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An alternative Dunford—Pettis Property
by

WALDEN FREEDMAN (Santa Barbara, Cal., and Gazimagusa)

Abstract. An alternative to the Dunford-Pettis Property, called the DP1-property,
is introduced. Its relationship to the Dunford—Pettis Property and other related properties
is examined. It is shown that £p-direct sums of spaces with DPI have DPLif1 < p < 0.
It is also shown that for preduals of von Neumann algebras, DP1 is strictly weaker than
the Dunford—Pettis Property, while for von Neumann algebras, the two properties are
equivalent.

Introduction. A Banach space X is said to have the Dunford--Pettis
Property (DP) if for any Banach space Y, every weakly compact operator
T: X — Y is completely continuous, i.e., T maps weakly compact sub-
sets of X onto norm compact subsets of Y. Equivalently, X has DP if and
only if for any weakly null sequences (f.) C X and (a,) € X*, one has
fa(as) — 0. For this and other basic results, the reader is directed to [8].
It is well-known that for any Radon measure u, and for any locally com-
pact Hausdorff space (2, both I () and Co(£2) have DP. Thus commutative
von Neumarnn algebras and their preduals have DP, but DP fails to hold
generally in the noncommutative case. For example, as shown in [2], for
any von Neurnann algebra M, M, has DP if and only if M is type I and
finite.

This paper introduces a closely related property, called the DPI1-prop-
erty, which can be thought of as a compromise between DP and the Kadec-
Klee Property. This is shown to hold for a larger class of Banach spaces, in
particular for a larger class of preduals of von Neumann algebras,

Notation. If X is any Banach space, the closed unit ball of X will be
denoted by X; and the unit sphere will be denoted by 6X;. Throughout
the paper, X and Y will denote Banach spaces over the field of complex
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numbers. The Banach space of all bounded linear operators from X to ¥V
will be denoted by B(X,Y). By the word “cperator”, we will always mean
a bounded linear operator. Given f € X and a € X™ we often write f(a) or

{f,0) for a(f).
Recall by [4, p. 80] that if {X, : @ € A} is a family of Banach spaces,
and 1 < p < oo, one defines the Banach spaces

(@), ={r=tae) € ] Xa: 3 Jeal? < o0},

acd weA

with norm [|z|| = (37, ||z«[|P)*/?, and

(Pxa) ={z=@a) e I] Xu:swpliaal < o0},
wEd

acA

with norm |lz|| = sup, ||za]-
For a sequence (X;) of Banach spaces, one defines the Banach space

(éEXi)O = {fc = (x;) € f_[X,- Nizn|| = 0},

with norm {|z|| = sup,, ||#n]|-
Note that if 1 £ p < oo, and p~ 4+ ¢~ ! = 1, then

(@), = (§),

and for a sequence (X;) of Banach spaces,

(§X7): = (@X:)l

Throughout the paper, H will dencte an arbitrary infinite-dimensional
Hilbert space. The space of trace-class operators on H will be denoted by
L(H); the compact operators by K(H); and the von Neumann algebra
of all bounded operators by B(H). For any von Neumann algebra M, M,
denotes the predual of M, the unique {up to isometric isomorphism) Banach
space such that (M,)* = M. The predual M, can be identified with the
space of all normal (bounded) linear functionals on M. In particular, £ (H)
is identified with B(H),.

By the weak topology on a C*-algebra A we will always mean the weak
Banach space topology, i.e., the topology induced by A*. Given a ¢*-algebra
A with f € A%, and a € A, one defines fa and af € A* by fa{z} = flaz)
and af(x) = f(xa), respectively, for all z € A.
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1. The DP1l-property

1.1. DEFINITION. A Banach space X has the DP1-property if for any
weakly convergent sequences f, — f in X, and a, — a in X, such that
[ fnll = [If]l = 1, we have fo(an) — f(a).

Note that the condition || fu|| = |[f|| = 1 can be replaced by the equiv-
alent condition that |[fn|| — ||/|/, and we may also assume without loss of
generality that o = 0.

Recall that a Banach space X has the Kadec-Klee Property (KKP) if
whenever f, — f weakly, with || /.|| = || f|| = 1, then | fn. — f]| — 0.

1.2. Remarks. 1. Obviously, if X has either DP or KKP, then it has
DPL.

2. It is easy to see that if X* has DP, then X has DP. This is in contrast
to DP1, for as will be seen (2.3 and Example 3.3(i)), K (H)* = L}(H) has
DP1, while K(H) does not.

3. It is easy to check that as in the case of DP, if ¥ is a complemented
closed subspace of X, and X has DP1, then E has DF1, while for any closed
subspace E C X, if X has KKP, then F has KKP.

4. It is important to note that DP1 and KKP, in contrast to DP, are not
preserved by isomorphisms in general (see Example 1.6), though it is easy

- to check that they are preserved by isomefric isomorphisms.

Recall that an operator T € B(X,Y) is called weakly compact if T(X+)
is relatively weakly compact in ¥. Equivalently, by the Eberlein—Shmul'yan
theorem [7, p. 18], for any bounded sequence (z,,) in X, the sequence (T'z,,)
has a weakly convergent subsequence.

An operator T' € B(X,Y) is called completely continuous if it maps
weakly compact subsets of X onto norm compact subsets of ¥'. An easy
application of the Eberlein-Shmul’yan theorem shows that 7' is completely
continueus if and only if T maps weakly convergent sequences onto norm
convergent sequences.

1.3. DEFINITION. An operator T € B(X,Y) is said to be a DP1-operator
if whenever f, — f weakly in X, with ||fu|| = || f|| = 1, we have T'f,, — T'f
in norm.

Note that again an easy application of the Eberlein—-Shmul'yan theorem
shows that an operator is a DPI-operator if and only if it maps weakly
compact subsets of X3 onto norm compact subsets of ¥

As is the case with DP (cf, [8, p. 17]), there are several useful conditions
which are equivalent to DP1, as shown next. :
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1.4, THEOREM, Let X be a Banach space. The following are equivalent:

(2) X has DPL.

(b) For every Banach space Y, every weakly compact operatorT : X — Y
is a DP1-operator.

(c) For every reflemive space Y, every operator T : X — Y is a DP1-
operator.

(d) Every weakly compact operator T': X — ¢g is o DP1-operator.

(e) Assume fn — f weakly in X with |fol = ||f| = 1 for oll n. If
(a,) C X* is a weckly Cauchy sequence, then (fr — f)(an) — 0.

Proof. (a)=>(b). Suppose X has DP1 and there exists a Banach space
Y, a weakly compact operator T : X — Y, and a weakly convergent sequence
fo — f with || frll = 1 = |/ such that (Tf,) is not norm convergent in Y.
By passing to a subsequence if necessary, we may assume that there exists
§ > 0 such that ||Tfor — T forsrl| > & forall k= 1,2,..., and choose b € ¥y
such that for all &,

§ < |bg(T for ~ T fons1)|-

Let oy = T*b € X*. Since T* is weakly compact [14, I1.C.6], the sequence
(ex) has a weakly convergent subsequence, so we may assume without loss of
generality that there exists a € X* such that a — a weakly. Now, far — f
weakly, and fags1 — f weakly, so by (a) we have

§ < |bw(T far) — bi(T faesr)| = | for(an) —

a contradiction.

(b)=-(c). Suppose Y is reflexive, and let T' € B(X,Y). Let () be a
bounded sequence in X. Since Y is reflexive, the bounded sequence (T'wy)
has a weakly convergent subsequence. Hence T' is weakly compact, so by
(b), T is a DPl-operator.

{)=(d). It T : X — ¢p is weakly compact, then by the Davis-Figiel~
Johnson—Pelczyniski factorization theorem [5], 7" factors through a reflexive
space. Hence by (¢}, T is a DPl-operator.

(d)=(a). As in the proof of (b)=>(a), let f, — f weakly in X with
[Ifall = |1l =1, and @, — 0 weakly in X*. The map T : X — ¢y defined
by T'g = (g{an}) is then weakly compact, as shown in (b)=>(a), so that
T fn — TfIl = 0. Hence sup; |(fn — f)(ai}i — 0, and so 1(f — f)(an)| = 0.
Thus as an, — 0 weakly, we have f,(an) — 0.

(a)=>(e). Suppose X has DP1 and f, — f weakly in X with ||fn]| =
[l£]l = 1 for all n. Let (a,) be a weakly Cauchy sequence in X*, and let
g > 0 be given. Since f, — f — 0 weakly in X, for each n there exists k, > n

fart1(ar)| — 0,
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such that |(fx, — f)(an)| < &. Hence

[P = F)ar ) < (fow = P, — and| + [(Fr,
< |(fo — Fian, —an)| +e.

Since (an) is weakly Cauchy, (ax, — a,) is weakly null, so that flog, —
an) — 0, but since X has DP1, fi, (ax, — a,) — 0 as well. It follows that
(For — f)(ax,) = 0, whence (£ - F)(an) — 0.

(e)=>(a). Suppose fn — f weakly and ||f,)] = ||f]| = 1. f an — O
weakly in X*, then certairly (a,) is weakly Cauchy, so by (e), we have
(frn = fYan) — 0. But since f(a,) — 0, we then have f,(a,) — 0. m

1.5. COROLLARY. If X is reflexive, then X has DPL if and only if X
hes KKP. In particular, every Hilbert space has KKP, and hence has DP1
as well.

= f)(an)l

Proof. One direction is obvious, so assume X has DP1 and let z,, — @
weakly in X with ||z,|| = ||z|| = 1. Since X is reflexive, the identity operator
on X is a DPl-operator by Theorem 1.4. Hence |z, — z| — 0, so X has
KKP.

If X is a Hilbert space, with z, and z as above, then

|2 — 2| = (&n — &, %0 — 3} = 2(1 — Re({Z, Tn)})) — 0,

80 X has KKP. »

1.6. EXAMPLE: A reflexive space which is isomorphic to a Hilbert space
but which foils {0 have DPL. Let X = f3 By £o. Clearly, X is isomorphic to
the Hilbert space £, &2 €2. Let y, — y weakly in £y, with [[y.]| = ||v]l = 1 (so
in fact [jyn —y|| — 0). Let (en) be the standard basis in £, so e, — 0 weakly.
Let 2, = (yn,en) € X, and let z = (y,0) € X. Clearly, 2, — z weakly,
and |lz,| = ||z|| = 1 for all n. Yet we have ||z, — =l = [(yn — ¥, en)|| =
max{|\yn ~ yl|, ||en]|} = 1 for all n, so X fails to have KKP, and hence by
Corollary 1.5, X fails to have DP1. In particular, let g, = (0,e,) € X*.
Then g, — 0 weakly, but gn(z,) =1 for all n.

In [9], the following characterization of DP is given: A Banach space X
bas DP if and only if for every Banach space Y, whenever K C X and
J € Y are weakly compact sets in X and Y, then | theset K@J={z®yc
X®8Y:zeK,yeJ } is weakly compact in X 8 Y, the projective tensor
product of X and Y. Using the same notation, similar characterizations of
the DP1, KKP and Schur properties are given in the following theorem.

1.7. THEOREM. Let X be a Banach space.

(a) X has DP1 if and only if for every Banach space Y, whenever K C
0X; and J C Y are weakly compact sets in X and Y, then the set K ® J
is weakly compact in X 8 Y.




148 W. Freedman

(b) For any Bunach space Y, the spaces X and Y have KKP if and only
if for any weakly compact sets K C 80X, J G 0Yy, the set K @ J 13 norm
compact in X @Y.

(¢} For any Banach space Y, the spaces X and Y have the Schur property
if and only if for any weokly compact sets K C X, JCV, the set X ® J 15
norm compact in X ® Y.

Proof. Throughout the proof, full use is made of the Eberlein--Shmu-
I'yan theorem [7, Ch. III]: A subset § C X is weakly compact if and only if
it is weakly sequentially compact.

(a) Suppose X has DP1, and let K and J be given as in the statement
of the theorem. Let (z,) € K and (yn.) € J be given. Since K and J are
weakly compact, by passing to subsequences if necessary, we may assume
without loss of generality that there exist + € K and y € J such that
Tn — 2 and ¥, — y weakly. Recall from [12, IV.2] that we have (X ® Y)* =
B(Y,X™*), where S € B(Y,X™) acts on 2 @ y by S(z ® y) = (z, Sy). Now,
if ¢ € B(Y, X*), then ¢(y,) — #(y) weakly in X*. Since X has DP1, we
obtain {(Zn, ¢(yn)) — {2, &(y)), so that T, @y — @y weakly in X Y.

Conversely, let z, — = weakly in X with |z,| = ||z|| = 1, and let
fn — 0 weakly in X*. Set zp = z and fy = 0 € X*. By hypothesis, the
set {z; ® f; : 1, 4 = 0} is weakly compact. Suppose that (zn, ® f.) is not
weakly null in X ® X™. Tt follows that there is a subsequence (2, ® fs,) and
Zo 7 0 and fy # 0 such that ©,, ® frn, — 2, ® f» weakly. Choose g € X*
and h € X** such that g(z,) % 0 and A(fy) # 0. Then g@ h € (X & X*)*

and
(9 @ h) (2, ® foy) = (9 ® M) (22 ® f) = g(za)hlf) # 0,
but
(9@ h)(zn, @ fru) = 9(@n )0 fn,) = 0,
since fn, — 0 weakly and |g(wn, )| < ||g|l; a contradiction. Hence (zn ® fa)
is weakly null. Since (X & X*)* = B(X*, X*), we have Ly+(zn ® fn) =
Fn(za) — 0, whence X has DP1,

(b) Suppose X and Y have KKP and K and J are as in the statement
of the theorem. Let (1, Ry,) C K ®J. As in (a), since K and J are weakly
compact, we may assume that there exist © € K and y € J such that z, —
and y, — y weakly. Since X and Y have KKP, we have

lzn @ yn —2 @yl < |20 @ gn — 2 Syl + 2 @y — 2 D
= [[(zn ~2) ® ynl| + [z @ (= )|
= lzn — 2l - Hynl + 2] - lyn - vl
= [len ~ 2| + lyn — yl| = 0,
so that K @ J is norm compact.
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Conversely, choose (z,) C X, such that z, — z weakly and |z] = 1.
Let y € 8Y7, and set 2y = z. By hypothesis, the set {z; @ y:4 > 0} is norm
compact in X ® Y, so by passing to a subsequence if necessary, we may
assume without loss of generality that (2, ® y) is norm convergent. Clearly,
z, ®y -+ ¢ ®y weakly, and hence converges in norm as well. But then

e —2fl = [len = 2z|| - Iyl = len @y — 2z 8 Y| = O,
whence X has KKP. The same argument shows, upon switching the roles of
X and Y, that Y has KKP.

(¢) Suppose X and Y both have the Schur property, and let K and J
be as given in the statement of the theorem. Let (2, ® yn) S K ® J. Asin
parts (a) and (b), we may assume without loss that there exist z € K and
y € J such that 2, — z and y, — y weakly. Since X and Y bhoth have the
Schur property, we have ||z, —z| — 0 and ||yn —¥|| — 0, but as in the proof

of (b),
|2n ® yn ~ = ® yll < 2w =] - lyall + [l - [lvn = v,

so that ||&n @ yn —z @ y|| — 0. Hence K @ J is norm compact.

Conversely, assume that z, — z weakly in X, choose y € Y}, and
set zp = z. As in part (b), by hypothesis, the set {z; ® y : ¢ > 0} is
norm compact, so by passing to a subsequence if necessary, we may assume
without loss of generality that {z,®y) is norm convergent. Clearly, £, ®y —
g ® ¢ weakly, and hence converges in norm as well. But then

|Za =zl = |lzn — o] -yl = |2 @y —z @yl =0,
whence X has the Schur property. The same argument shows, upon switch-
ing the roles of X and Y, that ¥ has the Schur property as well. =

1.8. Tt is a well-known fact that if (f,,) is a sequence in a Banach space
X and f € X is such that f, — f weakly, then limsup|/fai 2 (I£Il. This
fact will be used several times in the rest of the paper.

The next theorem plays a central role in this paper, establishing in par-
ticular that infinite direct sums of spaces with DP1 have DP1, provided that
the right norm is used.

1.9. TuporeM. Let {X, :

1< p < oo, and set
X = (@Xo{)p.
9

Then X has DP1 or KKP if and only if for each o, X, has DP1 or KKP,
respectively.

Proof. PFor each a € A, X, is a complemented closed subspace of X,
s0 if X has KKP or DP1, so does X,. (See Remark 1.2.3.) ‘

o € A} be a family of Banach spaces, let
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For the converse, let f, f € X with f = (f*) and f, = (f2) be such
that f, — f weakly, and such that for all n,

=fall? = D IF21P = AP =D e

Clearly, for all o € A we have £ — f weakly in X,. Let § € A. By the
remark in 1.8, limsup || f2| > [ f2], so if [[fZ|| % 1|f?||, then there exists
r >0 and a subsequence (f¥ ) such that | f£ || — r > || f#|.. But then

L= 3 r21P = 3 Il = Hrh P+ 3 e 1=,

aEs
so that
Yolsm P =1 2P = S ol + 120 - )72, {1
a#fS a3
Hence
(%) DI P LR Y A
o afi aFB

For each n, let Fo = (F%) € X be defined by setting f* = J& for all
o # B and f7 = 0, and similarly define f == (f"‘) Then clearly ﬁ —t f
weakly in X since f, — f weakly; but by (+), we have limy, |7, || < 171,
which contradicts the remark made in 1.8. Hence || f2|| — | £2||

Suppose now that X, has DP1 for each a € A, but X fails to have DP1.
Let (an) € X* = (B, X2),, where p~L +¢~ = 1, with a,, = {a%), and such
that a, — 0 weakly. Clearly, for all & € A we have a® — 0 weakly in X7,
and by the uniform boundedness principle, we may assume without loss of
generality that |ja,)| < 1.

Suppose that | fn(an)| = |3, f3(a)| # 0. Then there exists a sequence
(nk) € N and 0 < s < 1 such that

DIEACH

3+ 8,

since for all n,

S 7l llonil < 1.

3 fata)

Let 0 < & < 27(H1sP, 50 that 2(26)/? < 5. Since 2 < 1, we have
28 £ {2€)"/? 50 that 2e + (26)1/% < s,

Choose a finite set Ay C A such that
ORI S e <

a;&’/lo
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and choose N > 0 such that for all k > N the following hold:

(i) DEACHIEE R
(i) > ezl <,
atAy

which is possible since || £ | — |F*||, and X has DP1 for all o, and

(iv) STlRIP = 12017 < e

& Ap

Dol = P =1,

Since

we have

S =1= " I lP

cgdo agAg
oD Fid e N [F il L Y 1
xe€dp agAg aEdo
= S (1P - P + 30 P
a€do ag Ao
S D FA E FA LR o
acdy aZhy ‘

so that by (i) and (iv) we have

(v) > Iz IP < 2.

o€ Ay

By (ii), (iii), and (v) we have

s—e< || <e+| T faen)

a@ Ao

5 £+ ( Z ”f’r?kﬂp)lfpua:nk‘l <&+ (25)1./1”
g Ao

so that & < 2 <+ (26)'/?, contradicting the choice of £. It follows that
falan) ~ 0, whence X has DP1.

Now suppose that X, has KKP for all @ € A, but X fails to have KKP.
Let f and f,, be as above. By the first part of the proof above, we have that
for all B € A, £ — f© weakly and [ 78] — [1f]|, so that [|££ — f7]| —. |
Suppose that || f, — f|| # 0. It follows that since || fn — f||? < 27, there.exists 3
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a subsequence (fn,) and 0 < s < 2P such that

I fr — FIF = Z I!f;i‘k - P — s

Let
3

2 4+ 20 4 2ptl’
and let Ag C A be finite such that (i) holds. Choose N > 0 such that (iv)
(hence (v)) and the following hold for all k > NV:

D<e<

(if) |0 - 171 =5 <,
(i) S lfs - s <
a€Ap

By (ii"), (iii"), (i), and (v), we then have
s—e< Y Ilfe - P <o+ Y Ifm — oI

a@Ap
<et 3 (Il + by
agAg
<e+ » @max{|f5 1 1F4I11P
agAg
<e+22 > (I P+ [1F717) < el + 27 + 277,
a@ Ao

so that s < &(2 4+ 27 4 271, which contradicts the choice of &. Tt follows
that i| f. — f|| — 0, whence X has KKP. u

1.10. COROLLARY. Let {M* : o &€ A} be o family of von Neumann
algebras and let M = (B, M*)eo. Then M, has DP1 if and only if M7
has DP1 for each o € A.

Proof. We have M, = (B, MZ)1, 50 the result follows immediately
from the theorem. m

1.11. Remark. Since £ and ¢,, have DP, it follows from the theorem
that £, has DP1 for any 1 £ p £ oco. Hence by Corollary 1.5, if 1 < p < o0,
then £, has KKP. This follows also from the fact that £, is uniformly convex
(see [11]) and the standard result that any uniformly convex space has KKP.

We now consider briefly the case of quotient spaces.

1.12; THEOREM. Let X be o Banach space which is weakly sequentially
complete. Let E C. X be a closed reflexive subspace. If X has DP1 or KKP,
then X/B has DP1 or KKP respectively.
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. Proof. Suppose that X has DPL. Let y, — y weakly in X/F, with
lunll = |yl = 1. By [8, Lemma 8], there exists a subsequence (yn, ), an
element z € X, and a weakly convergent sequence (zx) C X with o — x
weakly such that y,, = mxy for all k, where 7 : X — X/FE is the canonical
map. It follows immediately that 7z = y, and so |lrz| = L.

For all k we have

Iyl = 1= inf [l2s el
so for each k, choose ex € E such that

1< [lo — exll <1+275,
so that ||zx — ex|| — 1. By passing to a subsequence if necessary, we may
agsume without loss of generality that (ej) is weakly convergent to an ele-
ment e € E. Hence, zx — ey — ¢ — e weakly and ||z — ex|| — 1, so that
|z —e]] < 1. On the other hand, we have 1 = ||wz|| = ||7(z — e)i| < [lz ~ell,

so that ||z — ef] = 1. Let f, - 0 weakly in (X/E)*. Then «* f. — 0 weakly
in X™, 80 since X has DP1,

FreWni) = Fri (728) = fop (7 (i — €x)) = (7 fr) (zk — €x) = O,
whence X/FE has DP1.

Suppose now that X has KKP, and let y, — y weakly in X/E, with
lynll = ||¥]l = 1. As in the first part, we have a subsequence (yn, ), a sequence
(zy) with oy ~ 2 weakly and ||7z]| = 1, and (e} and e € E with |z—e| =1
and ||z — || — 1. Since X has KXP, we have ||z — ¢ — (ex —¢)|| — 0, but

lymy — yll = lIm(zs — @)l = lr(2e — 2 — (ex — €Dl < [imp — 2 — (ex — e},
whence X/E has KKP. u : ‘

2. DP1 and KKP for preduals of von Neumann algebras. As
mentioned in the introduction, for preduals of von Neumann algebras, the
DP property is a rare thing: as seen in [2], M, has DP if and only if M
is type I and fnite. Since £'(H) and L'[0,1] do have DP1, it follows that
DP1 is a natural candidate for a property which holds for a larger class
of preduals of von Neumann algebras and which may help us to better
understand their nature. The first result shows that for either DP1 or KKP,
it suffices to consider weakly convergent sequences of states, i.e., positive
norm cne functionals in M.

2.1. PROPOSITION. Let M be o von Neumann algebra. Then

(a) M. has KKP if and only if every weakly conuvergent sequence of
states in M, converges in norm.

(b) M, has DP1 if and only if for any weakly convergent sequemnce of
states (fn) © My, with fr, — f weakly, whenever an — 0 weakly in, M; we
haue fn(an) -0, .
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Proof. (a) Suppose fn — f weakly in M., with ||fa]l = ||f|| =1 for
all n. It follows from [12, 111.4.11] that |f,| — |f| weakly, so
11fal = £ = 0

By the polar decomposition theorem [12, II1.4], there exist unique partial
isometries u, and v in M such that for all n,

fn= |fn|'u"n,1 ‘fn‘ == fnu;= f= |f‘u: ”l‘ = fu®,
|Fnl = un| falun, =|falun, |ff = flu, =

with w1 = s(|fu]) and wu* = s(]f]), the support projections [12, p. 140]

for |f,| and |f| respectively. It follows immediately that f* = v*|f| and
|f] = uf*
We have

o= Fll = |l [falun — if|u]
< nlun = 1 falult + (| [ ol = | £l
< ” |fn|un = | fulull + || fa] =[£I,
and by hypothesis, || | fu| —{f| || — 0, so it is sufficient to show that || | fn|u, —
| falull — 0.
Let 2 € M;. By the Cauchy-Schwarz inequality for positive functionals
[12, 1.9], we have

[l ((un ~ w))[? < |ful (2" 2} fr | { (i = w2 — u))
< | fal((un — ) (up — w*))
= | fal(unuy) — | falun (") —ug|fnl(w) + |Fnl(uu®)
=1 fa(u") — o) + [ fnl(uu'),

using in particular the fact that unu) = s(|f,|) for all n. It follows that

| [frlton = [falull 1= fa(u*) = fr(u) + [ fal(uu®),
but
' fa(w™) = fu*) = fu™(1) = [f|(1) =
Falu) = f*(u) = Uf*(l = [f|(1) = ﬂnd
| fal(uw®) = [fluw") = (w|flu)(1) = If*l = ||£ll = 1.
Hence || |fn|(tn —u)|| — 0, and so || f, — || — O.

The converse follows immediately from the definition of KKP.

(b) Let fn, f,un,and © be as in (a) and suppose that a, -+ 0 weakly in
M. We have

|(fn = F)@a)l < (| fnl(un — wh}(an)] + || fal(wan) = [£](uan)]
S N fni(n =1 llan || + | | fn| (dan) — | fl(uan)|-
Since ua, — 0 weakly, we have || fn|(uan) — |f|(van}| — 0 by assumption.

But by the proof of (a), we have ||| fa|(un—u)|| = 0, so that (fn—F)(an) — 0,
whence fn{a,) — 0.

icm

An alternative Dunford-Pettis Property 155

The converse follows immediately from the definition of the DP1-prop-
erty. m

Remark. In [1, Corollary 5] it is shown that whenever a sequence (f,)
of states in M, converges weakly to a pure state f, then we always have

lfn = £II = 0.

2.2. Exampr: L0, 1] fails to have KKP. Let (ry,) denote the sequence
of Rademacher functions on [0,1], where for 0 < ¢ < 1, and for all n =
1,2,.

rn(t) = sgn(sin 2" wt). _
It i3 easy to see that {ry, : n > 1} is orthonormal in L2[0, 1]. Since L*°[0,1] C
L?[0,1}, it follows that for any g € L*[0, 1}, we have f;g(t)'rn(t) dt — 0,
i.e., as elements of L1[0, 1], r, — 0 weakly. Setting fn(f) = rn(t} + 1 for all

0 <t <1, we then have f,, — 1 weakly in L'[0, 1], and it is easy to see that
| fulln = 1 for all n, but we alsc have || f, — 1|j1 = {|Jrafls =1 for all n.

2.3. In [6], Dell’Antonio defines property U for a von Neumann algebra
M saying that M has property U if the condition in 2.1(a) is met, ie.,
weakly convergent sequences of states in M, converge uniformly. Thus by
Proposition 2.1, M has property U if and only if M, has KKP. It is then
shown in [6] that if M is type I, then M, has KKP if and only if Z, the
center of M, is atomic. From this, it follows immediately that for any Hilbert
space H, C'(H) has KKP.

2.4. ExaMmrre: A von Neumonn algebra whose predual has DPL, but
has meither DP nor KKP. Let M = B(H) @ L>®[0, 1], 50 M, = L' (H) &1
Lo, l]. Since £ (H) fails to have DP, M, fails to have DP, and by Example
2.2, L0, 1] fails to have KKP, so M, also fails to have KKP. On the other
hand L(H) has KKP and Ll[O 1] has DP, so that both spaces have DP1.
Thus by Theorem 1.9, M, has DP1 as well.

2.5. THEOREM. Let A be a C*-alg Jebm such that A* is separeble. Then
A* has KKP,

Proof. DBy [13, Lemma 3], there exists a countable famlly {H; :
1,2,...} of Hilbert spaces such that

L D BUH))
=]

and hence

= (@em),

i=1
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As remarked in 2.3 above, £1(H) has KKP, so by Theorem 1.9, A* has
KKP. Alternatively, the von Neumann algebra A** is type I and clearly its

center is isomorphic to £y, which is atomic, so by [6, 3.1] its predual A* has
KKP. m

In [8], it is shown that M, has DP if and only if whenever a,, — 0 weakly
in M, then a,, — 0 o-strong*, that is, a}an + ana), — 0 weak™. That result
inspired the following proposition,

2.6. ProposITION. Let M be a won Neumann olgebra such that M, has
DP1. Let a, — o weakly in M with |la,| = |ja| = 1. For all f & M, such
that ||fa*| = || fIl, we have flatan) — fla*a). For oll f € M, such that
la*Fll = Il we have f(anal) — flaa*). Hence for all f € M. such that
la* 7l = llFll = [fa"|l; we have flafan +anay) — f(a*a + ac®).

Proof. Suppose |fa*|| = [|f||. We have fa} — fo* weakly in M,
and || fak| < |l -llexl = £l = || fe*|.- By the remark in 1.8, we have
| fan |l = || fa*||. Since M., has DP1, we then obtain (fay;}{an) — (fa*)(a),
ie., flapan) — f(a*a). Similarly, if ||a* f|| = [If]], we obtain f(anel) —
f(aa*), and hence the last assertion follows as well. w

2.7. COROLLARY. Let M be ¢ von Neumann algebra such that M, has
DPL. Let (ay) C OM;. If an — 1 weakly, then an, — 1 o-strong*.

Proof. This follows immediately from the proposition with ¢ = 1. =

3. DP1 and KKP for C*-algebras and von Neumann algebras.
We will now consider when a von Neumann algebra M or C*-algebra A has
DP1 or KKP. As shown in [3], A has DP if and only if whenever z,, — 0
weakly in A, we have %z, -+ 0 weakly. As will now be shown, a similar
condition is equivalent to A having DP1.

3.1. THEOREM. Let A be a C*-algebra. Then A has DP1 if and only if
whenever n, — 7 weakly in A with ||z,|| = |zl = 1, then xz, — z*z
weakly. In that case, wpa), — zo* weakly, and $0 £, %p + 2pak — otz 4o
weakly.

Proof Suppose A has DP1, and z, — z weakly in 4 with |zn| =
||| = 1. Let g € A", and define f, = gz*, and f = gz*. For any # € A™,
we have fn(z) = g(z}2) = 29(2}) — zg(2*) = f(2), so that f,, — f weakly
in A™. Hence g(z}zn) = fulzn) — flz) = g(e*z), and thus z%m, — z*z
weakly. Similarly, z,2% — zz* weakly, from which the final conclusion
follows. Conversely, let {|zn|| = ||z|| = 1 for all n, with @,, — z weakly in A.
Let fn — 0 weakly in A*. By hypothesis, 2* @, + 2,% — *% + 22" weakly,

ie., @n — = in the o-strong* topology of A**, whence fnlzn) — 0 by [12,
IIL5.5].
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In [3], it is also shown that if A is a C*-algebra having DP, then every
C*-gubalgebra of A has DP as well. A similar result holds for DP1 as seen
in the next result.

3.2. COROLLARY. Let A be a C*-algebra, with B C A o C*-subalgebra.
If A has DP1, then B has DPL as well.

Proof Let by — b weakly in B, with ||bs|| = ||b|| = 1. Clearly, b, — b
weakly in A, so by the theorem, b}b, — b*b weakly in 4, and hence in B as
well. Thus by the theorem, B has DP1. =

3.8. ExampLus. (i) K(H), and hence B(H), fails to have DP1. Let (en)
be an orthonormal sequence in H. For each n, let 2, = e, @e1 +ex e €
K(H),and let z = ¢a®en € K (H). It is easy to see that o, — = weakly, and
izl = Jlz]| = 1 for all n = 3, but z¥z, =€ ®e1+ex®@er AT T =€ ®e
weakly. Alternatively, letting f,, = tr(- 1 ®e,), one sees that fr, — 0 weakly
in K{H)*, but fn(z,) =1 for all n.

(if) A C*-~algebra having DP whose double dual fails to have DP1. Let A

be the (™ -algebra

(=]

A= (G?MW(C)) .

ne=
As shown in [3], 4% = (D2%,, £(£3))1 has the Schur property, so that both
A and A* have DP. Let M = 4™ = (@p; Mn(C))eo. It can be shown
that A fails to have DP1 (and hence fails to have DP), by using a sequence
analogous to that used in 3.3(i) and then applying Theorem 3.1. A simpler
proof of this fact is offered here, as suggested by the referge.

We note first that M is clearly isometrically isomorphic to

( é.é May, (C)) Poo (é M2n-—«l(c)) '
pus o n=l

and that for any increasing sequence (nx) C N, the space (Pt My, ()
contains a complemented isometric copy of (i £5*)co- Hence, in partic-
ular, M containg a complemented isometric copy of

(Bar) ow (B8,
nu=l ee ne=l

Now, it can be shown (see [14, p. 81] and (8, p. 22]) that for any increasing
sequence (nx) C N, the space (Pj . £3")ee contains a complemented iso-
metric copy of £z, from which it follows that M contains a compleme.znted
isometric copy of £ @uo £2. But by Example 1.6, the latter space fails to
have DP1, so that M fails to have DP1 as well.

3.4. THEOREM. Let A be a C*-algebra. Then A has KKP if and only if
A is finite-dimensional. e
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Proof. Suppose 4 is infinite-dimensional. Then by [10, 4.6.13], A con-
tains a sequence (f,) of positive pairwise-orthogonal norm one elements.

Suppose fn # 0 weakly in A, so there exist ¢ € AY, § > 0, and a
subsequence (f,, ) such that for all &, {¢(fn,}| > 6. Choose 8}, € C such that
(8 fnp) = |d(Fn,)|- Since the sequence (f,) is pairwise orthogonal, we have

for any N,

N N

L= |38t 2 [0 D2 000 )| = D0 005) > N,

i=1 q==] L
which is impossible. Hence f, — 0 weakly, Now f{ + fn — f1 weakly, and
[t fall=1foraln>2 but 1=|full = (fi+ fu) — fll, so A fails to
have KKP.

Conversely, if A is finite-dimensional, then the weak and norm topologies

agree, so we are done. m

Let M be a von Neumann algebra. As shown in [3], M has DP if and
only if M is a finite direct sum of type I, von Neumann algebras, n ¢ N.
Of course, if M has DP, then M has DP1, and the last result shows that
the converse holds.

3.5. THEOREM, Let M be a von Neumann algebra. Then M has DP if
and only if M has DP1.

Proof. Again, one direction is immediate, so suppose that M has DP1.
As shown in the proof of [3, Theorem 3], if M is infinite, then it contains a
subalgebra isomorphic to B(H) for some infinite-dimensional Hilbert space
H. By Example 3.3(i), B(H) fails to have DP1, and so by Corollary 3.2, M
fails to have DP1, a contradiction. Thus M is finite.

As shown in the same proof in [3], if M contains a type II; summand
N, then N contains a subalgebra isomorphic to (GB;"’:l My (C))eo. But by
Example 3.3(ii), this subalgebra fails to have DP1, and again by Corollary
3.2, this implies M fails to have DP1, a contradiction. Hence M contains
no type I3 summand, so that M is type I and finite.

It follows that M = (@?11 Aj & My, (C)) s, where for each j € N, Ay
is an abelian von Neumann algebra and n; € N, with ny < ng £ ... If
the sequence (n;) is unbounded, then M contains a subalgebra isomorphic
to (Do) Mp;(C))ec, for some strictly increasing sequence (my) € N, but
again by Example 3.3(ii} and Corollary 3.2, this subalgebra fails to have
DP1, and 50 M fails to have DP1, a contradiction. Hence the sequence (r)
is bounded, so that M can be written as a finite direct sum of type 1, von
Neumann algebras. But by [3, Theorem 3], this implies that M has DP. w

Remark, It seems likely that the predual of every von Neumann algebra
has D'P'L,-'a.\fxd that a C*-algebra A has DP if and only if it has DP1. These
remain conjectures at present, The latter question is made difficult to prove
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by the general lack for O*-algebras of the kinds of structure theorems that
exigt for von Neumann algebras.
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