zero. The probability
of z at b is equal to pV (z, b). By pairwise responsiveness the probability of
z at b′ is also equal to pV (z, b). By Lemma 3 the probability of x at b and
that at b′ are equal. By ex post Pareto optimality the probability of x at b′ is
zero. Therefore, the probability of x at b is also zero. Between a and b only
the order of x and z in each individual preference differs. Therefore, pairwise
responsiveness implies that the probabilities of alternatives other than x and z
are not changed between a and b, and the sum of the probabilities of x and z is
also not changed. Therefore, we obtain pV (x, a) = pV (z, b). ��
The value of pV (x, a) defined here does not depend on individual preferences

except for the fact that the top-ranked alternative is common for individuals in V ,
and this alternative is bottom-ranked for other individuals. The value of pV (x, a)
is determined by what members constitute the group V , and so it is regarded as the
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weight of V . It is denoted by

µ(V ) = pV (x, a) (4)

If V includes only one individual, µ(V ) is the weight of that individual.
Denote the set of individuals whose top-ranked alternative is x at a profile a by

V (x, a), and the weight of this group by µ(V (x, a)). We will show the following
result.

Lemma 5. If a decision scheme is strategy-proof and satisfies ex post Pareto opti-
mality, then, the probability assigned to x by the decision scheme at some profile a
is represented as follows:

p(x, a) = µ(V (x, a)) (5)

Proof. First, when x is the top-ranked alternative for individuals in V and it is
bottom-ranked for other individuals, by the definition of µ(V (x, a)) we obtain
p(x, a) = µ(V (x, a)). From Lemma 4 its value does not depend on the preferences
of individuals other than those in V about alternatives other than x. On the other
hand, from Lemma 3 even if the order of x and any other alternative changes in
the preferences of individuals other than those in V , the probability of x does
not change so long as x is not top-ranked for them. Thus, generally we obtain
p(x, a) = µ(V (x, a)). ��

Next we show

Lemma 6. Let V1 and V2 be groups of individuals which are disjoint (V1∩V2 = ∅).
If a decision scheme is strategy-proof and satisfies ex post Pareto optimality, we
have µ(V ) = µ(V1) + µ(V2) for V = V1 ∪ V2.

Proof. Suppose that x is the top-ranked alternative for individuals in V1, the top-
ranked alternative for individuals in V2 is y(	= x), and their secondly-ranked alter-
native is x. And suppose that the top-ranked alternative for all other individuals is
different from x and y, and they prefer x to y. Denote this profile by a. Then, by
Lemma 5 the probability of x and that of y at a are, respectively, equal to µ(V1)
and µ(V2).

Now, let b be a profile at which the order of x and y in the preferences of
individuals in V2 have changed from yPi!x to xPi!y. From Lemma 5 the probability
of x at b is equal to µ(V1 ∪ V2). By pair-wise responsiveness the sum of the
probabilities of x and y does not change, and by ex-post Pareto optimality the
probability of y at b is zero. Therefore, we obtain

p(x, b) = µ(V1 ∪ V2) = p(x, a) + p(y, a)

This means

µ(V1 ∪ V2) = µ(V1) + µ(V2) ��
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If V1 and V2 consist of, respectively, only one individual, this lemma implies
that the weight of a set which contains two individuals is equal to the sum of the
weights of the two individuals, and the weight of a set which contains one more
individual is equal to the sum of the weights of the three individuals, and so on.
Therefore, the weight of a group is equal to the sum of the weights of members of
the group. Since pN (x, a) = 1, Lemma 5 and 6 imply the following result.

Lemma 7. If a decision scheme is strategy-proof and satisfies ex post Pareto opti-
mality, the probability assigned to x by the decision scheme are equal to the sum
of the weights of individuals for whom x is the top-ranked alternative.

This means that the decision scheme is randomly dictatorial, and the proof of
Theorem 1 has been completed.

5 The converse of the random dictatorship theorem

Finally, we verify the converse of Theorem 1.

Theorem 2. A randomly dictatorial decision scheme is strategy-proof.

Proof. A randomly dictatorial decision scheme assigns positive probabilities to
only alternatives which are top-ranked alternatives for some individuals, and the
probabilities assigned to each alternative is equal to the sum of the weights of
individuals for whom it is the top-ranked alternative. Let us consider a decision
scheme d(·) and denote the weight of individual i by µ(i) for i = 1, 2, · · · , n.
Then, the expected utility for some individual (denoted by k) at a profile a when
all individuals reveal their true preferences is

Ua
k (d(a)) =

n∑

i=1

ua
k(x̄i)µ(i)

x̄i denotes the top ranked alternative for individual i. Suppose that individual k
reveals a different preference and denote such a profile by b. If his top ranked
alternative at a and that at b are the same, his expected utility does not change
between a and b. On the other hand, if he reveals a different top ranked alternative,
his expected utility clearly lowers. And hence he does not have an incentive to
reveal a preference which is different from his true preference. This argument can
be applied to all individuals. Therefore, any randomly dictatorial decision scheme
is strategy-proof. ��
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